Servo & PWM support for LPC1768 (#7500)

This commit is contained in:
Bob-the-Kuhn 2017-08-14 14:40:13 -05:00 committed by Scott Lahteine
parent 859fa35287
commit 97444391e0
10 changed files with 739 additions and 86 deletions

View file

@ -0,0 +1,382 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* The class Servo uses the PWM class to implement it's functions
*
* The PWM1 module is only used to generate interrups at specified times. It
* is NOT used to directly toggle pins. The ISR writes to the pin assigned to
* that interrupt
*
* All PWMs use the same repetition rate - 20mS because that's the normal servo rate
*
*/
/**
* The data structures are setup to minimize the computation done by the ISR which
* minimizes ISR execution time. Execution times are 1.7 to 1.9 microseconds.
*
* Two tables are used. active_table is used by the ISR. Changes to the table are
* are done by copying the active_table into the work_table, updating the work_table
* and then swapping the two tables. Swapping is done by manipulating pointers.
*
* Immediately after the swap the ISR uses the work_table until the start of the
* next 20mS cycle. During this transition the "work_table" is actually the table
* that was being used before the swap. The "active_table" contains the data that
* will start being used at the start of the next 20mS period. This keeps the pins
* well behaved during the transition.
*
* The ISR's priority is set to the maximum otherwise other ISRs can cause considerable
* jitter in the PWM high time.
*/
#ifdef TARGET_LPC1768
#include <lpc17xx_pinsel.h>
//#include "../HAL.h"
//#include "../../../macros.h"
#include "serial.h"
typedef struct { // holds all data needed to control the 6 PWM channels
uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot
uint8_t logical_pin;
uint16_t PWM_mask;
volatile uint32_t* set_register;
volatile uint32_t* clr_register;
uint32_t write_mask;
uint32_t microseconds;
uint32_t min;
uint32_t max;
bool PWM_flag; //
uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel
bool active_flag;
} PWM_map;
#define MICRO_MAX 0xffffffff
#define PWM_MAP_INIT_ROW {0, 0xff, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0}
#define PWM_MAP_INIT {PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
};
PWM_map PWM1_map_A[6] = PWM_MAP_INIT;
PWM_map PWM1_map_B[6] = PWM_MAP_INIT;
PWM_map *active_table = PWM1_map_A;
PWM_map *work_table = PWM1_map_B;
PWM_map *ISR_table;
#define NUM_PWMS 6
volatile uint8_t PWM1_ISR_index = 0;
#define IR_BIT(p) (p >= 0 && p <= 3 ? p : p + 4 )
#define COPY_ACTIVE_TABLE for (uint8_t i = 0; i < 6 ; i++) work_table[i] = active_table[i]
#define PIN_IS_INVERTED(p) 0 // place holder in case inverting PWM output is offered
/**
* Prescale register and MR0 register values
*
* 100MHz PCLK 50MHz PCLK 25MHz PCLK 12.5MHz PCLK
* ----------------- ----------------- ----------------- -----------------
* desired prescale MR0 prescale MR0 prescale MR0 prescale MR0 resolution
* prescale register register register register register register register register in degrees
* freq value value value value value value value value
*
* 8 11.5 159,999 5.25 159,999 2.13 159,999 0.5625 159,999 0.023
* 4 24 79,999 11.5 79,999 5.25 79,999 2.125 79,999 0.045
