Emulated DOGM via HAL TFT, XPT IO (#19017)

This commit is contained in:
Victor Oliveira 2020-08-21 20:54:21 -03:00 committed by GitHub
parent b8c4098de2
commit a37cf24900
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
28 changed files with 595 additions and 1377 deletions

View file

@ -1,331 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* u8g_com_stm32duino_fsmc.cpp
*
* Communication interface for FSMC
*/
#include "../../../inc/MarlinConfig.h"
#if defined(ARDUINO_ARCH_STM32F1) && PIN_EXISTS(FSMC_CS) // FSMC on 100/144 pins SoCs
#if HAS_GRAPHICAL_LCD
#include <U8glib.h>
#include <libmaple/fsmc.h>
#include <libmaple/gpio.h>
#include <libmaple/dma.h>
#include <boards.h>
#ifndef LCD_READ_ID
#define LCD_READ_ID 0x04 // Read display identification information (0xD3 on ILI9341)
#endif
/* Timing configuration */
#define FSMC_ADDRESS_SETUP_TIME 15 // AddressSetupTime
#define FSMC_DATA_SETUP_TIME 15 // DataSetupTime
void LCD_IO_Init(uint8_t cs, uint8_t rs);
void LCD_IO_WriteData(uint16_t RegValue);
void LCD_IO_WriteReg(uint16_t Reg);
uint16_t LCD_IO_ReadData(uint16_t RegValue);
uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize);
#ifdef LCD_USE_DMA_FSMC
void LCD_IO_WriteMultiple(uint16_t data, uint32_t count);
void LCD_IO_WriteSequence(uint16_t *data, uint16_t length);
#endif
static uint8_t msgInitCount = 2; // Ignore all messages until 2nd U8G_COM_MSG_INIT
uint8_t u8g_com_stm32duino_fsmc_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
if (msgInitCount) {
if (msg == U8G_COM_MSG_INIT) msgInitCount--;
if (msgInitCount) return -1;
}
static uint8_t isCommand;
switch (msg) {
case U8G_COM_MSG_STOP: break;
case U8G_COM_MSG_INIT:
u8g_SetPIOutput(u8g, U8G_PI_RESET);
#ifdef LCD_USE_DMA_FSMC
dma_init(FSMC_DMA_DEV);
dma_disable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
dma_set_priority(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, DMA_PRIORITY_MEDIUM);
#endif
LCD_IO_Init(u8g->pin_list[U8G_PI_CS], u8g->pin_list[U8G_PI_A0]);
u8g_Delay(50);
if (arg_ptr) {
*((uint32_t *)arg_ptr) = LCD_IO_ReadData(0x0000);
if (*((uint32_t *)arg_ptr) == 0)
*((uint32_t *)arg_ptr) = (LCD_READ_ID << 24) | LCD_IO_ReadData(LCD_READ_ID, 3);
}
isCommand = 0;
break;
case U8G_COM_MSG_ADDRESS: // define cmd (arg_val = 0) or data mode (arg_val = 1)
isCommand = arg_val == 0 ? 1 : 0;
break;
case U8G_COM_MSG_RESET:
u8g_SetPILevel(u8g, U8G_PI_RESET, arg_val);
break;
case U8G_COM_MSG_WRITE_BYTE:
if (isCommand)
LCD_IO_WriteReg(arg_val);
else
LCD_IO_WriteData((uint16_t)arg_val);
break;
case U8G_COM_MSG_WRITE_SEQ:
for (uint8_t i = 0; i < arg_val; i += 2)
LCD_IO_WriteData(*(uint16_t *)(((uint32_t)arg_ptr) + i));
break;
}
return 1;
}
/**
* FSMC LCD IO
*/
#define __ASM __asm
#define __STATIC_INLINE static inline
__attribute__((always_inline)) __STATIC_INLINE void __DSB() {
__ASM volatile ("dsb 0xF":::"memory");
}
#define FSMC_CS_NE1 PD7
#if ENABLED(STM32_XL_DENSITY)
#define FSMC_CS_NE2 PG9
#define FSMC_CS_NE3 PG10
#define FSMC_CS_NE4 PG12
#define FSMC_RS_A0 PF0
#define FSMC_RS_A1 PF1
#define FSMC_RS_A2 PF2
#define FSMC_RS_A3 PF3
#define FSMC_RS_A4 PF4
#define FSMC_RS_A5 PF5
#define FSMC_RS_A6 PF12
#define FSMC_RS_A7 PF13
#define FSMC_RS_A8 PF14
#define FSMC_RS_A9 PF15
#define FSMC_RS_A10 PG0
#define FSMC_RS_A11 PG1
#define FSMC_RS_A12 PG2
#define FSMC_RS_A13 PG3
#define FSMC_RS_A14 PG4
#define FSMC_RS_A15 PG5
#endif
#define FSMC_RS_A16 PD11
#define FSMC_RS_A17 PD12
#define FSMC_RS_A18 PD13
#define FSMC_RS_A19 PE3
#define FSMC_RS_A20 PE4
#define FSMC_RS_A21 PE5
#define FSMC_RS_A22 PE6
#define FSMC_RS_A23 PE2
#if ENABLED(STM32_XL_DENSITY)
#define FSMC_RS_A24 PG13
#define FSMC_RS_A25 PG14
#endif
static uint8_t fsmcInit = 0;
typedef struct {
__IO uint16_t REG;
__IO uint16_t RAM;
} LCD_CONTROLLER_TypeDef;
LCD_CONTROLLER_TypeDef *LCD;
void LCD_IO_Init(uint8_t cs, uint8_t rs) {
uint32_t controllerAddress;
struct fsmc_nor_psram_reg_map* fsmcPsramRegion;
if (fsmcInit) return;
fsmcInit = 1;
switch (cs) {
case FSMC_CS_NE1: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION1; fsmcPsramRegion = FSMC_NOR_PSRAM1_BASE; break;
#if ENABLED(STM32_XL_DENSITY)
case FSMC_CS_NE2: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION2; fsmcPsramRegion = FSMC_NOR_PSRAM2_BASE; break;
case FSMC_CS_NE3: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION3; fsmcPsramRegion = FSMC_NOR_PSRAM3_BASE; break;
case FSMC_CS_NE4: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION4; fsmcPsramRegion = FSMC_NOR_PSRAM4_BASE; break;
#endif
default: return;
}
#define _ORADDR(N) controllerAddress |= (_BV32(N) - 2)
switch (rs) {
#if ENABLED(STM32_XL_DENSITY)
case FSMC_RS_A0: _ORADDR( 1); break;
case FSMC_RS_A1: _ORADDR( 2); break;
case FSMC_RS_A2: _ORADDR( 3); break;
case FSMC_RS_A3: _ORADDR( 4); break;
case FSMC_RS_A4: _ORADDR( 5); break;
case FSMC_RS_A5: _ORADDR( 6); break;
case FSMC_RS_A6: _ORADDR( 7); break;
case FSMC_RS_A7: _ORADDR( 8); break;
case FSMC_RS_A8: _ORADDR( 9); break;
case FSMC_RS_A9: _ORADDR(10); break;
case FSMC_RS_A10: _ORADDR(11); break;
case FSMC_RS_A11: _ORADDR(12); break;
case FSMC_RS_A12: _ORADDR(13); break;
case FSMC_RS_A13: _ORADDR(14); break;
case FSMC_RS_A14: _ORADDR(15); break;
case FSMC_RS_A15: _ORADDR(16); break;
#endif
case FSMC_RS_A16: _ORADDR(17); break;
case FSMC_RS_A17: _ORADDR(18); break;
case FSMC_RS_A18: _ORADDR(19); break;
case FSMC_RS_A19: _ORADDR(20); break;
case FSMC_RS_A20: _ORADDR(21); break;
case FSMC_RS_A21: _ORADDR(22); break;
case FSMC_RS_A22: _ORADDR(23); break;
case FSMC_RS_A23: _ORADDR(24); break;
#if ENABLED(STM32_XL_DENSITY)
case FSMC_RS_A24: _ORADDR(25); break;
case FSMC_RS_A25: _ORADDR(26); break;
#endif
default: return;
}
rcc_clk_enable(RCC_FSMC);
gpio_set_mode(GPIOD, 14, GPIO_AF_OUTPUT_PP); // FSMC_D00
gpio_set_mode(GPIOD, 15, GPIO_AF_OUTPUT_PP); // FSMC_D01
gpio_set_mode(GPIOD, 0, GPIO_AF_OUTPUT_PP); // FSMC_D02
gpio_set_mode(GPIOD, 1, GPIO_AF_OUTPUT_PP); // FSMC_D03
gpio_set_mode(GPIOE, 7, GPIO_AF_OUTPUT_PP); // FSMC_D04
gpio_set_mode(GPIOE, 8, GPIO_AF_OUTPUT_PP); // FSMC_D05
gpio_set_mode(GPIOE, 9, GPIO_AF_OUTPUT_PP); // FSMC_D06
gpio_set_mode(GPIOE, 10, GPIO_AF_OUTPUT_PP); // FSMC_D07
gpio_set_mode(GPIOE, 11, GPIO_AF_OUTPUT_PP); // FSMC_D08
gpio_set_mode(GPIOE, 12, GPIO_AF_OUTPUT_PP); // FSMC_D09
gpio_set_mode(GPIOE, 13, GPIO_AF_OUTPUT_PP); // FSMC_D10
gpio_set_mode(GPIOE, 14, GPIO_AF_OUTPUT_PP); // FSMC_D11
gpio_set_mode(GPIOE, 15, GPIO_AF_OUTPUT_PP); // FSMC_D12
gpio_set_mode(GPIOD, 8, GPIO_AF_OUTPUT_PP); // FSMC_D13
gpio_set_mode(GPIOD, 9, GPIO_AF_OUTPUT_PP); // FSMC_D14
gpio_set_mode(GPIOD, 10, GPIO_AF_OUTPUT_PP); // FSMC_D15
gpio_set_mode(GPIOD, 4, GPIO_AF_OUTPUT_PP); // FSMC_NOE
gpio_set_mode(GPIOD, 5, GPIO_AF_OUTPUT_PP); // FSMC_NWE
gpio_set_mode(PIN_MAP[cs].gpio_device, PIN_MAP[cs].gpio_bit, GPIO_AF_OUTPUT_PP); //FSMC_CS_NEx
gpio_set_mode(PIN_MAP[rs].gpio_device, PIN_MAP[rs].gpio_bit, GPIO_AF_OUTPUT_PP); //FSMC_RS_Ax
fsmcPsramRegion->BCR = FSMC_BCR_WREN | FSMC_BCR_MTYP_SRAM | FSMC_BCR_MWID_16BITS | FSMC_BCR_MBKEN;
fsmcPsramRegion->BTR = (FSMC_DATA_SETUP_TIME << 8) | FSMC_ADDRESS_SETUP_TIME;
afio_remap(AFIO_REMAP_FSMC_NADV);
LCD = (LCD_CONTROLLER_TypeDef*)controllerAddress;
}
void LCD_IO_WriteData(uint16_t RegValue) {
LCD->RAM = RegValue;
__DSB();
}
void LCD_IO_WriteReg(uint16_t Reg) {
LCD->REG = Reg;
__DSB();
}
uint16_t LCD_IO_ReadData(uint16_t RegValue) {
LCD->REG = RegValue;
__DSB();
return LCD->RAM;
}
uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize) {
volatile uint32_t data;
LCD->REG = RegValue;
__DSB();
data = LCD->RAM; // dummy read
data = LCD->RAM & 0x00FF;
while (--ReadSize) {
data <<= 8;
data |= (LCD->RAM & 0x00FF);
}
return uint32_t(data);
}
#ifdef LCD_USE_DMA_FSMC
void LCD_IO_WriteMultiple(uint16_t color, uint32_t count) {
while (count > 0) {
dma_setup_transfer(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, &color, DMA_SIZE_16BITS, &LCD->RAM, DMA_SIZE_16BITS, DMA_MEM_2_MEM);
dma_set_num_transfers(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, count > 65535 ? 65535 : count);
dma_clear_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
dma_enable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
while ((dma_get_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL) & 0x0A) == 0) {};
dma_disable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
count = count > 65535 ? count - 65535 : 0;
}
}
void LCD_IO_WriteSequence(uint16_t *data, uint16_t length) {
dma_setup_transfer(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, data, DMA_SIZE_16BITS, &LCD->RAM, DMA_SIZE_16BITS, DMA_MEM_2_MEM | DMA_PINC_MODE);
dma_set_num_transfers(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, length);
dma_clear_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
dma_enable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
while ((dma_get_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL) & 0x0A) == 0) {};
dma_disable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
}
void LCD_IO_WriteSequence_Async(uint16_t *data, uint16_t length) {
dma_setup_transfer(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, data, DMA_SIZE_16BITS, &LCD->RAM, DMA_SIZE_16BITS, DMA_MEM_2_MEM | DMA_PINC_MODE);
dma_set_num_transfers(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, length);
dma_clear_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
dma_enable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
}
void LCD_IO_WaitSequence_Async() {
while ((dma_get_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL) & 0x0A) == 0) {};
dma_disable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
}
#endif // LCD_USE_DMA_FSMC
#endif // HAS_GRAPHICAL_LCD
#endif // ARDUINO_ARCH_STM32F1 && FSMC_CS_PIN

