Add realtime delta geometry in Marlin_main.cpp.

This commit is contained in:
Johann Rocholl 2012-12-10 01:04:12 -08:00
parent cec7283b21
commit 8e2519e88b
2 changed files with 66 additions and 30 deletions

View file

@ -159,6 +159,7 @@ void FlushSerialRequestResend();
void ClearToSend(); void ClearToSend();
void get_coordinates(); void get_coordinates();
void calculate_delta(float cartesian[3]);
void prepare_move(); void prepare_move();
void kill(); void kill();
void Stop(); void Stop();

View file

@ -169,6 +169,7 @@ int fanSpeed=0;
//=========================================================================== //===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
static float delta[3] = {0.0, 0.0, 0.0};
static float offset[3] = {0.0, 0.0, 0.0}; static float offset[3] = {0.0, 0.0, 0.0};
static bool home_all_axis = true; static bool home_all_axis = true;
static float feedrate = 1500.0, next_feedrate, saved_feedrate; static float feedrate = 1500.0, next_feedrate, saved_feedrate;
@ -731,34 +732,25 @@ void process_commands()
feedrate = 0.0; feedrate = 0.0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))); home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
HOMEAXIS(Z);
}
#endif
#ifdef QUICK_HOME #ifdef QUICK_HOME
if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move if (home_all_axis) // Move all carriages up together until the first endstop is hit.
{ {
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0; current_position[X_AXIS] = 0;
current_position[Y_AXIS] = 0;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
feedrate = homing_feedrate[X_AXIS];
if(homing_feedrate[Y_AXIS]<feedrate)
feedrate =homing_feedrate[Y_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(X_AXIS); destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
axis_is_at_home(Y_AXIS); destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
destination[X_AXIS] = current_position[X_AXIS]; feedrate = 1.732 * homing_feedrate[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
feedrate = 0.0;
st_synchronize(); st_synchronize();
endstops_hit_on_purpose(); endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
current_position[Z_AXIS] = destination[Z_AXIS];
} }
#endif #endif
@ -771,11 +763,9 @@ void process_commands()
HOMEAXIS(Y); HOMEAXIS(Y);
} }
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
HOMEAXIS(Z); HOMEAXIS(Z);
} }
#endif
if(code_seen(axis_codes[X_AXIS])) if(code_seen(axis_codes[X_AXIS]))
{ {
@ -795,7 +785,8 @@ void process_commands()
current_position[Z_AXIS]=code_value()+add_homeing[2]; current_position[Z_AXIS]=code_value()+add_homeing[2];
} }
} }
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#ifdef ENDSTOPS_ONLY_FOR_HOMING #ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false); enable_endstops(false);
@ -1688,18 +1679,62 @@ void clamp_to_software_endstops(float target[3])
} }
} }
void calculate_delta(float cartesian[3])
{
delta[X_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
- sq(DELTA_TOWER1_X-cartesian[X_AXIS])
- sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Y_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
- sq(DELTA_TOWER2_X-cartesian[X_AXIS])
- sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Z_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
- sq(DELTA_TOWER3_X-cartesian[X_AXIS])
- sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
*/
}
void prepare_move() void prepare_move()
{ {
clamp_to_software_endstops(destination); clamp_to_software_endstops(destination);
previous_millis_cmd = millis(); previous_millis_cmd = millis();
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { float difference[NUM_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); for (int8_t i=0; i < NUM_AXIS; i++) {
difference[i] = destination[i] - current_position[i];
} }
else { float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
} }
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i]; current_position[i] = destination[i];
} }