Move Volumetric methods to Planner

This commit is contained in:
Scott Lahteine 2017-09-18 05:51:45 -05:00
parent 6f92ab7eed
commit a10451ceed
12 changed files with 57 additions and 51 deletions

View file

@ -159,9 +159,6 @@ bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
TempUnit input_temp_units = TEMPUNIT_C; TempUnit input_temp_units = TEMPUNIT_C;
#endif #endif
// Initialized by settings.load()
float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
#if FAN_COUNT > 0 #if FAN_COUNT > 0
int16_t fanSpeeds[FAN_COUNT] = { 0 }; int16_t fanSpeeds[FAN_COUNT] = { 0 };
#if ENABLED(PROBING_FANS_OFF) #if ENABLED(PROBING_FANS_OFF)
@ -336,16 +333,6 @@ void quickstop_stepper() {
#endif // FILAMENT_RUNOUT_SENSOR #endif // FILAMENT_RUNOUT_SENSOR
float calculate_volumetric_multiplier(const float diameter) {
if (!parser.volumetric_enabled || diameter == 0) return 1.0;
return 1.0 / (M_PI * sq(diameter * 0.5));
}
void calculate_volumetric_multipliers() {
for (uint8_t i = 0; i < COUNT(filament_size); i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
}
void enable_all_steppers() { void enable_all_steppers() {
enable_X(); enable_X();
enable_Y(); enable_Y();

View file

@ -174,9 +174,6 @@ extern bool Running;
inline bool IsRunning() { return Running; } inline bool IsRunning() { return Running; }
inline bool IsStopped() { return !Running; } inline bool IsStopped() { return !Running; }
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern bool axis_known_position[XYZ]; extern bool axis_known_position[XYZ];
extern bool axis_homed[XYZ]; extern bool axis_homed[XYZ];
extern volatile bool wait_for_heatup; extern volatile bool wait_for_heatup;
@ -223,8 +220,6 @@ extern millis_t max_inactive_time, stepper_inactive_time;
extern int lpq_len; extern int lpq_len;
#endif #endif
void calculate_volumetric_multipliers();
bool pin_is_protected(const int8_t pin); bool pin_is_protected(const int8_t pin);
#endif // __MARLIN_H__ #endif // __MARLIN_H__

View file

@ -124,7 +124,7 @@ void FWRetract::retract(const bool retracting
// Retract by moving from a faux E position back to the current E position // Retract by moving from a faux E position back to the current E position
feedrate_mm_s = retract_feedrate_mm_s; feedrate_mm_s = retract_feedrate_mm_s;
current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) / volumetric_multiplier[active_extruder]; current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) / planner.volumetric_multiplier[active_extruder];
sync_plan_position_e(); sync_plan_position_e();
prepare_move_to_destination(); prepare_move_to_destination();
@ -149,7 +149,7 @@ void FWRetract::retract(const bool retracting
feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s; feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length; const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder]; current_position[E_AXIS] -= move_e / planner.volumetric_multiplier[active_extruder];
sync_plan_position_e(); sync_plan_position_e();
prepare_move_to_destination(); // Recover E prepare_move_to_destination(); // Recover E

View file

@ -22,6 +22,7 @@
#include "../gcode.h" #include "../gcode.h"
#include "../../Marlin.h" #include "../../Marlin.h"
#include "../../module/planner.h"
/** /**
* M200: Set filament diameter and set E axis units to cubic units * M200: Set filament diameter and set E axis units to cubic units
@ -37,13 +38,8 @@ void GcodeSuite::M200() {
// setting any extruder filament size disables volumetric on the assumption that // setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds // slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders // for all extruders
parser.volumetric_enabled = (parser.value_linear_units() != 0.0); if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) )
if (parser.volumetric_enabled) { planner.set_filament_size(target_extruder, parser.value_linear_units());
filament_size[target_extruder] = parser.value_linear_units();
// make sure all extruders have some sane value for the filament size
for (uint8_t i = 0; i < COUNT(filament_size); i++)
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
} }
calculate_volumetric_multipliers(); planner.calculate_volumetric_multipliers();
} }

View file

@ -76,7 +76,7 @@ void GcodeSuite::M405() {
*/ */
void GcodeSuite::M406() { void GcodeSuite::M406() {
filament_sensor = false; filament_sensor = false;
calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
} }
/** /**