View file

@ -1,236 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef __STM32F1__
#include "../../../inc/MarlinConfig.h"
#if ENABLED(SPI_GRAPHICAL_TFT) && DISABLED(FORCE_SOFT_SPI)
#include "../HAL.h"
#include <U8glib.h>
#include <SPI.h>
#define SPI_TFT_CS_H OUT_WRITE(SPI_TFT_CS_PIN, HIGH)
#define SPI_TFT_CS_L OUT_WRITE(SPI_TFT_CS_PIN, LOW)
#define SPI_TFT_DC_H OUT_WRITE(SPI_TFT_DC_PIN, HIGH)
#define SPI_TFT_DC_L OUT_WRITE(SPI_TFT_DC_PIN, LOW)
#define SPI_TFT_RST_H OUT_WRITE(SPI_TFT_RST_PIN, HIGH)
#define SPI_TFT_RST_L OUT_WRITE(SPI_TFT_RST_PIN, LOW)
#define SPI_TFT_BLK_H OUT_WRITE(LCD_BACKLIGHT_PIN, HIGH)
#define SPI_TFT_BLK_L OUT_WRITE(LCD_BACKLIGHT_PIN, LOW)
void LCD_IO_Init(uint8_t cs, uint8_t rs);
void LCD_IO_WriteData(uint16_t RegValue);
void LCD_IO_WriteReg(uint16_t Reg);
uint16_t LCD_IO_ReadData(uint16_t RegValue);
uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize);
#ifdef LCD_USE_DMA_SPI
void LCD_IO_WriteMultiple(uint16_t data, uint32_t count);
void LCD_IO_WriteSequence(uint16_t *data, uint16_t length);
#endif
void LCD_WR_REG(uint8_t cmd) {
SPI_TFT_CS_L;
SPI_TFT_DC_L;
SPI.send(cmd);
SPI_TFT_CS_H;
}
void LCD_WR_DATA(uint8_t data) {
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.send(data);
SPI_TFT_CS_H;
}
void spi1Init(uint8_t spiRate) {
SPI_TFT_CS_H;
/**
* STM32F1 APB2 = 72MHz, APB1 = 36MHz, max SPI speed of this MCU if 18Mhz
* STM32F1 has 3 SPI ports, SPI1 in APB2, SPI2/SPI3 in APB1
* so the minimum prescale of SPI1 is DIV4, SPI2/SPI3 is DIV2
*/
uint8_t clock;
switch (spiRate) {
case SPI_FULL_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_HALF_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_QUARTER_SPEED: clock = SPI_CLOCK_DIV8; break;
case SPI_EIGHTH_SPEED: clock = SPI_CLOCK_DIV16; break;
case SPI_SPEED_5: clock = SPI_CLOCK_DIV32; break;
case SPI_SPEED_6: clock = SPI_CLOCK_DIV64; break;
default: clock = SPI_CLOCK_DIV2; // Default from the SPI library
}
SPI.setModule(1);
SPI.begin();
SPI.setClockDivider(clock);
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
}
void LCD_IO_Init(uint8_t cs, uint8_t rs) {
spi1Init(SPI_FULL_SPEED);
}
void LCD_IO_WriteData(uint16_t RegValue) {
LCD_WR_DATA(RegValue);
}
void LCD_IO_WriteReg(uint16_t Reg) {
LCD_WR_REG(Reg);
}
uint16_t LCD_IO_ReadData(uint16_t RegValue) {
uint16_t d = 0;
SPI_TFT_CS_L;
SPI_TFT_DC_L;
SPI.send(RegValue);
SPI_TFT_DC_H;
SPI.read((uint8_t*)&d, 1); //dummy read
SPI.read((uint8_t*)&d, 1);
SPI_TFT_CS_H;
return d >> 7;
}
uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize) {
uint32_t data = 0;
uint8_t d = 0;
SPI_TFT_CS_L;
SPI_TFT_DC_L;
SPI.send(RegValue);
SPI_TFT_DC_H;
SPI.read((uint8_t*)&d, 1); //dummy read
SPI.read((uint8_t*)&d, 1);
data = d;
while (--ReadSize) {
data <<= 8;
SPI.read((uint8_t*)&d, 1);
data |= (d & 0xFF);
}
SPI_TFT_CS_H;
return uint32_t(data >> 7);
}
#ifdef LCD_USE_DMA_SPI
void LCD_IO_WriteMultiple(uint16_t data, uint32_t count) {
if (SPI.getDataSize() == DATA_SIZE_8BIT) {
count *= 2;
}
while (count > 0) {
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSend(&data, 1, true);
SPI_TFT_CS_H;
count--;
}
}
void LCD_IO_WriteSequence(uint16_t *data, uint16_t length) {
if (SPI.getDataSize() == DATA_SIZE_8BIT) {
length *= 2;
}
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSend(data, length, true);
SPI_TFT_CS_H;
}
void LCD_IO_WriteSequence_Async(uint16_t *data, uint16_t length) {
if (SPI.getDataSize() == DATA_SIZE_8BIT) {
length *= 2;
}
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSendAsync(data, length, true);
SPI_TFT_CS_H;
}
void LCD_IO_WaitSequence_Async() {
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSendAsync(NULL, 0, true);
SPI_TFT_CS_H;
}
#endif
static uint8_t msgInitCount = 2; // Ignore all messages until 2nd U8G_COM_MSG_INIT
#ifndef LCD_READ_ID
#define LCD_READ_ID 0x04 // Read display identification information (0xD3 on ILI9341)
#endif
uint8_t u8g_com_stm32duino_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
if (msgInitCount) {
if (msg == U8G_COM_MSG_INIT) msgInitCount--;
if (msgInitCount) return -1;
}
static uint8_t isCommand;
LCD_IO_Init(-1, -1);
switch (msg) {
case U8G_COM_MSG_STOP: break;
case U8G_COM_MSG_INIT:
u8g_SetPIOutput(u8g, U8G_PI_RESET);
u8g_Delay(50);
if (arg_ptr) {
spi1Init(SPI_EIGHTH_SPEED);
*((uint32_t *)arg_ptr) = (LCD_READ_ID << 24) | LCD_IO_ReadData(LCD_READ_ID, 3);
spi1Init(SPI_FULL_SPEED);
}
isCommand = 0;
break;
case U8G_COM_MSG_ADDRESS: // define cmd (arg_val = 0) or data mode (arg_val = 1)
isCommand = arg_val == 0 ? 1 : 0;
break;
case U8G_COM_MSG_RESET:
u8g_SetPILevel(u8g, U8G_PI_RESET, arg_val);
break;
case U8G_COM_MSG_WRITE_BYTE:
if (isCommand)
LCD_IO_WriteReg(arg_val);
else
LCD_IO_WriteData((uint16_t)arg_val);
break;
case U8G_COM_MSG_WRITE_SEQ:
for (uint8_t i = 0; i < arg_val; i += 2)
LCD_IO_WriteData(*(uint16_t *)(((uint32_t)arg_ptr) + i));
break;
}
return 1;
}
#endif // SPI_GRAPHICAL_TFT && !FORCE_SOFT_SPI
#endif // STM32F1

View file

@ -26,8 +26,8 @@
#undef SD_CHECK_AND_RETRY #undef SD_CHECK_AND_RETRY
#endif #endif
// This platform has 'touch/xpt2046', not 'tft/xpt2046' // This emulated DOGM has 'touch/xpt2046', not 'tft/xpt2046'
#if ENABLED(TOUCH_SCREEN) && !HAS_FSMC_TFT && !HAS_SPI_TFT #if ENABLED(TOUCH_SCREEN) && !HAS_GRAPHICAL_TFT
#undef TOUCH_SCREEN #undef TOUCH_SCREEN
#undef TOUCH_SCREEN_CALIBRATION #undef TOUCH_SCREEN_CALIBRATION
#define HAS_TOUCH_XPT2046 1 #define HAS_TOUCH_XPT2046 1

View file

@ -22,7 +22,7 @@
#include "../../../inc/MarlinConfig.h" #include "../../../inc/MarlinConfig.h"
#if HAS_FSMC_TFT || ENABLED(TFT_LVGL_UI_FSMC) #if HAS_FSMC_TFT
#include "tft_fsmc.h" #include "tft_fsmc.h"
#include <libmaple/fsmc.h> #include <libmaple/fsmc.h>