* 2 49 39,999 24 39,999 11.5 39,999 5.25 39,999 0.090
* 1 99 19,999 49 19,999 24 19,999 11.5 19,999 0.180
* 0.5 199 9,999 99 9,999 49 9,999 24 9,999 0.360
* 0.25 399 4,999 199 4,999 99 4,999 49 4,999 0.720
* 0.125 799 2,499 399 2,499 199 2,499 99 2,499 1.440
*
* The desired prescale frequency comes from an input in the range of 544 - 2400 microseconds and the
* desire to just shift the input left or right as needed.
*
* A resolution of 0.2 degrees seems reasonable so a prescale frequency output of 1MHz is being used.
* It also means we don't need to scale the input.
*
* The PCLK is set to 25MHz because that's the slowest one that gives whole numbers for prescale and
* MR0 registers.
*
* Final settings:
* PCLKSEL0: 0x0
* PWM1PR: 0x018 (24)
* PWM1MR0: 0x04E1F (19,999)
*
*/
#define LPC_PWM1_MR0 19999 // base repetition rate minus one count - 20mS
#define LPC_PWM1_PR 24 // prescaler value - prescaler divide by 24 + 1 - 1 MHz output
#define LPC_PWM1_PCLKSEL0 0x00 // select clock source for prescaler - defaults to 25MHz on power up
// 0: 25MHz, 1: 100MHz, 2: 50MHz, 3: 12.5MHZ to PWM1 prescaler
#define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up
void LPC1768_PWM_init(void) {
#define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable
#define SBIT_CNTRST 1 // reset counters to known state
#define SBIT_PWMEN 3 // 1 - PWM, 0 - timer
#define SBIT_PWMMR0R 1
#define PCPWM1 6
#define PCLK_PWM1 12
LPC_SC->PCONP |= (1 << PCPWM1); // enable PWM1 controller (enabled on power up)
LPC_SC->PCLKSEL0 &= ~(0x3 << PCLK_PWM1);
LPC_SC->PCLKSEL0 |= (LPC_PWM1_PCLKSEL0 << PCLK_PWM1);
LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS
// MR0 must be set before TCR enables the PWM
LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST)| _BV(SBIT_PWMEN);; // enable counters, reset counters, set mode to PWM
LPC_PWM1->TCR &= ~(_BV(SBIT_CNTRST)); // take counters out of reset
LPC_PWM1->PR = LPC_PWM1_PR;
LPC_PWM1->MCR = (_BV(SBIT_PWMMR0R) | _BV(0)); // Reset TC if it matches MR0, disable all interrupts except for MR0
LPC_PWM1->CTCR = 0; // disable counter mode (enable PWM mode)
LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6
// Set all PWMs to single edge
LPC_PWM1->PCR = 0; // single edge mode for all channels, PWM1 control of outputs off
NVIC_EnableIRQ(PWM1_IRQn); // Enable interrupt handler
// NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0)); // normal priority for PWM module
NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0)); // minimizes jitter due to higher priority ISRs
}
bool PWM_table_swap; // flag to tell the ISR that the tables have been swapped
bool LPC1768_PWM_attach_pin(uint8_t pin, uint32_t min = 1, uint32_t max = (LPC_PWM1_MR0 - MR0_MARGIN), uint8_t servo_index = 0xff) {
COPY_ACTIVE_TABLE; // copy active table into work table
uint8_t slot = 0;
for (uint8_t i = 0; i < NUM_PWMS ; i++) // see if already in table
if (work_table[i].logical_pin == pin) return 1;
for (uint8_t i = 1; (i < NUM_PWMS + 1) && !slot; i++) // find empty slot
if ( !(work_table[i - 1].set_register)) slot = i; // any item that can't be zero when active or just attached is OK
if (!slot) return 0;
slot--; // turn it into array index
