Merge pull request #5115 from thinkyhead/rc_buffer_line_wait_later

Optimize buffer_line by calculating before wait-for-free-block
This commit is contained in:
Scott Lahteine 2016-10-30 16:46:18 -05:00 committed by GitHub
commit 8a4c51f313
3 changed files with 132 additions and 115 deletions

View file

@ -180,7 +180,7 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
// block->decelerate_after = accelerate_steps+plateau_steps; // block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if (!block->busy) { // Don't update variables if block is busy. if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps; block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps + plateau_steps; block->decelerate_after = accelerate_steps + plateau_steps;
block->initial_rate = initial_rate; block->initial_rate = initial_rate;
@ -212,10 +212,10 @@ void Planner::reverse_pass_kernel(block_t* const current, const block_t *next) {
if (current->entry_speed != max_entry_speed) { if (current->entry_speed != max_entry_speed) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute // If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false. // for max allowable speed if block is decelerating and nominal length is false.
current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed) current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed)
? max_entry_speed ? max_entry_speed
: min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); : min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
current->flag |= BLOCK_FLAG_RECALCULATE; SBI(current->flag, BLOCK_BIT_RECALCULATE);
} }
} }
@ -237,7 +237,7 @@ void Planner::reverse_pass() {
uint8_t b = BLOCK_MOD(block_buffer_head - 3); uint8_t b = BLOCK_MOD(block_buffer_head - 3);
while (b != tail) { while (b != tail) {
if (block[0] && (block[0]->flag & BLOCK_FLAG_START_FROM_FULL_HALT)) break; if (block[0] && TEST(block[0]->flag, BLOCK_BIT_START_FROM_FULL_HALT)) break;
b = prev_block_index(b); b = prev_block_index(b);
block[2] = block[1]; block[2] = block[1];
block[1] = block[0]; block[1] = block[0];
@ -255,14 +255,14 @@ void Planner::forward_pass_kernel(const block_t* previous, block_t* const curren
// full speed change within the block, we need to adjust the entry speed accordingly. Entry // full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner. // speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!(previous->flag & BLOCK_FLAG_NOMINAL_LENGTH)) { if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) {
if (previous->entry_speed < current->entry_speed) { if (previous->entry_speed < current->entry_speed) {
float entry_speed = min(current->entry_speed, float entry_speed = min(current->entry_speed,
max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters)); max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
// Check for junction speed change // Check for junction speed change
if (current->entry_speed != entry_speed) { if (current->entry_speed != entry_speed) {
current->entry_speed = entry_speed; current->entry_speed = entry_speed;
current->flag |= BLOCK_FLAG_RECALCULATE; SBI(current->flag, BLOCK_BIT_RECALCULATE);
} }
} }
} }
@ -298,11 +298,11 @@ void Planner::recalculate_trapezoids() {
next = &block_buffer[block_index]; next = &block_buffer[block_index];
if (current) { if (current) {
// Recalculate if current block entry or exit junction speed has changed. // Recalculate if current block entry or exit junction speed has changed.
if ((current->flag & BLOCK_FLAG_RECALCULATE) || (next->flag & BLOCK_FLAG_RECALCULATE)) { if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
float nom = current->nominal_speed; float nom = current->nominal_speed;
calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom); calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
current->flag &= ~BLOCK_FLAG_RECALCULATE; // Reset current only to ensure next trapezoid is computed CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
} }
} }
block_index = next_block_index(block_index); block_index = next_block_index(block_index);
@ -311,7 +311,7 @@ void Planner::recalculate_trapezoids() {