View file

@ -22,7 +22,7 @@
#include "../../../inc/MarlinConfig.h" #include "../../../inc/MarlinConfig.h"
#if HAS_SPI_TFT || ENABLED(TFT_LVGL_UI_SPI) #if HAS_SPI_TFT
#include "tft_spi.h" #include "tft_spi.h"
@ -30,32 +30,32 @@
SPIClass TFT_SPI::SPIx(1); SPIClass TFT_SPI::SPIx(1);
#define SPI_TFT_CS_H OUT_WRITE(TFT_CS_PIN, HIGH) #define TFT_CS_H OUT_WRITE(TFT_CS_PIN, HIGH)
#define SPI_TFT_CS_L OUT_WRITE(TFT_CS_PIN, LOW) #define TFT_CS_L OUT_WRITE(TFT_CS_PIN, LOW)
#define SPI_TFT_DC_H OUT_WRITE(TFT_DC_PIN, HIGH) #define TFT_DC_H OUT_WRITE(TFT_DC_PIN, HIGH)
#define SPI_TFT_DC_L OUT_WRITE(TFT_DC_PIN, LOW) #define TFT_DC_L OUT_WRITE(TFT_DC_PIN, LOW)
#define SPI_TFT_RST_H OUT_WRITE(TFT_RST_PIN, HIGH) #define TFT_RST_H OUT_WRITE(TFT_RST_PIN, HIGH)
#define SPI_TFT_RST_L OUT_WRITE(TFT_RST_PIN, LOW) #define TFT_RST_L OUT_WRITE(TFT_RST_PIN, LOW)
#define SPI_TFT_BLK_H OUT_WRITE(TFT_BACKLIGHT_PIN, HIGH) #define TFT_BLK_H OUT_WRITE(TFT_BACKLIGHT_PIN, HIGH)
#define SPI_TFT_BLK_L OUT_WRITE(TFT_BACKLIGHT_PIN, LOW) #define TFT_BLK_L OUT_WRITE(TFT_BACKLIGHT_PIN, LOW)
void TFT_SPI::Init() { void TFT_SPI::Init() {
#if PIN_EXISTS(TFT_RESET) #if PIN_EXISTS(TFT_RESET)
// OUT_WRITE(TFT_RESET_PIN, HIGH); // OUT_WRITE(TFT_RESET_PIN, HIGH);
SPI_TFT_RST_H; TFT_RST_H;
delay(100); delay(100);
#endif #endif
#if PIN_EXISTS(TFT_BACKLIGHT) #if PIN_EXISTS(TFT_BACKLIGHT)
// OUT_WRITE(TFT_BACKLIGHT_PIN, HIGH); // OUT_WRITE(TFT_BACKLIGHT_PIN, HIGH);
SPI_TFT_BLK_H; TFT_BLK_H;
#endif #endif
SPI_TFT_DC_H; TFT_DC_H;
SPI_TFT_CS_H; TFT_CS_H;
/** /**
* STM32F1 APB2 = 72MHz, APB1 = 36MHz, max SPI speed of this MCU if 18Mhz * STM32F1 APB2 = 72MHz, APB1 = 36MHz, max SPI speed of this MCU if 18Mhz
@ -87,7 +87,7 @@ void TFT_SPI::Init() {
void TFT_SPI::DataTransferBegin(uint16_t DataSize) { void TFT_SPI::DataTransferBegin(uint16_t DataSize) {
SPIx.setDataSize(DataSize); SPIx.setDataSize(DataSize);
SPIx.begin(); SPIx.begin();
SPI_TFT_CS_L; TFT_CS_L;
} }
uint32_t TFT_SPI::GetID() { uint32_t TFT_SPI::GetID() {
@ -135,7 +135,7 @@ void TFT_SPI::Transmit(uint16_t Data) {
void TFT_SPI::TransmitDMA(uint32_t MemoryIncrease, uint16_t *Data, uint16_t Count) { void TFT_SPI::TransmitDMA(uint32_t MemoryIncrease, uint16_t *Data, uint16_t Count) {
DataTransferBegin(); DataTransferBegin();
SPI_TFT_DC_H; TFT_DC_H;
if (MemoryIncrease == DMA_MINC_ENABLE) { if (MemoryIncrease == DMA_MINC_ENABLE) {
SPIx.dmaSend(Data, Count, true); SPIx.dmaSend(Data, Count, true);
} }

View file

@ -19,7 +19,7 @@
#include "../../../inc/MarlinConfig.h" #include "../../../inc/MarlinConfig.h"
#if HAS_TFT_XPT2046 #if HAS_TFT_XPT2046 || HAS_TOUCH_XPT2046
#include "xpt2046.h" #include "xpt2046.h"
#include <SPI.h> #include <SPI.h>

View file

@ -24,16 +24,18 @@
#include <SPI.h> #include <SPI.h>
#endif #endif
#if !PIN_EXISTS(TOUCH_MISO) #ifndef TOUCH_MISO_PIN
#error "TOUCH_MISO_PIN is not defined." #define TOUCH_MISO_PIN MISO_PIN
#elif !PIN_EXISTS(TOUCH_MOSI) #endif
#error "TOUCH_MOSI_PIN is not defined." #ifndef TOUCH_MOSI_PIN
#elif !PIN_EXISTS(TOUCH_SCK) #define TOUCH_MOSI_PIN MOSI_PIN
#error "TOUCH_SCK_PIN is not defined." #endif
#elif !PIN_EXISTS(TOUCH_CS) #ifndef TOUCH_SCK_PIN
#error "TOUCH_CS_PIN is not defined." #define TOUCH_SCK_PIN SCK_PIN
#endif
#ifndef TOUCH_CS_PIN
#define TOUCH_CS_PIN CS_PIN
#endif #endif
#ifndef TOUCH_INT_PIN #ifndef TOUCH_INT_PIN
#define TOUCH_INT_PIN -1 #define TOUCH_INT_PIN -1
#endif #endif

View file

@ -57,7 +57,7 @@
#include "lcd/ultralcd.h" #include "lcd/ultralcd.h"
#if HAS_TOUCH_XPT2046 #if HAS_TOUCH_XPT2046
#include "lcd/touch/xpt2046.h" #include "lcd/touch/touch_buttons.h"
#endif #endif
#if HAS_TFT_LVGL_UI #if HAS_TFT_LVGL_UI

View file

@ -286,14 +286,15 @@
#define DELAYED_BACKLIGHT_INIT #define DELAYED_BACKLIGHT_INIT
#endif #endif
// FSMC/SPI TFT Panels (HAL STM32) // FSMC/SPI TFT Panels using standard HAL/tft/tft_(fsmc|spi).h
#if EITHER(TFT_320x240, TFT_480x320) #if ANY(TFT_320x240, TFT_480x320, TFT_LVGL_UI_FSMC, FSMC_GRAPHICAL_TFT)
#define HAS_FSMC_TFT 1 #define HAS_FSMC_TFT 1
#elif EITHER(TFT_320x240_SPI, TFT_480x320_SPI) #elif ANY(TFT_320x240_SPI, TFT_480x320_SPI, TFT_LVGL_UI_SPI, SPI_GRAPHICAL_TFT)
#define HAS_SPI_TFT 1 #define HAS_SPI_TFT 1
#endif #endif
#if HAS_FSMC_TFT || HAS_SPI_TFT // Color UI
#if ANY(TFT_320x240, TFT_480x320, TFT_320x240_SPI, TFT_480x320_SPI)
#define HAS_GRAPHICAL_TFT 1 #define HAS_GRAPHICAL_TFT 1
#define IS_ULTIPANEL #define IS_ULTIPANEL
#endif #endif

View file

@ -515,6 +515,12 @@
#error "DIGIPOT_I2C is now DIGIPOT_MCP4451 (or DIGIPOT_MCP4018). Please update Configuration_adv.h." #error "DIGIPOT_I2C is now DIGIPOT_MCP4451 (or DIGIPOT_MCP4018). Please update Configuration_adv.h."
#elif defined(TOUCH_BUTTONS) #elif defined(TOUCH_BUTTONS)
#error "TOUCH_BUTTONS is now TOUCH_SCREEN. Please update your Configuration.h." #error "TOUCH_BUTTONS is now TOUCH_SCREEN. Please update your Configuration.h."
#elif defined(LCD_FULL_PIXEL_HEIGHT)
#error "LCD_FULL_PIXEL_HEIGHT is deprecated and should be removed. Please update your Configuration.h."
#elif defined(LCD_FULL_PIXEL_WIDTH)
#error "LCD_FULL_PIXEL_WIDTH is deprecated and should be removed. Please update your Configuration.h."
#elif defined(FSMC_UPSCALE)
#error "FSMC_UPSCALE is now GRAPHICAL_TFT_UPSCALE. Please update your Configuration.h."
#elif defined(ANYCUBIC_TFT_MODEL) #elif defined(ANYCUBIC_TFT_MODEL)
#error "ANYCUBIC_TFT_MODEL is now ANYCUBIC_LCD_I3MEGA. Please update your Configuration.h." #error "ANYCUBIC_TFT_MODEL is now ANYCUBIC_LCD_I3MEGA. Please update your Configuration.h."
#elif defined(EVENT_GCODE_SD_STOP) #elif defined(EVENT_GCODE_SD_STOP)

View file

@ -82,14 +82,9 @@
#define U8G_COM_SSD_I2C_HAL u8g_com_arduino_ssd_i2c_fn #define U8G_COM_SSD_I2C_HAL u8g_com_arduino_ssd_i2c_fn
#if PIN_EXISTS(FSMC_CS) #if EITHER(FSMC_GRAPHICAL_TFT, SPI_GRAPHICAL_TFT)
uint8_t u8g_com_stm32duino_fsmc_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr); uint8_t u8g_com_stm32duino_tft_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr);
#define U8G_COM_HAL_FSMC_FN u8g_com_stm32duino_fsmc_fn #define U8G_COM_HAL_TFT_FN u8g_com_stm32duino_tft_fn
#endif
#if ENABLED(SPI_GRAPHICAL_TFT)
uint8_t u8g_com_stm32duino_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr);
#define U8G_COM_HAL_FSMC_FN u8g_com_stm32duino_spi_fn
#endif #endif
#elif defined(TARGET_LPC1768) #elif defined(TARGET_LPC1768)
@ -122,6 +117,6 @@
#ifndef U8G_COM_SSD_I2C_HAL #ifndef U8G_COM_SSD_I2C_HAL
#define U8G_COM_SSD_I2C_HAL u8g_com_null_fn #define U8G_COM_SSD_I2C_HAL u8g_com_null_fn
#endif #endif
#ifndef U8G_COM_HAL_FSMC_FN #ifndef U8G_COM_HAL_TFT_FN
#define U8G_COM_HAL_FSMC_FN u8g_com_null_fn #define U8G_COM_HAL_TFT_FN u8g_com_null_fn
#endif #endif