work_table[slot].logical_pin = pin; // init slot
work_table[slot].PWM_mask = 0; // real value set by PWM_write
work_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(pin_map[pin].port)->FIOCLR : &LPC_GPIO(pin_map[pin].port)->FIOSET;
work_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(pin_map[pin].port)->FIOSET : &LPC_GPIO(pin_map[pin].port)->FIOCLR;
work_table[slot].write_mask = LPC_PIN(pin_map[pin].pin);
work_table[slot].microseconds = MICRO_MAX;
work_table[slot].min = min;
work_table[slot].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
work_table[slot].servo_index = servo_index;
work_table[slot].active_flag = false;
//swap tables
NVIC_DisableIRQ(PWM1_IRQn);
PWM_map *pointer_swap = active_table;
active_table = work_table;
work_table = pointer_swap;
PWM_table_swap = true; // tell the ISR that the tables have been swapped
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return 1;
}
bool LPC1768_PWM_write(uint8_t pin, uint32_t value) {
COPY_ACTIVE_TABLE; // copy active table into work table
uint8_t slot = 0xFF;
for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
if (work_table[i].logical_pin == pin) slot = i;
if (slot == 0xFF) return false; // return error if pin not found
digitalWrite(pin, 0); // set pin to output & set it low
work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);
work_table[slot].active_flag = true;
for (uint8_t i = NUM_PWMS; --i;) { // (bubble) sort table by microseconds
bool didSwap = false;
PWM_map temp;
for (uint16_t j = 0; j < i; ++j) {
if (work_table[j].microseconds > work_table[j + 1].microseconds) {
temp = work_table[j + 1];
work_table[j + 1] = work_table[j];
work_table[j] = temp;
didSwap = true;
}
}
if (!didSwap) break;
}
for (uint8_t i = 0; i < NUM_PWMS; i++) // set the index & PWM_mask
if (work_table[i].active_flag == true) {
work_table[i].sequence = i + 1;
work_table[i].PWM_mask = _BV(IR_BIT(i + 1));
}
else work_table[i].sequence = 0;
uint32_t interrupt_mask = 0; // set match registers to new values, build IRQ mask
if (work_table[0].active_flag == true) {
LPC_PWM1->MR1 = work_table[0].microseconds;
interrupt_mask |= _BV(3);
}
if (work_table[1].active_flag == true) {
LPC_PWM1->MR2 = work_table[1].microseconds;
interrupt_mask |= _BV(6);
}
if (work_table[2].active_flag == true) {
LPC_PWM1->MR3 = work_table[2].microseconds;
interrupt_mask |= _BV(9);
}
if (work_table[3].active_flag == true) {
LPC_PWM1->MR4 = work_table[3].microseconds;
interrupt_mask |= _BV(12);
}
if (work_table[4].active_flag == true) {
LPC_PWM1->MR5 = work_table[4].microseconds;
interrupt_mask |= _BV(15);
}
if (work_table[5].active_flag == true) {
LPC_PWM1->MR6 = work_table[5].microseconds;
interrupt_mask |= _BV(18);
}
interrupt_mask |= _BV(0); // add in MR0 interrupt
// swap tables
NVIC_DisableIRQ(PWM1_IRQn);
LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
PWM_map *pointer_swap = active_table;
active_table = work_table;
work_table = pointer_swap;
PWM_table_swap = true; // tell the ISR that the tables have been swapped
LPC_PWM1->MCR = interrupt_mask; // enable new PWM individual channel interrupts
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return 1;
}
bool LPC1768_PWM_detach_pin(uint8_t pin) {