if (next) { if (next) {
float nom = next->nominal_speed; float nom = next->nominal_speed;
calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom); calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
next->flag &= ~BLOCK_FLAG_RECALCULATE; CBI(next->flag, BLOCK_BIT_RECALCULATE);
} }
} }
@ -594,12 +594,6 @@ void Planner::check_axes_activity() {
* extruder - target extruder * extruder - target extruder
*/ */
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) { void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
// Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while (block_buffer_tail == next_buffer_head) idle();
// The target position of the tool in absolute steps // The target position of the tool in absolute steps
// Calculate target position in absolute steps // Calculate target position in absolute steps
@ -662,60 +656,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
} }
#endif #endif
// Prepare to set up new block
block_t* block = &block_buffer[block_buffer_head];
// Mark block as not busy (Not executed by the stepper interrupt)
block->busy = false;
// Number of steps for each axis
#if ENABLED(COREXY)
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps[A_AXIS] = labs(da + db);
block->steps[B_AXIS] = labs(da - db);
block->steps[Z_AXIS] = labs(dc);
#elif ENABLED(COREXZ)
// corexz planning
block->steps[A_AXIS] = labs(da + dc);
block->steps[Y_AXIS] = labs(db);
block->steps[C_AXIS] = labs(da - dc);
#elif ENABLED(COREYZ)
// coreyz planning
block->steps[X_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db + dc);
block->steps[C_AXIS] = labs(db - dc);
#else
// default non-h-bot planning
block->steps[X_AXIS] = labs(da);
block->steps[Y_AXIS] = labs(db);
block->steps[Z_AXIS] = labs(dc);
#endif
block->steps[E_AXIS] = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], block->steps[E_AXIS]);
// Bail if this is a zero-length block
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
// Clear the block flags
block->flag = 0;
// For a mixing extruder, get a magnified step_event_count for each
#if ENABLED(MIXING_EXTRUDER)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
block->mix_event_count[i] = UNEAR_ZERO(mixing_factor[i]) ? 0 : block->step_event_count / mixing_factor[i];
#endif
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
#endif
#if ENABLED(BARICUDA)
block->valve_pressure = baricuda_valve_pressure;
block->e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
// Compute direction bit-mask for this block // Compute direction bit-mask for this block
uint8_t dm = 0; uint8_t dm = 0;
#if ENABLED(COREXY) #if ENABLED(COREXY)
@ -742,8 +682,70 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
if (dc < 0) SBI(dm, Z_AXIS); if (dc < 0) SBI(dm, Z_AXIS);
#endif #endif
if (de < 0) SBI(dm, E_AXIS); if (de < 0) SBI(dm, E_AXIS);
int32_t esteps = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
// Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while (block_buffer_tail == next_buffer_head) idle();
// Prepare to set up new block
block_t* block = &block_buffer[block_buffer_head];
// Clear all flags, including the "busy" bit
block->flag = 0;
// Set direction bits
block->direction_bits = dm; block->direction_bits = dm;
// Number of steps for each axis
#if ENABLED(COREXY)
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps[A_AXIS] = labs(da + db);
block->steps[B_AXIS] = labs(da - db);
block->steps[Z_AXIS] = labs(dc);
#elif ENABLED(COREXZ)
// corexz planning
block->steps[A_AXIS] = labs(da + dc);
block->steps[Y_AXIS] = labs(db);
block->steps[C_AXIS] = labs(da - dc);
#elif ENABLED(COREYZ)
// coreyz planning
block->steps[X_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db + dc);
block->steps[C_AXIS] = labs(db - dc);
#else
// default non-h-bot planning
block->steps[X_AXIS] = labs(da);
block->steps[Y_AXIS] = labs(db);
block->steps[Z_AXIS] = labs(dc);
#endif
block->steps[E_AXIS] = esteps;
block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
// Bail if this is a zero-length block
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