View file

@ -3442,20 +3442,20 @@ void kill_screen(const char* lcd_msg) {
MENU_ITEM_EDIT(float3, MSG_ADVANCE_K, &planner.extruder_advance_k, 0, 999); MENU_ITEM_EDIT(float3, MSG_ADVANCE_K, &planner.extruder_advance_k, 0, 999);
#endif #endif
MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &parser.volumetric_enabled, calculate_volumetric_multipliers); MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &parser.volumetric_enabled, planner.calculate_volumetric_multipliers);
if (parser.volumetric_enabled) { if (parser.volumetric_enabled) {
#if EXTRUDERS == 1 #if EXTRUDERS == 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM, &planner.filament_size[0], 1.5, 3.25, planner.calculate_volumetric_multipliers);
#else // EXTRUDERS > 1 #else // EXTRUDERS > 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E1, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E1, &planner.filament_size[0], 1.5, 3.25, planner.calculate_volumetric_multipliers);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E2, &filament_size[1], 1.5, 3.25, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E2, &planner.filament_size[1], 1.5, 3.25, planner.calculate_volumetric_multipliers);
#if EXTRUDERS > 2 #if EXTRUDERS > 2
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E3, &filament_size[2], 1.5, 3.25, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E3, &planner.filament_size[2], 1.5, 3.25, planner.calculate_volumetric_multipliers);
#if EXTRUDERS > 3 #if EXTRUDERS > 3
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E4, &filament_size[3], 1.5, 3.25, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E4, &planner.filament_size[3], 1.5, 3.25, planner.calculate_volumetric_multipliers);
#if EXTRUDERS > 4 #if EXTRUDERS > 4
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E5, &filament_size[4], 1.5, 3.25, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E5, &planner.filament_size[4], 1.5, 3.25, planner.calculate_volumetric_multipliers);
#endif // EXTRUDERS > 4 #endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3 #endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2 #endif // EXTRUDERS > 2

View file

@ -637,7 +637,7 @@ static void lcd_implementation_status_screen() {
strcpy(zstring, ftostr52sp(FIXFLOAT(current_position[Z_AXIS]))); strcpy(zstring, ftostr52sp(FIXFLOAT(current_position[Z_AXIS])));
#if ENABLED(FILAMENT_LCD_DISPLAY) && DISABLED(SDSUPPORT) #if ENABLED(FILAMENT_LCD_DISPLAY) && DISABLED(SDSUPPORT)
strcpy(wstring, ftostr12ns(filament_width_meas)); strcpy(wstring, ftostr12ns(filament_width_meas));
strcpy(mstring, itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM])); strcpy(mstring, itostr3(100.0 * planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
#endif #endif
} }
@ -726,7 +726,7 @@ static void lcd_implementation_status_screen() {
lcd_print(ftostr12ns(filament_width_meas)); lcd_print(ftostr12ns(filament_width_meas));
lcd_printPGM(PSTR(" " LCD_STR_FILAM_MUL)); lcd_printPGM(PSTR(" " LCD_STR_FILAM_MUL));
u8g.print(':'); u8g.print(':');
lcd_print(itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM])); lcd_print(itostr3(100.0 * planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
u8g.print('%'); u8g.print('%');
} }
#else #else

View file

@ -853,7 +853,7 @@ static void lcd_implementation_status_screen() {
lcd_printPGM(PSTR("Dia ")); lcd_printPGM(PSTR("Dia "));
lcd.print(ftostr12ns(filament_width_meas)); lcd.print(ftostr12ns(filament_width_meas));
lcd_printPGM(PSTR(" V")); lcd_printPGM(PSTR(" V"));
lcd.print(itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM])); lcd.print(itostr3(100.0 * planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
lcd.write('%'); lcd.write('%');
return; return;
} }