COPY_ACTIVE_TABLE; // copy active table into work table
uint8_t slot = 0xFF;
for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
if (work_table[i].logical_pin == pin) slot = i;
if (slot == 0xFF) return false; // return error if pin not found
pinMode(pin, INPUT_PULLUP); // set pin to input with pullup
work_table[slot] = PWM_MAP_INIT_ROW;
for (uint8_t i = NUM_PWMS; --i;) { // (bubble) sort table by microseconds
bool didSwap = false;
PWM_map temp;
for (uint16_t j = 0; j < i; ++j) {
if (work_table[j].microseconds > work_table[j + 1].microseconds) {
temp = work_table[j + 1];
work_table[j + 1] = work_table[j];
work_table[j] = temp;
didSwap = true;
}
}
if (!didSwap) break;
}
for (uint8_t i = 0; i < NUM_PWMS; i++) // set the index & PWM_mask
if (work_table[i].active_flag == true) {
work_table[i].sequence = i + 1;
work_table[i].PWM_mask = _BV(IR_BIT(i + 1));
}
else work_table[i].sequence = 0;
uint32_t interrupt_mask = 0; // set match registers to new values, build IRQ mask
if (work_table[0].active_flag == true) {
LPC_PWM1->MR1 = work_table[0].microseconds;
interrupt_mask |= _BV(3);
}
if (work_table[1].active_flag == true) {
LPC_PWM1->MR2 = work_table[1].microseconds;
interrupt_mask |= _BV(6);
}
if (work_table[2].active_flag == true) {
LPC_PWM1->MR3 = work_table[2].microseconds;
interrupt_mask |= _BV(9);
}
if (work_table[3].active_flag == true) {
LPC_PWM1->MR4 = work_table[3].microseconds;
interrupt_mask |= _BV(12);
}
if (work_table[4].active_flag == true) {
LPC_PWM1->MR5 = work_table[4].microseconds;
interrupt_mask |= _BV(15);
}
if (work_table[5].active_flag == true) {
LPC_PWM1->MR6 = work_table[5].microseconds;
interrupt_mask |= _BV(18);
}
interrupt_mask |= _BV(0); // add in MR0 interrupt
// swap tables
NVIC_DisableIRQ(PWM1_IRQn);
LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
PWM_map *pointer_swap = active_table;
active_table = work_table;
work_table = pointer_swap;
PWM_table_swap = true; // tell the ISR that the tables have been swapped
LPC_PWM1->MCR = interrupt_mask; // enable remaining PWM individual channel interrupts
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return 1;
}
////////////////////////////////////////////////////////////////////////////////
#define HAL_PWM_LPC1768_ISR extern "C" void PWM1_IRQHandler(void)
HAL_PWM_LPC1768_ISR {
if (PWM_table_swap) ISR_table = work_table; // use old table if a swap was just done
else ISR_table = active_table;
if (LPC_PWM1->IR & 0x1) { // MR0 interrupt
PWM_table_swap = false; // MR0 means new values could have been
ISR_table = active_table; // loaded so set everything to normal operation
for (uint8_t i = 0; (i < NUM_PWMS) && ISR_table[i].active_flag ; i++)
*ISR_table[i].set_register = ISR_table[i].write_mask; // set all enabled channels active
LPC_PWM1->IR = 0x01; // clear the MR0 interrupt flag bit
PWM1_ISR_index = 0;
}
else {
if (ISR_table[PWM1_ISR_index].active_flag && (LPC_PWM1->IR & ISR_table[PWM1_ISR_index].PWM_mask)) {
LPC_PWM1->IR = ISR_table[PWM1_ISR_index].PWM_mask; // clear the interrupt flag bit
*ISR_table[PWM1_ISR_index].clr_register = ISR_table[PWM1_ISR_index].write_mask; // set channel to inactive
}
PWM1_ISR_index++; // should be the index for the next interrupt
}
return;
}
#endif