// For a mixing extruder, get a magnified step_event_count for each
#if ENABLED(MIXING_EXTRUDER)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
block->mix_event_count[i] = UNEAR_ZERO(mixing_factor[i]) ? 0 : block->step_event_count / mixing_factor[i];
#endif
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
#endif
#if ENABLED(BARICUDA)
block->valve_pressure = baricuda_valve_pressure;
block->e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
block->active_extruder = extruder; block->active_extruder = extruder;
//enable active axes //enable active axes
@ -761,6 +763,12 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
enable_z(); enable_z();
} }
if (block->steps[Y_AXIS]) enable_y(); if (block->steps[Y_AXIS]) enable_y();
#elif ENABLED(COREYZ)
if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
enable_y();
enable_z();
}
if (block->steps[X_AXIS]) enable_x();
#else #else
if (block->steps[X_AXIS]) enable_x(); if (block->steps[X_AXIS]) enable_x();
if (block->steps[Y_AXIS]) enable_y(); if (block->steps[Y_AXIS]) enable_y();
@ -770,7 +778,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif #endif
// Enable extruder(s) // Enable extruder(s)
if (block->steps[E_AXIS]) { if (esteps) {
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
@ -839,7 +847,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif #endif
} }
if (block->steps[E_AXIS]) if (esteps)
NOLESS(fr_mm_s, min_feedrate_mm_s); NOLESS(fr_mm_s, min_feedrate_mm_s);
else else
NOLESS(fr_mm_s, min_travel_feedrate_mm_s); NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
@ -1037,7 +1045,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
}while(0) }while(0)
// Start with print or travel acceleration // Start with print or travel acceleration
accel = ceil((block->steps[E_AXIS] ? acceleration : travel_acceleration) * steps_per_mm); accel = ceil((esteps ? acceleration : travel_acceleration) * steps_per_mm);
// Limit acceleration per axis // Limit acceleration per axis
if (block->step_event_count <= cutoff_long){ if (block->step_event_count <= cutoff_long){
@ -1186,12 +1194,12 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) { if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
// Not coasting. The machine will stop and start the movements anyway, // Not coasting. The machine will stop and start the movements anyway,
// better to start the segment from start. // better to start the segment from start.
block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT; SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
vmax_junction = safe_speed; vmax_junction = safe_speed;
} }
} }
else { else {
block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT; SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
vmax_junction = safe_speed; vmax_junction = safe_speed;
} }
@ -1224,18 +1232,18 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// This leads to an enormous number of advance steps due to a huge e_acceleration. // This leads to an enormous number of advance steps due to a huge e_acceleration.
// The math is correct, but you don't want a retract move done with advance! // The math is correct, but you don't want a retract move done with advance!
// So this situation is filtered out here. // So this situation is filtered out here.
if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t) block->steps[E_AXIS] == block->step_event_count) { if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t)esteps == block->step_event_count) {
block->use_advance_lead = false; block->use_advance_lead = false;
} }
else { else {
block->use_advance_lead = true; block->use_advance_lead = true;
block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count; block->e_speed_multiplier8 = (esteps << 8) / block->step_event_count;
} }
#elif ENABLED(ADVANCE) #elif ENABLED(ADVANCE)
// Calculate advance rate // Calculate advance rate
if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) { if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
block->advance_rate = 0; block->advance_rate = 0;
block->advance = 0; block->advance = 0;
} }