View file

@ -67,28 +67,24 @@
#define HAS_LCD_IO 1 #define HAS_LCD_IO 1
#endif #endif
#if HAS_LCD_IO #if ENABLED(SPI_GRAPHICAL_TFT)
extern void LCD_IO_Init(uint8_t cs, uint8_t rs); #include HAL_PATH(../../HAL, tft/tft_spi.h)
extern uint16_t LCD_IO_ReadData(uint16_t Reg); #elif ENABLED(FSMC_GRAPHICAL_TFT)
extern uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize); #include HAL_PATH(../../HAL, tft/tft_fsmc.h)
extern void LCD_IO_WriteReg(uint16_t Reg);
extern void LCD_IO_WriteData(uint16_t RegValue);
extern void LCD_IO_WriteSequence(uint16_t *data, uint16_t length);
extern void LCD_IO_WriteSequence_Async(uint16_t *data, uint16_t length);
extern void LCD_IO_WaitSequence_Async();
extern void LCD_IO_WriteMultiple(uint16_t color, uint32_t count);
#endif #endif
TFT_IO tftio;
#define WIDTH LCD_PIXEL_WIDTH #define WIDTH LCD_PIXEL_WIDTH
#define HEIGHT LCD_PIXEL_HEIGHT #define HEIGHT LCD_PIXEL_HEIGHT
#define PAGE_HEIGHT 8 #define PAGE_HEIGHT 8
#include "../scaled_tft.h" #include "../scaled_tft.h"
#define UPSCALE0(M) ((M) * (FSMC_UPSCALE)) #define UPSCALE0(M) ((M) * (GRAPHICAL_TFT_UPSCALE))
#define UPSCALE(A,M) (UPSCALE0(M) + (A)) #define UPSCALE(A,M) (UPSCALE0(M) + (A))
#define X_HI (UPSCALE(LCD_PIXEL_OFFSET_X, WIDTH) - 1) #define X_HI (UPSCALE(TFT_PIXEL_OFFSET_X, WIDTH) - 1)
#define Y_HI (UPSCALE(LCD_PIXEL_OFFSET_Y, HEIGHT) - 1) #define Y_HI (UPSCALE(TFT_PIXEL_OFFSET_Y, HEIGHT) - 1)
// see https://ee-programming-notepad.blogspot.com/2016/10/16-bit-color-generator-picker.html // see https://ee-programming-notepad.blogspot.com/2016/10/16-bit-color-generator-picker.html
@ -156,7 +152,8 @@ static uint32_t lcd_id = 0;
static void setWindow_ili9328(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint16_t Xmax, uint16_t Ymax) { static void setWindow_ili9328(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint16_t Xmax, uint16_t Ymax) {
#if HAS_LCD_IO #if HAS_LCD_IO
#define IO_REG_DATA(R,D) do { LCD_IO_WriteReg(R); LCD_IO_WriteData(D); }while(0) tftio.DataTransferBegin(DATASIZE_8BIT);
#define IO_REG_DATA(R,D) do { tftio.WriteReg(R); tftio.WriteData(D); }while(0)
#else #else
#define IO_REG_DATA(R,D) do { u8g_WriteByte(u8g, dev, R); u8g_WriteSequence(u8g, dev, 2, (uint8_t *)&D); }while(0) #define IO_REG_DATA(R,D) do { u8g_WriteByte(u8g, dev, R); u8g_WriteSequence(u8g, dev, 2, (uint8_t *)&D); }while(0)
#endif #endif
@ -174,7 +171,8 @@ static void setWindow_ili9328(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_
IO_REG_DATA(ILI9328_VASET, Xmin); IO_REG_DATA(ILI9328_VASET, Xmin);
#if HAS_LCD_IO #if HAS_LCD_IO
LCD_IO_WriteReg(ILI9328_WRITE_RAM); tftio.WriteReg(ILI9328_WRITE_RAM);
tftio.DataTransferEnd();
#else #else
u8g_WriteByte(u8g, dev, ILI9328_WRITE_RAM); u8g_WriteByte(u8g, dev, ILI9328_WRITE_RAM);
u8g_SetAddress(u8g, dev, 1); u8g_SetAddress(u8g, dev, 1);
@ -183,19 +181,21 @@ static void setWindow_ili9328(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_
static void setWindow_st7789v(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint16_t Xmax, uint16_t Ymax) { static void setWindow_st7789v(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint16_t Xmax, uint16_t Ymax) {
#if HAS_LCD_IO #if HAS_LCD_IO
LCD_IO_WriteReg(ST7789V_CASET); tftio.DataTransferBegin(DATASIZE_8BIT);
LCD_IO_WriteData((Xmin >> 8) & 0xFF); tftio.WriteReg(ST7789V_CASET);
LCD_IO_WriteData(Xmin & 0xFF); tftio.WriteData((Xmin >> 8) & 0xFF);
LCD_IO_WriteData((Xmax >> 8) & 0xFF); tftio.WriteData(Xmin & 0xFF);
LCD_IO_WriteData(Xmax & 0xFF); tftio.WriteData((Xmax >> 8) & 0xFF);
tftio.WriteData(Xmax & 0xFF);
LCD_IO_WriteReg(ST7789V_RASET); tftio.WriteReg(ST7789V_RASET);
LCD_IO_WriteData((Ymin >> 8) & 0xFF); tftio.WriteData((Ymin >> 8) & 0xFF);
LCD_IO_WriteData(Ymin & 0xFF); tftio.WriteData(Ymin & 0xFF);
LCD_IO_WriteData((Ymax >> 8) & 0xFF); tftio.WriteData((Ymax >> 8) & 0xFF);
LCD_IO_WriteData(Ymax & 0xFF); tftio.WriteData(Ymax & 0xFF);
LCD_IO_WriteReg(ST7789V_WRITE_RAM); tftio.WriteReg(ST7789V_WRITE_RAM);
tftio.DataTransferEnd();
#else #else
u8g_SetAddress(u8g, dev, 0); u8g_WriteByte(u8g, dev, ST7789V_CASET); u8g_SetAddress(u8g, dev, 1); u8g_SetAddress(u8g, dev, 0); u8g_WriteByte(u8g, dev, ST7789V_CASET); u8g_SetAddress(u8g, dev, 1);
u8g_WriteByte(u8g, dev, (Xmin >> 8) & 0xFF); u8g_WriteByte(u8g, dev, (Xmin >> 8) & 0xFF);
@ -227,17 +227,17 @@ void (*setWindow)(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint
for (;;) { for (;;) {
data = *sequence++; data = *sequence++;
if (data != 0xFFFF) { if (data != 0xFFFF) {
LCD_IO_WriteData(data); tftio.WriteData(data);
continue; continue;
} }
data = *sequence++; data = *sequence++;
if (data == 0x7FFF) return; if (data == 0x7FFF) return;
if (data == 0xFFFF) { if (data == 0xFFFF) {
LCD_IO_WriteData(data); tftio.WriteData(data);
} else if (data & 0x8000) { } else if (data & 0x8000) {
delay(data & 0x7FFF); delay(data & 0x7FFF);
} else if ((data & 0xFF00) == 0) { } else if ((data & 0xFF00) == 0) {
LCD_IO_WriteReg(data); tftio.WriteReg(data);
} }
} }
} }
@ -591,7 +591,7 @@ static const uint16_t st7796_init[] = {
#define BUTTON_Y_HI (UPSCALE(BUTTON_Y_LO, BUTTON_SIZE_Y) - 1) #define BUTTON_Y_HI (UPSCALE(BUTTON_Y_LO, BUTTON_SIZE_Y) - 1)
void drawImage(const uint8_t *data, u8g_t *u8g, u8g_dev_t *dev, uint16_t length, uint16_t height, uint16_t color) { void drawImage(const uint8_t *data, u8g_t *u8g, u8g_dev_t *dev, uint16_t length, uint16_t height, uint16_t color) {
uint16_t buffer[BUTTON_SIZE_X * sq(FSMC_UPSCALE)]; uint16_t buffer[BUTTON_SIZE_X * sq(GRAPHICAL_TFT_UPSCALE)];
if (length > BUTTON_SIZE_X) return; if (length > BUTTON_SIZE_X) return;
@ -603,16 +603,16 @@ static const uint16_t st7796_init[] = {
v = color; v = color;
else else
v = TFT_MARLINBG_COLOR; v = TFT_MARLINBG_COLOR;
LOOP_L_N(n, FSMC_UPSCALE) buffer[k++] = v; LOOP_L_N(n, GRAPHICAL_TFT_UPSCALE) buffer[k++] = v;
} }
#if HAS_LCD_IO #if HAS_LCD_IO
LOOP_S_L_N(n, 1, FSMC_UPSCALE) LOOP_S_L_N(n, 1, GRAPHICAL_TFT_UPSCALE)
for (uint16_t l = 0; l < UPSCALE0(length); l++) for (uint16_t l = 0; l < UPSCALE0(length); l++)
buffer[l + n * UPSCALE0(length)] = buffer[l]; buffer[l + n * UPSCALE0(length)] = buffer[l];
LCD_IO_WriteSequence(buffer, length * sq(FSMC_UPSCALE)); tftio.WriteSequence(buffer, length * sq(GRAPHICAL_TFT_UPSCALE));
#else #else
for (uint8_t i = FSMC_UPSCALE; i--;) for (uint8_t i = GRAPHICAL_TFT_UPSCALE; i--;)
u8g_WriteSequence(u8g, dev, k << 1, (uint8_t*)buffer); u8g_WriteSequence(u8g, dev, k << 1, (uint8_t*)buffer);
#endif #endif
} }
@ -632,22 +632,17 @@ static uint8_t page;
uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) { uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
u8g_pb_t *pb = (u8g_pb_t *)(dev->dev_mem); u8g_pb_t *pb = (u8g_pb_t *)(dev->dev_mem);
#if ENABLED(SPI_GRAPHICAL_TFT)
LCD_IO_Init(-1, -1);
#endif
#if HAS_LCD_IO #if HAS_LCD_IO
static uint16_t bufferA[WIDTH * sq(FSMC_UPSCALE)], bufferB[WIDTH * sq(FSMC_UPSCALE)]; static uint16_t bufferA[WIDTH * sq(GRAPHICAL_TFT_UPSCALE)], bufferB[WIDTH * sq(GRAPHICAL_TFT_UPSCALE)];
uint16_t* buffer = &bufferA[0]; uint16_t* buffer = &bufferA[0];
bool allow_async = DISABLED(SPI_GRAPHICAL_TFT);
#else #else
uint16_t buffer[WIDTH * FSMC_UPSCALE]; // 16-bit RGB 565 pixel line buffer uint16_t buffer[WIDTH * GRAPHICAL_TFT_UPSCALE]; // 16-bit RGB 565 pixel line buffer
#endif #endif
switch (msg) { switch (msg) {
case U8G_DEV_MSG_INIT: case U8G_DEV_MSG_INIT:
dev->com_fn(u8g, U8G_COM_MSG_INIT, U8G_SPI_CLK_CYCLE_NONE, &lcd_id); dev->com_fn(u8g, U8G_COM_MSG_INIT, U8G_SPI_CLK_CYCLE_NONE, &lcd_id);
tftio.DataTransferBegin(DATASIZE_8BIT);
switch (lcd_id & 0xFFFF) { switch (lcd_id & 0xFFFF) {
case 0x8552: // ST7789V case 0x8552: // ST7789V
WRITE_ESC_SEQUENCE(st7789v_init); WRITE_ESC_SEQUENCE(st7789v_init);
@ -682,6 +677,7 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
setWindow = (lcd_id & 0xFF000000) ? setWindow_st7789v : setWindow_ili9328; setWindow = (lcd_id & 0xFF000000) ? setWindow_st7789v : setWindow_ili9328;
break; break;
} }
tftio.DataTransferEnd();
if (preinit) { if (preinit) {
preinit = false; preinit = false;
@ -689,13 +685,13 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
} }
// Clear Screen // Clear Screen
setWindow(u8g, dev, 0, 0, (LCD_FULL_PIXEL_WIDTH) - 1, (LCD_FULL_PIXEL_HEIGHT) - 1); setWindow(u8g, dev, 0, 0, (TFT_WIDTH) - 1, (TFT_HEIGHT) - 1);
#if HAS_LCD_IO #if HAS_LCD_IO
LCD_IO_WriteMultiple(TFT_MARLINBG_COLOR, (LCD_FULL_PIXEL_WIDTH) * (LCD_FULL_PIXEL_HEIGHT)); tftio.WriteMultiple(TFT_MARLINBG_COLOR, uint32_t(TFT_WIDTH) * (TFT_HEIGHT));
#else #else
memset2(buffer, TFT_MARLINBG_COLOR, (LCD_FULL_PIXEL_WIDTH) / 2); memset2(buffer, TFT_MARLINBG_COLOR, (TFT_WIDTH) / 2);
for (uint16_t i = 0; i < (LCD_FULL_PIXEL_HEIGHT) * sq(FSMC_UPSCALE); i++) for (uint16_t i = 0; i < (TFT_HEIGHT) * sq(GRAPHICAL_TFT_UPSCALE); i++)
u8g_WriteSequence(u8g, dev, LCD_FULL_PIXEL_WIDTH / 2, (uint8_t *)buffer); u8g_WriteSequence(u8g, dev, (TFT_WIDTH) / 2, (uint8_t *)buffer);
#endif #endif
// Bottom buttons // Bottom buttons
@ -719,7 +715,7 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
case U8G_DEV_MSG_PAGE_FIRST: case U8G_DEV_MSG_PAGE_FIRST:
page = 0; page = 0;
setWindow(u8g, dev, LCD_PIXEL_OFFSET_X, LCD_PIXEL_OFFSET_Y, X_HI, Y_HI); setWindow(u8g, dev, TFT_PIXEL_OFFSET_X, TFT_PIXEL_OFFSET_Y, X_HI, Y_HI);
break; break;
case U8G_DEV_MSG_PAGE_NEXT: case U8G_DEV_MSG_PAGE_NEXT:
@ -733,26 +729,18 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
for (uint16_t i = 0; i < (uint32_t)pb->width; i++) { for (uint16_t i = 0; i < (uint32_t)pb->width; i++) {
const uint8_t b = *(((uint8_t *)pb->buf) + i); const uint8_t b = *(((uint8_t *)pb->buf) + i);
const uint16_t c = TEST(b, y) ? TFT_MARLINUI_COLOR : TFT_MARLINBG_COLOR; const uint16_t c = TEST(b, y) ? TFT_MARLINUI_COLOR : TFT_MARLINBG_COLOR;
LOOP_L_N(n, FSMC_UPSCALE) buffer[k++] = c; LOOP_L_N(n, GRAPHICAL_TFT_UPSCALE) buffer[k++] = c;
} }
#if HAS_LCD_IO #if HAS_LCD_IO
LOOP_S_L_N(n, 1, FSMC_UPSCALE) LOOP_S_L_N(n, 1, GRAPHICAL_TFT_UPSCALE)
for (uint16_t l = 0; l < UPSCALE0(WIDTH); l++) for (uint16_t l = 0; l < UPSCALE0(WIDTH); l++)
buffer[l + n * UPSCALE0(WIDTH)] = buffer[l]; buffer[l + n * UPSCALE0(WIDTH)] = buffer[l];
if (allow_async) { tftio.WriteSequence(buffer, COUNT(bufferA));
if (y > 0 || page > 1) LCD_IO_WaitSequence_Async();
if (y == 7 && page == 8)
LCD_IO_WriteSequence(buffer, COUNT(bufferA)); // last line of last page
else
LCD_IO_WriteSequence_Async(buffer, COUNT(bufferA));
}
else
LCD_IO_WriteSequence(buffer, COUNT(bufferA));
#else #else
uint8_t* bufptr = (uint8_t*) buffer; uint8_t* bufptr = (uint8_t*) buffer;
for (uint8_t i = FSMC_UPSCALE; i--;) { for (uint8_t i = GRAPHICAL_TFT_UPSCALE; i--;) {
LOOP_S_L_N(n, 0, FSMC_UPSCALE * 2) { LOOP_S_L_N(n, 0, GRAPHICAL_TFT_UPSCALE * 2) {
u8g_WriteSequence(u8g, dev, WIDTH, &bufptr[WIDTH * n]); u8g_WriteSequence(u8g, dev, WIDTH, &bufptr[WIDTH * n]);
} }
} }
@ -770,6 +758,59 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
return u8g_dev_pb8v1_base_fn(u8g, dev, msg, arg); return u8g_dev_pb8v1_base_fn(u8g, dev, msg, arg);
} }
U8G_PB_DEV(u8g_dev_tft_320x240_upscale_from_128x64, WIDTH, HEIGHT, PAGE_HEIGHT, u8g_dev_tft_320x240_upscale_from_128x64_fn, U8G_COM_HAL_FSMC_FN); static uint8_t msgInitCount = 2; // Ignore all messages until 2nd U8G_COM_MSG_INIT
uint8_t u8g_com_stm32duino_tft_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
if (msgInitCount) {
if (msg == U8G_COM_MSG_INIT) msgInitCount--;
if (msgInitCount) return -1;
}
static uint8_t isCommand;
switch (msg) {
case U8G_COM_MSG_STOP: break;
case U8G_COM_MSG_INIT:
u8g_SetPIOutput(u8g, U8G_PI_RESET);
u8g_Delay(50);
tftio.Init();
if (arg_ptr) {
*((uint32_t *)arg_ptr) = tftio.GetID();
}
isCommand = 0;
break;
case U8G_COM_MSG_ADDRESS: // define cmd (arg_val = 0) or data mode (arg_val = 1)
isCommand = arg_val == 0 ? 1 : 0;
break;
case U8G_COM_MSG_RESET:
u8g_SetPILevel(u8g, U8G_PI_RESET, arg_val);
break;
case U8G_COM_MSG_WRITE_BYTE:
tftio.DataTransferBegin(DATASIZE_8BIT);
if (isCommand)
tftio.WriteReg(arg_val);
else
tftio.WriteData((uint16_t)arg_val);
tftio.DataTransferEnd();
break;
case U8G_COM_MSG_WRITE_SEQ:
tftio.DataTransferBegin(DATASIZE_8BIT);
for (uint8_t i = 0; i < arg_val; i += 2)
tftio.WriteData(*(uint16_t *)(((uint32_t)arg_ptr) + i));
tftio.DataTransferEnd();
break;
}
return 1;
}
U8G_PB_DEV(u8g_dev_tft_320x240_upscale_from_128x64, WIDTH, HEIGHT, PAGE_HEIGHT, u8g_dev_tft_320x240_upscale_from_128x64_fn, U8G_COM_HAL_TFT_FN);
#endif // HAS_GRAPHICAL_LCD && FSMC_CS #endif // HAS_GRAPHICAL_LCD && FSMC_CS