View file

@ -138,7 +138,7 @@
* *
* Volumetric Extrusion: 21 bytes * Volumetric Extrusion: 21 bytes
* 537 M200 D parser.volumetric_enabled (bool) * 537 M200 D parser.volumetric_enabled (bool)
* 538 M200 T D filament_size (float x5) (T0..3) * 538 M200 T D planner.filament_size (float x5) (T0..3)
* *
* HAVE_TMC2130: 20 bytes * HAVE_TMC2130: 20 bytes
* 558 M906 X Stepper X current (uint16_t) * 558 M906 X Stepper X current (uint16_t)
@ -224,7 +224,7 @@ void MarlinSettings::postprocess() {
thermalManager.updatePID(); thermalManager.updatePID();
#endif #endif
calculate_volumetric_multipliers(); planner.calculate_volumetric_multipliers();
#if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE) #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
// Software endstops depend on home_offset // Software endstops depend on home_offset
@ -509,7 +509,7 @@ void MarlinSettings::postprocess() {
// Save filament sizes // Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_size)) dummy = filament_size[q]; if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
EEPROM_WRITE(dummy); EEPROM_WRITE(dummy);
} }
@ -895,7 +895,7 @@ void MarlinSettings::postprocess() {
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy); EEPROM_READ(dummy);
if (q < COUNT(filament_size)) filament_size[q] = dummy; if (q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy;
} }
uint16_t val; uint16_t val;
@ -1260,8 +1260,8 @@ void MarlinSettings::reset() {
false false
#endif #endif
; ;
for (uint8_t q = 0; q < COUNT(filament_size); q++) for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
endstops.enable_globally( endstops.enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
@ -1388,23 +1388,23 @@ void MarlinSettings::reset() {
} }
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", filament_size[0]); SERIAL_ECHOPAIR(" M200 D", planner.filament_size[0]);
SERIAL_EOL(); SERIAL_EOL();
#if EXTRUDERS > 1 #if EXTRUDERS > 1
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]); SERIAL_ECHOPAIR(" M200 T1 D", planner.filament_size[1]);
SERIAL_EOL(); SERIAL_EOL();
#if EXTRUDERS > 2 #if EXTRUDERS > 2
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]); SERIAL_ECHOPAIR(" M200 T2 D", planner.filament_size[2]);
SERIAL_EOL(); SERIAL_EOL();
#if EXTRUDERS > 3 #if EXTRUDERS > 3
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]); SERIAL_ECHOPAIR(" M200 T3 D", planner.filament_size[3]);
SERIAL_EOL(); SERIAL_EOL();
#if EXTRUDERS > 4 #if EXTRUDERS > 4
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]); SERIAL_ECHOPAIR(" M200 T4 D", planner.filament_size[4]);
SERIAL_EOL(); SERIAL_EOL();
#endif // EXTRUDERS > 4 #endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3 #endif // EXTRUDERS > 3

View file

@ -105,6 +105,10 @@ float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
// Initialized by settings.load()
float Planner::filament_size[EXTRUDERS], // As a baseline for the multiplier, filament diameter
Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N], uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
@ -539,6 +543,16 @@ void Planner::check_axes_activity() {
#endif #endif
} }
inline float calculate_volumetric_multiplier(const float &diameter) {
if (!parser.volumetric_enabled || diameter == 0) return 1.0;
return 1.0 / CIRCLE_AREA(diameter * 0.5);
}
void Planner::calculate_volumetric_multipliers() {
for (uint8_t i = 0; i < COUNT(filament_size); i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
}
#if PLANNER_LEVELING #if PLANNER_LEVELING
/** /**
* lx, ly, lz - logical (cartesian, not delta) positions in mm * lx, ly, lz - logical (cartesian, not delta) positions in mm

View file

@ -151,6 +151,10 @@ class Planner {
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
// May be auto-adjusted by a filament width sensor
static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
axis_steps_per_mm[XYZE_N], axis_steps_per_mm[XYZE_N],
steps_to_mm[XYZE_N]; steps_to_mm[XYZE_N];
@ -254,6 +258,16 @@ class Planner {
static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); } static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); }
// Update multipliers based on new diameter measurements
static void calculate_volumetric_multipliers();
FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
filament_size[e] = v;
// make sure all extruders have some sane value for the filament size
for (uint8_t i = 0; i < COUNT(filament_size); i++)
if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
#if PLANNER_LEVELING #if PLANNER_LEVELING
#define ARG_X float lx #define ARG_X float lx

View file

@ -775,7 +775,7 @@ void Temperature::manage_heater() {
// Get the delayed info and add 100 to reconstitute to a percent of // Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area // the nominal filament diameter then square it to get an area
const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0; const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot); planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
} }
#endif // FILAMENT_WIDTH_SENSOR #endif // FILAMENT_WIDTH_SENSOR