View file

@ -40,17 +40,27 @@
#include "vector_3.h" #include "vector_3.h"
#endif #endif
enum BlockFlagBit {
// Recalculate trapezoids on entry junction. For optimization.
BLOCK_BIT_RECALCULATE,
// Nominal speed always reached.
// i.e., The segment is long enough, so the nominal speed is reachable if accelerating
// from a safe speed (in consideration of jerking from zero speed).
BLOCK_BIT_NOMINAL_LENGTH,
// Start from a halt at the start of this block, respecting the maximum allowed jerk.
BLOCK_BIT_START_FROM_FULL_HALT,
// The block is busy
BLOCK_BIT_BUSY
};
enum BlockFlag { enum BlockFlag {
// Recalculate trapezoids on entry junction. For optimization. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
BLOCK_FLAG_RECALCULATE = _BV(0), BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
BLOCK_FLAG_START_FROM_FULL_HALT = _BV(BLOCK_BIT_START_FROM_FULL_HALT),
// Nominal speed always reached. BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY)
// i.e., The segment is long enough, so the nominal speed is reachable if accelerating
// from a safe speed (in consideration of jerking from zero speed).
BLOCK_FLAG_NOMINAL_LENGTH = _BV(1),
// Start from a halt at the start of this block, respecting the maximum allowed jerk.
BLOCK_FLAG_START_FROM_FULL_HALT = _BV(2)
}; };
/** /**
@ -64,57 +74,56 @@ enum BlockFlag {
*/ */
typedef struct { typedef struct {
uint8_t flag; // Block flags (See BlockFlag enum above)
unsigned char active_extruder; // The extruder to move (if E move) unsigned char active_extruder; // The extruder to move (if E move)
// Fields used by the bresenham algorithm for tracing the line // Fields used by the Bresenham algorithm for tracing the line
long steps[NUM_AXIS]; // Step count along each axis int32_t steps[NUM_AXIS]; // Step count along each axis
unsigned long step_event_count; // The number of step events required to complete this block uint32_t step_event_count; // The number of step events required to complete this block
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
unsigned long mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
#endif #endif
long accelerate_until, // The index of the step event on which to stop acceleration int32_t accelerate_until, // The index of the step event on which to stop acceleration
decelerate_after, // The index of the step event on which to start decelerating decelerate_after, // The index of the step event on which to start decelerating
acceleration_rate; // The acceleration rate used for acceleration calculation acceleration_rate; // The acceleration rate used for acceleration calculation
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
// Advance extrusion // Advance extrusion
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
bool use_advance_lead; bool use_advance_lead;
int e_speed_multiplier8; // Factorised by 2^8 to avoid float int16_t e_speed_multiplier8; // Factorised by 2^8 to avoid float
#elif ENABLED(ADVANCE) #elif ENABLED(ADVANCE)
long advance_rate; int32_t advance_rate;
volatile long initial_advance; volatile int32_t initial_advance;
volatile long final_advance; volatile int32_t final_advance;
float advance; float advance;
#endif #endif
// Fields used by the motion planner to manage acceleration // Fields used by the motion planner to manage acceleration
float nominal_speed, // The nominal speed for this block in mm/sec float nominal_speed, // The nominal speed for this block in mm/sec
entry_speed, // Entry speed at previous-current junction in mm/sec entry_speed, // Entry speed at previous-current junction in mm/sec
max_entry_speed, // Maximum allowable junction entry speed in mm/sec max_entry_speed, // Maximum allowable junction entry speed in mm/sec
millimeters, // The total travel of this block in mm millimeters, // The total travel of this block in mm
acceleration; // acceleration mm/sec^2 acceleration; // acceleration mm/sec^2
uint8_t flag; // Block flags (See BlockFlag enum above)
// Settings for the trapezoid generator // Settings for the trapezoid generator
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
initial_rate, // The jerk-adjusted step rate at start of block initial_rate, // The jerk-adjusted step rate at start of block
final_rate, // The minimal rate at exit final_rate, // The minimal rate at exit
acceleration_steps_per_s2; // acceleration steps/sec^2 acceleration_steps_per_s2; // acceleration steps/sec^2
#if FAN_COUNT > 0 #if FAN_COUNT > 0
unsigned long fan_speed[FAN_COUNT]; uint32_t fan_speed[FAN_COUNT];
#endif #endif
#if ENABLED(BARICUDA) #if ENABLED(BARICUDA)
unsigned long valve_pressure, e_to_p_pressure; uint32_t valve_pressure, e_to_p_pressure;
#endif #endif
volatile char busy;
} block_t; } block_t;
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1)) #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
@ -341,7 +350,7 @@ class Planner {
static block_t* get_current_block() { static block_t* get_current_block() {
if (blocks_queued()) { if (blocks_queued()) {
block_t* block = &block_buffer[block_buffer_tail]; block_t* block = &block_buffer[block_buffer_tail];
block->busy = true; SBI(block->flag, BLOCK_BIT_BUSY);
return block; return block;
} }
else else

View file

@ -344,7 +344,7 @@ void Stepper::isr() {
// Anything in the buffer? // Anything in the buffer?
current_block = planner.get_current_block(); current_block = planner.get_current_block();
if (current_block) { if (current_block) {
current_block->busy = true; SBI(current_block->flag, BLOCK_BIT_BUSY);
trapezoid_generator_reset(); trapezoid_generator_reset();
// Initialize Bresenham counters to 1/2 the ceiling // Initialize Bresenham counters to 1/2 the ceiling