View file

@ -33,25 +33,6 @@
TFT SPI_TFT; TFT SPI_TFT;
#ifndef SPI_TFT_MISO_PIN
#define SPI_TFT_MISO_PIN PA6
#endif
#ifndef SPI_TFT_MOSI_PIN
#define SPI_TFT_MOSI_PIN PA7
#endif
#ifndef SPI_TFT_SCK_PIN
#define SPI_TFT_SCK_PIN PA5
#endif
#ifndef SPI_TFT_CS_PIN
#define SPI_TFT_CS_PIN PD11
#endif
#ifndef SPI_TFT_DC_PIN
#define SPI_TFT_DC_PIN PD10
#endif
#ifndef SPI_TFT_RST_PIN
#define SPI_TFT_RST_PIN PC6
#endif
// use SPI1 for the spi tft. // use SPI1 for the spi tft.
void TFT::spi_init(uint8_t spiRate) { void TFT::spi_init(uint8_t spiRate) {
tftio.Init(); tftio.Init();
@ -93,11 +74,11 @@ void TFT::SetWindows(uint16_t x, uint16_t y, uint16_t with, uint16_t height) {
} }
void TFT::LCD_init() { void TFT::LCD_init() {
SPI_TFT_RST_H; TFT_RST_H;
delay(150); delay(150);
SPI_TFT_RST_L; TFT_RST_L;
delay(150); delay(150);
SPI_TFT_RST_H; TFT_RST_H;
tftio.DataTransferBegin(DATASIZE_8BIT); tftio.DataTransferBegin(DATASIZE_8BIT);
@ -176,22 +157,22 @@ void TFT::LCD_init() {
LCD_clear(0x0000); // LCD_clear(0x0000); //
LCD_Draw_Logo(); LCD_Draw_Logo();
SPI_TFT_BLK_H; TFT_BLK_H;
delay(2000); delay(2000);
} }
void TFT::LCD_clear(uint16_t color) { void TFT::LCD_clear(uint16_t color) {
SetWindows(0, 0, (LCD_FULL_PIXEL_WIDTH) - 1, (LCD_FULL_PIXEL_HEIGHT) - 1); SetWindows(0, 0, (TFT_WIDTH) - 1, (TFT_HEIGHT) - 1);
tftio.WriteMultiple(color, (uint32_t)(LCD_FULL_PIXEL_WIDTH) * (LCD_FULL_PIXEL_HEIGHT)); tftio.WriteMultiple(color, (uint32_t)(TFT_WIDTH) * (TFT_HEIGHT));
} }
extern unsigned char bmp_public_buf[17 * 1024]; extern unsigned char bmp_public_buf[17 * 1024];
void TFT::LCD_Draw_Logo() { void TFT::LCD_Draw_Logo() {
SetWindows(0, 0, LCD_FULL_PIXEL_WIDTH, LCD_FULL_PIXEL_HEIGHT); SetWindows(0, 0, TFT_WIDTH, TFT_HEIGHT);
for (uint16_t i = 0; i < (LCD_FULL_PIXEL_HEIGHT); i ++) { for (uint16_t i = 0; i < (TFT_HEIGHT); i ++) {
Pic_Logo_Read((uint8_t *)"", (uint8_t *)bmp_public_buf, (LCD_FULL_PIXEL_WIDTH) * 2); Pic_Logo_Read((uint8_t *)"", (uint8_t *)bmp_public_buf, (TFT_WIDTH) * 2);
tftio.WriteSequence((uint16_t *)bmp_public_buf, LCD_FULL_PIXEL_WIDTH); tftio.WriteSequence((uint16_t *)bmp_public_buf, TFT_WIDTH);
} }
} }

View file

@ -29,11 +29,11 @@
#include HAL_PATH(../../HAL, tft/tft_fsmc.h) #include HAL_PATH(../../HAL, tft/tft_fsmc.h)
#endif #endif
#define SPI_TFT_RST_H OUT_WRITE(SPI_TFT_RST_PIN, HIGH) #define TFT_RST_H OUT_WRITE(TFT_RESET_PIN, HIGH)
#define SPI_TFT_RST_L OUT_WRITE(SPI_TFT_RST_PIN, LOW) #define TFT_RST_L OUT_WRITE(TFT_RESET_PIN, LOW)
#define SPI_TFT_BLK_H OUT_WRITE(LCD_BACKLIGHT_PIN, HIGH) #define TFT_BLK_H OUT_WRITE(LCD_BACKLIGHT_PIN, HIGH)
#define SPI_TFT_BLK_L OUT_WRITE(LCD_BACKLIGHT_PIN, LOW) #define TFT_BLK_L OUT_WRITE(LCD_BACKLIGHT_PIN, LOW)
class TFT { class TFT {
public: public:

View file

@ -653,10 +653,10 @@ char *creat_title_text() {
i += 2; i += 2;
if (*p_index == 0x0000) *p_index = 0xC318; if (*p_index == 0x0000) *p_index = 0xC318;
} }
SPI_TFT_CS_L; TFT_CS_L;
SPI_TFT_DC_H; TFT_DC_H;
SPI.dmaSend(bmp_public_buf, 400, true); SPI.dmaSend(bmp_public_buf, 400, true);
SPI_TFT_CS_H; TFT_CS_H;
#else #else
for (i = 0; i < 400;) { for (i = 0; i < 400;) {

View file

@ -34,8 +34,6 @@
#include "pic_manager.h" #include "pic_manager.h"
#include <lvgl.h> #include <lvgl.h>
#include "../../../touch/xpt2046.h"
#include "../../../../MarlinCore.h" #include "../../../../MarlinCore.h"
#include "../../../../module/temperature.h" #include "../../../../module/temperature.h"
#include "../../../../sd/cardreader.h" #include "../../../../sd/cardreader.h"

View file

@ -51,11 +51,11 @@ XPT2046 touch;
#include <SPI.h> #include <SPI.h>
#ifndef LCD_FULL_PIXEL_WIDTH #ifndef TFT_WIDTH
#define LCD_FULL_PIXEL_WIDTH 480 #define TFT_WIDTH 480
#endif #endif
#ifndef LCD_FULL_PIXEL_HEIGHT #ifndef TFT_HEIGHT
#define LCD_FULL_PIXEL_HEIGHT 320 #define TFT_HEIGHT 320
#endif #endif
#if HAS_SPI_FLASH_FONT #if HAS_SPI_FLASH_FONT
@ -135,7 +135,7 @@ void LCD_WriteRAM_Prepare(void) {
void tft_set_point(uint16_t x, uint16_t y, uint16_t point) { void tft_set_point(uint16_t x, uint16_t y, uint16_t point) {
//if (DeviceCode == 0x9488) { //if (DeviceCode == 0x9488) {
if (x > (LCD_FULL_PIXEL_WIDTH) || y > (LCD_FULL_PIXEL_HEIGHT)) return; if (x > (TFT_WIDTH) || y > (TFT_HEIGHT)) return;
//} //}
tft_set_cursor(x, y); tft_set_cursor(x, y);
@ -196,8 +196,8 @@ void ili9320_SetWindows(uint16_t StartX, uint16_t StartY, uint16_t width, uint16
LCD_WriteReg(0x0053, yEnd);*/ LCD_WriteReg(0x0053, yEnd);*/
LCD_WriteReg(0x0050, StartY); // Specify the start/end positions of the window address in the horizontal direction by an address unit LCD_WriteReg(0x0050, StartY); // Specify the start/end positions of the window address in the horizontal direction by an address unit
LCD_WriteReg(0x0051, yEnd); // Specify the start positions of the window address in the vertical direction by an address unit LCD_WriteReg(0x0051, yEnd); // Specify the start positions of the window address in the vertical direction by an address unit
LCD_WriteReg(0x0052, (LCD_FULL_PIXEL_HEIGHT) - xEnd); LCD_WriteReg(0x0052, (TFT_HEIGHT) - xEnd);
LCD_WriteReg(0x0053, (LCD_FULL_PIXEL_HEIGHT) - StartX - 1); // Specify the end positions of the window address in the vertical direction by an address unit LCD_WriteReg(0x0053, (TFT_HEIGHT) - StartX - 1); // Specify the end positions of the window address in the vertical direction by an address unit
} }
else { else {
@ -231,16 +231,16 @@ void LCD_Clear(uint16_t Color) {
if (DeviceCode == 0x9488) { if (DeviceCode == 0x9488) {
tft_set_cursor(0, 0); tft_set_cursor(0, 0);
ili9320_SetWindows(0, 0, LCD_FULL_PIXEL_WIDTH, LCD_FULL_PIXEL_HEIGHT); ili9320_SetWindows(0, 0, TFT_WIDTH, TFT_HEIGHT);
LCD_WriteRAM_Prepare(); LCD_WriteRAM_Prepare();
#ifdef LCD_USE_DMA_FSMC #ifdef LCD_USE_DMA_FSMC
LCD_IO_WriteMultiple(Color, (LCD_FULL_PIXEL_WIDTH) * (LCD_FULL_PIXEL_HEIGHT)); LCD_IO_WriteMultiple(Color, (TFT_WIDTH) * (TFT_HEIGHT));
#else #else
//index = (LCD_FULL_PIXEL_HEIGHT) / 2 * (LCD_FULL_PIXEL_WIDTH); //index = (TFT_HEIGHT) / 2 * (TFT_WIDTH);
for (index = 0; index < (LCD_FULL_PIXEL_HEIGHT) * (LCD_FULL_PIXEL_WIDTH); index++) for (index = 0; index < (TFT_HEIGHT) * (TFT_WIDTH); index++)
LCD_IO_WriteData(Color); LCD_IO_WriteData(Color);
#endif #endif
//LCD_IO_WriteMultiple(Color, (LCD_FULL_PIXEL_WIDTH) * (LCD_FULL_PIXEL_HEIGHT)); //LCD_IO_WriteMultiple(Color, (TFT_WIDTH) * (TFT_HEIGHT));
//while(index --) LCD_IO_WriteData(Color); //while(index --) LCD_IO_WriteData(Color);
} }
else if (DeviceCode == 0x5761) { else if (DeviceCode == 0x5761) {
@ -378,7 +378,7 @@ void init_tft() {
for (i = 0; i < 65535; i++); for (i = 0; i < 65535; i++);
LCD_IO_WriteReg(0x0029); LCD_IO_WriteReg(0x0029);
ili9320_SetWindows(0, 0, LCD_FULL_PIXEL_WIDTH, LCD_FULL_PIXEL_HEIGHT); ili9320_SetWindows(0, 0, TFT_WIDTH, TFT_HEIGHT);
LCD_Clear(0x0000); LCD_Clear(0x0000);
OUT_WRITE(LCD_BACKLIGHT_PIN, HIGH); OUT_WRITE(LCD_BACKLIGHT_PIN, HIGH);
@ -522,8 +522,8 @@ static bool get_point(int16_t *x, int16_t *y) {
} }
#if ENABLED(GRAPHICAL_TFT_ROTATE_180) #if ENABLED(GRAPHICAL_TFT_ROTATE_180)
x = (LCD_FULL_PIXEL_WIDTH) - x; x = (TFT_WIDTH) - x;
y = (LCD_FULL_PIXEL_HEIGHT) - y; y = (TFT_HEIGHT) - y;
#endif #endif
return is_touched; return is_touched;

View file

@ -23,28 +23,28 @@
#include "../inc/MarlinConfig.h" #include "../inc/MarlinConfig.h"
#ifndef FSMC_UPSCALE #ifndef GRAPHICAL_TFT_UPSCALE
#define FSMC_UPSCALE 2 #define GRAPHICAL_TFT_UPSCALE 2
#endif #endif
#ifndef LCD_FULL_PIXEL_WIDTH #ifndef TFT_WIDTH
#if FSMC_UPSCALE == 3 #if GRAPHICAL_TFT_UPSCALE == 3
#define LCD_FULL_PIXEL_WIDTH 480 #define TFT_WIDTH 480
#else #else
#define LCD_FULL_PIXEL_WIDTH 320 #define TFT_WIDTH 320
#endif #endif
#endif #endif
#ifndef LCD_FULL_PIXEL_HEIGHT #ifndef TFT_HEIGHT
#if FSMC_UPSCALE == 3 #if GRAPHICAL_TFT_UPSCALE == 3
#define LCD_FULL_PIXEL_HEIGHT 320 #define TFT_HEIGHT 320
#else #else
#define LCD_FULL_PIXEL_HEIGHT 240 #define TFT_HEIGHT 240
#endif #endif
#endif #endif
#ifndef LCD_PIXEL_OFFSET_X #ifndef TFT_PIXEL_OFFSET_X
#define LCD_PIXEL_OFFSET_X 48 #define TFT_PIXEL_OFFSET_X 48
#endif #endif
#ifndef LCD_PIXEL_OFFSET_Y #ifndef TFT_PIXEL_OFFSET_Y
#define LCD_PIXEL_OFFSET_Y 48 #define TFT_PIXEL_OFFSET_Y 48
#endif #endif

View file

@ -0,0 +1,112 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_TOUCH_XPT2046
#include "touch_buttons.h"
#include "../scaled_tft.h"
#include HAL_PATH(../../HAL, tft/xpt2046.h)
XPT2046 touchIO;
#include "../../lcd/ultralcd.h" // For EN_C bit mask
/**
* Draw and Touch processing
*
* LCD_PIXEL_WIDTH/HEIGHT (128x64) is the (emulated DOGM) Pixel Drawing resolution.
* TOUCH_SENSOR_WIDTH/HEIGHT (320x240) is the Touch Area resolution.
* TFT_WIDTH/HEIGHT (320x240 or 480x320) is the Actual (FSMC) Display resolution.
*
* - All native (u8g) drawing is done in LCD_PIXEL_* (128x64)
* - The DOGM pixels are is upscaled 2-3x (as needed) for display.
* - Touch coordinates use TOUCH_SENSOR_* resolution and are converted to
* click and scroll-wheel events (emulating of a common DOGM display).
*
* TOUCH_SCREEN resolution exists to fit our calibration values. The original touch code was made
* and originally calibrated for 320x240. If you decide to change the resolution of the touch code,
* new calibration values will be needed.
*
* The Marlin menus are drawn scaled in the upper region of the screen. The bottom region (in a
* fixed location in TOUCH_SCREEN* coordinate space) is used for 4 general-purpose buttons to
* navigate and select menu items. Both regions are touchable.
*
* The Marlin screen touchable area starts at TFT_PIXEL_OFFSET_X/Y (translated to SCREEN_PCT_LEFT/TOP)
* and spans LCD_PIXEL_WIDTH/HEIGHT (scaled to SCREEN_PCT_WIDTH/HEIGHT).
*/
// Touch sensor resolution independent of display resolution
#define TOUCH_SENSOR_WIDTH 320
#define TOUCH_SENSOR_HEIGHT 240
#define SCREEN_PCT_WIDE(X) ((X) * (TOUCH_SENSOR_WIDTH) / (TFT_WIDTH))
#define SCREEN_PCT_HIGH(Y) ((Y) * (TOUCH_SENSOR_HEIGHT) / (TFT_HEIGHT))
#define SCREEN_PCT_LEFT SCREEN_PCT_WIDE(TFT_PIXEL_OFFSET_X)
#define SCREEN_PCT_TOP SCREEN_PCT_HIGH(TFT_PIXEL_OFFSET_Y)
#define SCREEN_PCT_WIDTH SCREEN_PCT_WIDE((GRAPHICAL_TFT_UPSCALE) * (LCD_PIXEL_WIDTH))
#define SCREEN_PCT_HEIGHT SCREEN_PCT_HIGH((GRAPHICAL_TFT_UPSCALE) * (LCD_PIXEL_HEIGHT))
// Coordinates in terms of 240-unit-tall touch area
#define BUTTON_AREA_TOP 175
#define BUTTON_AREA_BOT 234
TouchButtons touch;
void TouchButtons::init() { touchIO.Init(); }
uint8_t TouchButtons::read_buttons() {
#ifdef HAS_SPI_LCD
int16_t x, y;
if (!touchIO.getRawPoint(&x, &y)) return 0;
x = uint16_t((uint32_t(x) * XPT2046_X_CALIBRATION) >> 16) + XPT2046_X_OFFSET;
y = uint16_t((uint32_t(y) * XPT2046_Y_CALIBRATION) >> 16) + XPT2046_Y_OFFSET;
#if ENABLED(GRAPHICAL_TFT_ROTATE_180)
x = TOUCH_SENSOR_WIDTH - x;
y = TOUCH_SENSOR_HEIGHT - y;
#endif
// Touch within the button area simulates an encoder button
if (y > BUTTON_AREA_TOP && y < BUTTON_AREA_BOT)
return WITHIN(x, 14, 77) ? EN_D
: WITHIN(x, 90, 153) ? EN_A
: WITHIN(x, 166, 229) ? EN_B
: WITHIN(x, 242, 305) ? EN_C
: 0;
if ( !WITHIN(x, SCREEN_PCT_LEFT, SCREEN_PCT_LEFT + SCREEN_PCT_WIDTH)
|| !WITHIN(y, SCREEN_PCT_TOP, SCREEN_PCT_TOP + SCREEN_PCT_HEIGHT)
) return 0;
// Column and row above BUTTON_AREA_TOP
int8_t col = (x - (SCREEN_PCT_LEFT)) * (LCD_WIDTH) / (SCREEN_PCT_WIDTH),
row = (y - (SCREEN_PCT_TOP)) * (LCD_HEIGHT) / (SCREEN_PCT_HEIGHT);
// Send the touch to the UI (which will simulate the encoder wheel)
MarlinUI::screen_click(row, col, x, y);
#endif
return 0;
}
#endif // HAS_TOUCH_XPT2046