View file

@ -0,0 +1,169 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Based on servo.cpp - Interrupt driven Servo library for Arduino using 16 bit
* timers- Version 2 Copyright (c) 2009 Michael Margolis. All right reserved.
*/
/**
* A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
* The servos are pulsed in the background using the value most recently written using the write() method
*
* Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
* Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
*
* The methods are:
*
* Servo - Class for manipulating servo motors connected to Arduino pins.
*
* attach(pin) - Attach a servo motor to an i/o pin.
* attach(pin, min, max) - Attach to a pin, setting min and max values in microseconds
* Default min is 544, max is 2400
*
* write() - Set the servo angle in degrees. (Invalid angles over MIN_PULSE_WIDTH are treated as µs.)
* writeMicroseconds() - Set the servo pulse width in microseconds.
* move(pin, angle) - Sequence of attach(pin), write(angle), delay(SERVO_DELAY).
* With DEACTIVATE_SERVOS_AFTER_MOVE it detaches after SERVO_DELAY.
* read() - Get the last-written servo pulse width as an angle between 0 and 180.
* readMicroseconds() - Get the last-written servo pulse width in microseconds.
* attached() - Return true if a servo is attached.
* detach() - Stop an attached servo from pulsing its i/o pin.
*
*/
/**
* The only time that this library wants physical movement is when a WRITE
* command is issued. Before that all the attach & detach activity is solely
* within the data base.
*
* The PWM output is inactive until the first WRITE. After that it stays active
* unless DEACTIVATE_SERVOS_AFTER_MOVE is enabled and a MOVE command was issued.
*
*/
#if HAS_SERVOS
#include "LPC1768_Servo.h"
#include "servo_private.h"
extern bool LPC1768_PWM_attach_pin(uint8_t, uint32_t, uint32_t, uint8_t);
extern bool LPC1768_PWM_write(uint8_t, uint32_t);
extern bool LPC1768_PWM_detach_pin(uint8_t);
ServoInfo_t servo_info[MAX_SERVOS]; // static array of servo info structures
uint8_t ServoCount = 0; // the total number of attached servos
#define US_TO_PULSE_WIDTH(p) p
#define PULSE_WIDTH_TO_US(p) p
#define TRIM_DURATION 0
#define SERVO_MIN() MIN_PULSE_WIDTH // minimum value in uS for this servo
#define SERVO_MAX() MAX_PULSE_WIDTH // maximum value in uS for this servo
Servo::Servo() {
if (ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servo_info[this->servoIndex].pulse_width = US_TO_PULSE_WIDTH(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
}
else
this->servoIndex = INVALID_SERVO; // too many servos
}
int8_t Servo::attach(int pin) {
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
int8_t Servo::attach(int pin, int min, int max) {
if (this->servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servo_info[this->servoIndex].Pin.nbr = pin; // only assign a pin value if the pin info is
// greater than zero. This way the init routine can
// assign the pin and the MOVE command only needs the value.
this->min = MIN_PULSE_WIDTH; //resolution of min/max is 1 uS
this->max = MAX_PULSE_WIDTH;
servo_info[this->servoIndex].Pin.isActive = true;
return this->servoIndex;
}
void Servo::detach() {
servo_info[this->servoIndex].Pin.isActive = false;
}
void Servo::write(int value) {
if (value < MIN_PULSE_WIDTH) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX());
// odd - this sets zero degrees to 544 and 180 degrees to 2400 microseconds but the literature says
// zero degrees should be 500 microseconds and 180 should be 2500
}
this->writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value) {
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if (channel < MAX_SERVOS) { // ensure channel is valid
// ensure pulse width is valid
value = constrain(value, SERVO_MIN(), SERVO_MAX()) - (TRIM_DURATION);
value = US_TO_PULSE_WIDTH(value); // convert to pulse_width after compensating for interrupt overhead - 12 Aug 2009
servo_info[channel].pulse_width = value;
LPC1768_PWM_attach_pin(servo_info[this->servoIndex].Pin.nbr, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH, this->servoIndex);
LPC1768_PWM_write(servo_info[this->servoIndex].Pin.nbr, value);
}
}
// return the value as degrees
int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); }
int Servo::readMicroseconds() {
return (this->servoIndex == INVALID_SERVO) ? 0 : PULSE_WIDTH_TO_US(servo_info[this->servoIndex].pulse_width) + TRIM_DURATION;
}
bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; }
void Servo::move(int value) {
if (this->attach(0) >= 0) { // notice the pin number is zero here
this->write(value);
delay(SERVO_DELAY);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
LPC1768_PWM_detach_pin(servo_info[this->servoIndex].Pin.nbr); // shut down the PWM signal
#endif
}
}
#endif // HAS_SERVOS

View file

@ -0,0 +1,69 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* The class Servo uses the PWM class to implement it's functions
*
* The PWM1 module is only used to generate interrups at specified times. It
* is NOT used to directly toggle pins. The ISR writes to the pin assigned to
* that interrupt
*
* All PWMs use the same repetition rate - 20mS because that's the normal servo rate
*
*/
#ifndef LPC1768_SERVO_h
#define LPC1768_SERVO_h
#ifdef TARGET_LPC1768
#include <inttypes.h>
class Servo {
public:
Servo();
int8_t attach(int pin); // attach the given pin to the next free channel, set pinMode, return channel number (-1 on fail)
int8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
void detach();
void write(int value); // if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
void writeMicroseconds(int value); // write pulse width in microseconds
void move(int value); // attach the servo, then move to value
// if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
// if DEACTIVATE_SERVOS_AFTER_MOVE wait SERVO_DELAY, then detach
int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false
private:
uint8_t servoIndex; // index into the channel data for this servo
int min;
int max;
};
#define HAL_SERVO_LIB Servo
#endif
#endif

View file

@ -1,44 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/*
Copyright (c) 2013 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef TARGET_LPC1768
#endif // ARDUINO_ARCH_SAM