View file

@ -20,30 +20,10 @@
#include <stdint.h> #include <stdint.h>
// Relies on XPT2046-compatible mode of ADS7843, class TouchButtons {
// hence no Z1 / Z2 measurements are possible.
#define XPT2046_DFR_MODE 0x00
#define XPT2046_SER_MODE 0x04
#define XPT2046_CONTROL 0x80
enum XPTCoordinate : uint8_t {
XPT2046_X = 0x10,
XPT2046_Y = 0x50,
XPT2046_Z1 = 0x30,
XPT2046_Z2 = 0x40
};
class XPT2046 {
public: public:
static void init(); static void init();
static uint8_t read_buttons(); static uint8_t read_buttons();
bool getTouchPoint(uint16_t &x, uint16_t &y);
static bool isTouched();
inline void waitForRelease() { while (isTouched()) { /* nada */ } }
inline void waitForTouch(uint16_t &x, uint16_t &y) { while (!getTouchPoint(x, y)) { /* nada */ } }
private:
static uint16_t getInTouch(const XPTCoordinate coordinate);
}; };
extern XPT2046 touch; extern TouchButtons touch;

View file

@ -1,251 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_TOUCH_XPT2046
#include "xpt2046.h"
#include "../scaled_tft.h"
#ifndef XPT2046_Z1_THRESHOLD
#define XPT2046_Z1_THRESHOLD 10
#endif
/**
* Draw and Touch processing
*
* LCD_PIXEL_WIDTH/HEIGHT (128x64) is the (emulated DOGM) Pixel Drawing resolution.
* TOUCH_SENSOR_WIDTH/HEIGHT (320x240) is the Touch Area resolution.
* LCD_FULL_PIXEL_WIDTH/HEIGHT (320x240 or 480x320) is the Actual (FSMC) Display resolution.
*
* - All native (u8g) drawing is done in LCD_PIXEL_* (128x64)
* - The DOGM pixels are is upscaled 2-3x (as needed) for display.
* - Touch coordinates use TOUCH_SENSOR_* resolution and are converted to
* click and scroll-wheel events (emulating of a common DOGM display).
*
* TOUCH_SCREEN resolution exists to fit our calibration values. The original touch code was made
* and originally calibrated for 320x240. If you decide to change the resolution of the touch code,
* new calibration values will be needed.
*
* The Marlin menus are drawn scaled in the upper region of the screen. The bottom region (in a
* fixed location in TOUCH_SCREEN* coordinate space) is used for 4 general-purpose buttons to
* navigate and select menu items. Both regions are touchable.
*
* The Marlin screen touchable area starts at LCD_PIXEL_OFFSET_X/Y (translated to SCREEN_START_LEFT/TOP)
* and spans LCD_PIXEL_WIDTH/HEIGHT (scaled to SCREEN_WIDTH/HEIGHT).
*/
// Coordinates in terms of touch area
#define BUTTON_AREA_TOP 175
#define BUTTON_AREA_BOT 234
// Touch sensor resolution independent of display resolution
#define TOUCH_SENSOR_WIDTH 320
#define TOUCH_SENSOR_HEIGHT 240
#define SCREEN_WIDTH_PCT(X) ((X) * (TOUCH_SENSOR_WIDTH) / (LCD_FULL_PIXEL_WIDTH))
#define SCREEN_HEIGHT_PCT(Y) ((Y) * (TOUCH_SENSOR_HEIGHT) / (LCD_FULL_PIXEL_HEIGHT))
#define SCREEN_START_LEFT SCREEN_WIDTH_PCT(LCD_PIXEL_OFFSET_X)
#define SCREEN_START_TOP SCREEN_HEIGHT_PCT(LCD_PIXEL_OFFSET_Y)
#define SCREEN_WIDTH SCREEN_WIDTH_PCT((LCD_PIXEL_WIDTH) * (FSMC_UPSCALE))
#define SCREEN_HEIGHT SCREEN_HEIGHT_PCT((LCD_PIXEL_HEIGHT) * (FSMC_UPSCALE))
#define TOUCHABLE_X_WIDTH SCREEN_WIDTH
#define TOUCHABLE_Y_HEIGHT SCREEN_HEIGHT
#ifndef TOUCH_INT_PIN
#define TOUCH_INT_PIN -1
#endif
#ifndef TOUCH_MISO_PIN
#define TOUCH_MISO_PIN MISO_PIN
#endif
#ifndef TOUCH_MOSI_PIN
#define TOUCH_MOSI_PIN MOSI_PIN
#endif
#ifndef TOUCH_SCK_PIN
#define TOUCH_SCK_PIN SCK_PIN
#endif
#ifndef TOUCH_CS_PIN
#define TOUCH_CS_PIN CS_PIN
#endif
XPT2046 touch;
void XPT2046::init() {
SET_INPUT(TOUCH_MISO_PIN);
SET_OUTPUT(TOUCH_MOSI_PIN);
SET_OUTPUT(TOUCH_SCK_PIN);
OUT_WRITE(TOUCH_CS_PIN, HIGH);
#if PIN_EXISTS(TOUCH_INT)
// Optional Pendrive interrupt pin
SET_INPUT(TOUCH_INT_PIN);
#endif
// Read once to enable pendrive status pin
getInTouch(XPT2046_X);
}
#include "../../lcd/ultralcd.h" // For EN_C bit mask
uint8_t XPT2046::read_buttons() {
#ifdef HAS_SPI_LCD
int16_t tsoffsets[4] = { 0 };
if (tsoffsets[0] + tsoffsets[1] == 0) {
// Not yet set, so use defines as fallback...
tsoffsets[0] = XPT2046_X_CALIBRATION;
tsoffsets[1] = XPT2046_X_OFFSET;
tsoffsets[2] = XPT2046_Y_CALIBRATION;
tsoffsets[3] = XPT2046_Y_OFFSET;
}
// We rely on XPT2046 compatible mode to ADS7843, hence no Z1 and Z2 measurements possible.
if (!isTouched()) return 0;
uint16_t x = uint16_t(((uint32_t(getInTouch(XPT2046_X))) * tsoffsets[0]) >> 16) + tsoffsets[1],
y = uint16_t(((uint32_t(getInTouch(XPT2046_Y))) * tsoffsets[2]) >> 16) + tsoffsets[3];
if (!isTouched()) return 0; // Fingers must still be on the TS for a valid read.
#if ENABLED(GRAPHICAL_TFT_ROTATE_180)
x = TOUCH_SENSOR_WIDTH - x;
y = TOUCH_SENSOR_HEIGHT - y;
#endif
// Touch within the button area simulates an encoder button
if (y > BUTTON_AREA_TOP && y < BUTTON_AREA_BOT)
return WITHIN(x, 14, 77) ? EN_D
: WITHIN(x, 90, 153) ? EN_A
: WITHIN(x, 166, 229) ? EN_B
: WITHIN(x, 242, 305) ? EN_C
: 0;
if ( !WITHIN(x, SCREEN_START_LEFT, SCREEN_START_LEFT + SCREEN_WIDTH)
|| !WITHIN(y, SCREEN_START_TOP, SCREEN_START_TOP + SCREEN_HEIGHT)
) return 0;
// Column and row above BUTTON_AREA_TOP
int8_t col = (x - (SCREEN_START_LEFT)) * (LCD_WIDTH) / (TOUCHABLE_X_WIDTH),
row = (y - (SCREEN_START_TOP)) * (LCD_HEIGHT) / (TOUCHABLE_Y_HEIGHT);
// Send the touch to the UI (which will simulate the encoder wheel)
MarlinUI::screen_click(row, col, x, y);
#endif
return 0;
}
bool XPT2046::isTouched() {
return (
#if PIN_EXISTS(TOUCH_INT)
READ(TOUCH_INT_PIN) != HIGH
#else
getInTouch(XPT2046_Z1) >= XPT2046_Z1_THRESHOLD
#endif
);
}
#if ENABLED(TOUCH_BUTTONS_HW_SPI)
#include <SPI.h>
static void touch_spi_init(uint8_t spiRate) {
/**
* STM32F1 APB2 = 72MHz, APB1 = 36MHz, max SPI speed of this MCU if 18Mhz
* STM32F1 has 3 SPI ports, SPI1 in APB2, SPI2/SPI3 in APB1
* so the minimum prescale of SPI1 is DIV4, SPI2/SPI3 is DIV2
*/
uint8_t clock;
switch (spiRate) {
case SPI_FULL_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_HALF_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_QUARTER_SPEED: clock = SPI_CLOCK_DIV8; break;
case SPI_EIGHTH_SPEED: clock = SPI_CLOCK_DIV16; break;
case SPI_SPEED_5: clock = SPI_CLOCK_DIV32; break;
case SPI_SPEED_6: clock = SPI_CLOCK_DIV64; break;
default: clock = SPI_CLOCK_DIV2; // Default from the SPI library
}
SPI.setModule(TOUCH_BUTTONS_HW_SPI_DEVICE);
SPI.begin();
SPI.setClockDivider(clock);
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
}
#endif // TOUCH_BUTTONS_HW_SPI
uint16_t XPT2046::getInTouch(const XPTCoordinate coordinate) {
uint16_t data[3];
const uint8_t coord = uint8_t(coordinate) | XPT2046_CONTROL | XPT2046_DFR_MODE;
#if ENABLED(TOUCH_BUTTONS_HW_SPI)
touch_spi_init(SPI_SPEED_6);
for (uint16_t i = 0; i < 3; i++) {
OUT_WRITE(TOUCH_CS_PIN, LOW);
SPI.transfer(coord);
data[i] = (((SPI.transfer(0xFF) << 8) | SPI.transfer(0xFF)) >> 3) & 0x0FFF;
WRITE(TOUCH_CS_PIN, HIGH);
}
#else // !TOUCH_BUTTONS_HW_SPI
OUT_WRITE(TOUCH_CS_PIN, LOW);
for (uint16_t i = 0; i < 3; i++) {
for (uint8_t j = 0x80; j; j >>= 1) {
WRITE(TOUCH_SCK_PIN, LOW);
WRITE(TOUCH_MOSI_PIN, bool(coord & j));
WRITE(TOUCH_SCK_PIN, HIGH);
}
data[i] = 0;
for (uint16_t j = 0x8000; j; j >>= 1) {
WRITE(TOUCH_SCK_PIN, LOW);
if (READ(TOUCH_MISO_PIN)) data[i] |= j;
WRITE(TOUCH_SCK_PIN, HIGH);
}
WRITE(TOUCH_SCK_PIN, LOW);
data[i] >>= 4;
}
WRITE(TOUCH_CS_PIN, HIGH);
#endif // !TOUCH_BUTTONS_HW_SPI
uint16_t delta01 = _MAX(data[0], data[1]) - _MIN(data[0], data[1]),
delta02 = _MAX(data[0], data[2]) - _MIN(data[0], data[2]),
delta12 = _MAX(data[1], data[2]) - _MIN(data[1], data[2]);
if (delta01 <= delta02 && delta01 <= delta12)
return (data[0] + data[1]) >> 1;
if (delta02 <= delta12)
return (data[0] + data[2]) >> 1;
return (data[1] + data[2]) >> 1;
}
bool XPT2046::getTouchPoint(uint16_t &x, uint16_t &y) {
if (isTouched()) {
x = getInTouch(XPT2046_X);
y = getInTouch(XPT2046_Y);
}
return isTouched();
}
#endif // HAS_TOUCH_XPT2046