View file

@ -140,27 +140,34 @@ bool digitalRead(int pin) {
return LPC_GPIO(pin_map[pin].port)->FIOPIN & LPC_PIN(pin_map[pin].pin) ? 1 : 0;
}
void analogWrite(int pin, int pwm_value) {
/*
void analogWrite(int pin, int pwm_value) { // 1 - 254: pwm_value, 0: LOW, 255: HIGH
extern bool LPC1768_PWM_attach_pin(uint8_t, uint32_t, uint32_t, uint8_t);
extern bool LPC1768_PWM_write(uint8_t, uint32_t);
extern bool LPC1768_PWM_detach_pin(uint8_t);
#define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up
static bool out_of_PWM_slots = false;
if (!WITHIN(pin, 0, NUM_DIGITAL_PINS - 1) || pin_map[pin].port == 0xFF)
return;
int old_pin = pin;
int old_value = pwm_value;
if(old_value != 0) {
for(uint16_t x = 0; x <= 5000; x++) {
LPC_GPIO(pin_map[pin].port)->FIOSET = LPC_PIN(pin_map[pin].pin);
//digitalWrite(old_pin, HIGH);
delayMicroseconds(old_value);
LPC_GPIO(pin_map[pin].port)->FIOCLR = LPC_PIN(pin_map[pin].pin);
//pinMode(pin, OUTPUT);
//digitalWrite(old_pin, LOW);
delayMicroseconds(255 - old_value);
uint value = MAX(MIN(pwm_value, 255), 0);
if (value == 0 || value == 255) { // treat as digital pin
LPC1768_PWM_detach_pin(pin); // turn off PWM
digitalWrite(pin, value);
}
else {
if (LPC1768_PWM_attach_pin(pin, 1, (LPC_PWM1->MR0 - MR0_MARGIN), 0xff)) // locks up if get too close to MR0 value
LPC1768_PWM_write(pin, map(value, 1, 254, 1, (LPC_PWM1->MR0 - MR0_MARGIN))); // map 1-254 onto PWM range
else { // out of PWM channels
if (!out_of_PWM_slots) usb_serial.printf(".\nWARNING - OUT OF PWM CHANNELS\n.\n"); //only warn once
out_of_PWM_slots = true;
digitalWrite(pin, value); // treat as a digital pin if out of channels
}
}
*/
}
extern bool HAL_adc_finished();

View file

@ -30,6 +30,7 @@ extern "C" {
#include <stdarg.h>
#include "arduino.h"
#include "serial.h"
#include "LPC1768_PWM.h"
static __INLINE uint32_t SysTick_Config(uint32_t ticks) {
if (ticks > SysTick_LOAD_RELOAD_Msk)
@ -86,6 +87,9 @@ int main(void) {
HAL_timer_init();
extern void LPC1768_PWM_init();
LPC1768_PWM_init();
setup();
while (true) {
loop();

View file

@ -0,0 +1,87 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* Based on "servo.h - Interrupt driven Servo library for Arduino using 16 bit timers -
* Version 2 Copyright (c) 2009 Michael Margolis. All right reserved.
*
* The only modification was to update/delete macros to match the LPC176x.
*
*/
#ifndef servo_private_h
#define servo_private_h
#include <inttypes.h>
// Macros
//values in microseconds
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
#define REFRESH_INTERVAL 20000 // minimum time to refresh servos in microseconds
#define MAX_SERVOS 4
#define INVALID_SERVO 255 // flag indicating an invalid servo index
// Types
typedef struct {
uint8_t nbr : 8 ; // a pin number from 0 to 254 (255 signals invalid pin)
uint8_t isActive : 1 ; // true if this channel is enabled, pin not pulsed if false
} ServoPin_t;
typedef struct {
ServoPin_t Pin;
unsigned int pulse_width; // pulse width in microseconds
} ServoInfo_t;
// Global variables
extern uint8_t ServoCount;
extern ServoInfo_t servo_info[MAX_SERVOS];
#endif

View file

@ -1,25 +0,0 @@
/*
Copyright (c) 2013 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 32 bit timer on the current board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many timers are available.
*/

View file

@ -56,7 +56,7 @@
#include "HAL.h"
#if HAS_SERVOS && !IS_32BIT_TEENSY
#if HAS_SERVOS && !(IS_32BIT_TEENSY || defined(TARGET_LPC1768))
//#include <Arduino.h>

View file

@ -71,6 +71,10 @@
#if IS_32BIT_TEENSY
#include "HAL_TEENSY35_36/HAL_Servo_Teensy.h" // Teensy HAL uses an inherited library
#elif defined(TARGET_LPC1768)
#include "HAL_LPC1768/LPC1768_Servo.cpp"
#else
#include <inttypes.h>