View file

@ -150,7 +150,7 @@ constexpr uint8_t epps = ENCODER_PULSES_PER_STEP;
volatile uint8_t MarlinUI::slow_buttons; volatile uint8_t MarlinUI::slow_buttons;
#endif #endif
#if HAS_TOUCH_XPT2046 #if HAS_TOUCH_XPT2046
#include "touch/xpt2046.h" #include "touch/touch_buttons.h"
bool MarlinUI::on_edit_screen = false; bool MarlinUI::on_edit_screen = false;
#endif #endif
#endif #endif

View file

@ -104,33 +104,80 @@
//#define POWER_LOSS_PIN -1 //#define POWER_LOSS_PIN -1
#define FIL_RUNOUT_PIN PA15 #define FIL_RUNOUT_PIN PA15
// SPI Flash
#define SPI_FLASH_SIZE 0x200000 // 2MB
#define HAS_SPI_FLASH 1
// SPI 2
#define W25QXX_CS_PIN PB12
#define W25QXX_MOSI_PIN PB15
#define W25QXX_MISO_PIN PB14
#define W25QXX_SCK_PIN PB13
// //
// TronXY TFT Support // TronXY TFT Support
// //
//#define FSMC_GRAPHICAL_TFT
//#define HAS_TOUCH_XPT2046 1
#if ENABLED(FSMC_GRAPHICAL_TFT) #if HAS_FSMC_TFT
#define FSMC_UPSCALE 3
#define LCD_RESET_PIN PF11 // Shared FSMC
#define LCD_BACKLIGHT_PIN PD13
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#if NEED_TOUCH_PINS
#define TOUCH_CS_PIN PB7 // SPI1_NSS #define TOUCH_CS_PIN PB7 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK #define TOUCH_SCK_PIN PA5 // SPI1_SCK
#define TOUCH_MISO_PIN PA6 // SPI1_MISO #define TOUCH_MISO_PIN PA6 // SPI1_MISO
#define TOUCH_MOSI_PIN PA7 // SPI1_MOSI #define TOUCH_MOSI_PIN PA7 // SPI1_MOSI
#define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens #define LCD_RESET_PIN PF11
#define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus #define LCD_BACKLIGHT_PIN PD13
#define TFT_RESET_PIN PF11
#define TFT_BACKLIGHT_PIN PD13
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#define TFT_WIDTH 480
#define TFT_HEIGHT 320
#define TFT_PIXEL_OFFSET_X 48
#define TFT_PIXEL_OFFSET_Y 32
#endif
#if HAS_TFT_LVGL_UI
// LVGL
#define HAS_SPI_FLASH_FONT 1
#define HAS_GCODE_PREVIEW 1
#define HAS_GCODE_DEFAULT_VIEW_IN_FLASH 0
#define HAS_LANG_SELECT_SCREEN 1
#define HAS_BAK_VIEW_IN_FLASH 0
#define HAS_LOGO_IN_FLASH 0
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
#elif ENABLED(TFT_480x320)
// Color UI
#define TFT_DRIVER ILI9488
#define TFT_BUFFER_SIZE 14400
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
#elif ENABLED(FSMC_GRAPHICAL_TFT)
// Emulated DOGM
#define GRAPHICAL_TFT_UPSCALE 3
#ifndef XPT2046_X_CALIBRATION #ifndef XPT2046_X_CALIBRATION
#define XPT2046_X_CALIBRATION -12316 #define XPT2046_X_CALIBRATION -12316
#endif #endif
@ -143,92 +190,10 @@
#ifndef XPT2046_Y_OFFSET #ifndef XPT2046_Y_OFFSET
#define XPT2046_Y_OFFSET -20 #define XPT2046_Y_OFFSET -20
#endif #endif
#endif
#endif
// SPI Flash
#define SPI_FLASH_SIZE 0x200000 // 2MB
#define HAS_SPI_FLASH 1
// SPI 2
#define W25QXX_CS_PIN PB12
#define W25QXX_MOSI_PIN PB15
#define W25QXX_MISO_PIN PB14
#define W25QXX_SCK_PIN PB13
#if HAS_TFT_LVGL_UI
#define HAS_SPI_FLASH_FONT 1
#define HAS_GCODE_PREVIEW 1
#define HAS_GCODE_DEFAULT_VIEW_IN_FLASH 0
#define HAS_LANG_SELECT_SCREEN 1
#define HAS_BAK_VIEW_IN_FLASH 0
#define HAS_LOGO_IN_FLASH 0
#define TOUCH_CS_PIN PB7 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK
#define TOUCH_MISO_PIN PA6 // SPI1_MISO
#define TOUCH_MOSI_PIN PA7 // SPI1_MOSI
//#define TOUCH_INT_PIN PB6
#if ENABLED(TFT_LVGL_UI_SPI)
#define SPI_TFT_CS_PIN TOUCH_CS_PIN
#define SPI_TFT_SCK_PIN TOUCH_SCK_PIN
#define SPI_TFT_MISO_PIN TOUCH_MISO_PIN
#define SPI_TFT_MOSI_PIN TOUCH_MOSI_PIN
#define SPI_TFT_DC_PIN PB6
#define SPI_TFT_RST_PIN PF11
#endif
#define LCD_RESET_PIN PF11
#define LCD_BACKLIGHT_PIN PD13
#define TFT_RESET_PIN PF11
#define TFT_BACKLIGHT_PIN PD13
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#define LCD_PIXEL_WIDTH 480
#define LCD_PIXEL_HEIGHT 320
#define LCD_FULL_PIXEL_WIDTH LCD_PIXEL_WIDTH
#define LCD_FULL_PIXEL_HEIGHT LCD_PIXEL_HEIGHT
#define LCD_PIXEL_OFFSET_X 48
#define LCD_PIXEL_OFFSET_Y 48
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
#elif ENABLED(TFT_480x320)
#define TFT_RESET_PIN PF11
#define TFT_BACKLIGHT_PIN PD13
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
#define TOUCH_CS_PIN PB7 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK
#define TOUCH_MISO_PIN PA6 // SPI1_MISO
#define TOUCH_MOSI_PIN PA7 // SPI1_MOSI
#define TFT_DRIVER ILI9488
#define TFT_BUFFER_SIZE 14400
#endif #endif
// SPI1(PA7)=LCD & SPI3(PB5)=STUFF, are not available // SPI1(PA7)=LCD & SPI3(PB5)=STUFF, are not available
// We nee to use the SPI2 // Needs to use SPI2
#define ENABLE_SPI2 #define ENABLE_SPI2
#define SCK_PIN PB13 #define SCK_PIN PB13
#define MISO_PIN PB14 #define MISO_PIN PB14

View file

@ -119,29 +119,74 @@
#define FIL_RUNOUT2_PIN PF13 #define FIL_RUNOUT2_PIN PF13
#endif #endif
// SPI Flash
#define SPI_FLASH_SIZE 0x200000 // 2MB
#define HAS_SPI_FLASH 1
// SPI 2
#define W25QXX_CS_PIN PB12
#define W25QXX_MOSI_PIN PB15
#define W25QXX_MISO_PIN PB14
#define W25QXX_SCK_PIN PB13
// //
// TronXY TFT Support // TronXY TFT Support
// //
#if ENABLED(FSMC_GRAPHICAL_TFT)
#define FSMC_UPSCALE 3
#define LCD_RESET_PIN PF11 // Shared FSMC Configs
#define LCD_BACKLIGHT_PIN PD13 #if HAS_FSMC_TFT
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#if NEED_TOUCH_PINS
#define TOUCH_CS_PIN PB7 // SPI1_NSS #define TOUCH_CS_PIN PB7 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK #define TOUCH_SCK_PIN PA5 // SPI1_SCK
#define TOUCH_MISO_PIN PA6 // SPI1_MISO #define TOUCH_MISO_PIN PA6 // SPI1_MISO
#define TOUCH_MOSI_PIN PA7 // SPI1_MOSI #define TOUCH_MOSI_PIN PA7 // SPI1_MOSI
#define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens #define LCD_RESET_PIN PF11
#define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus #define LCD_BACKLIGHT_PIN PD13
#define TFT_RESET_PIN PF11
#define TFT_BACKLIGHT_PIN PD13
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#define TFT_WIDTH 480
#define TFT_HEIGHT 320
#define TFT_PIXEL_OFFSET_X 48
#define TFT_PIXEL_OFFSET_Y 32
#endif
// LVGL Configs
#if HAS_TFT_LVGL_UI
#define HAS_SPI_FLASH_FONT 1
#define HAS_GCODE_PREVIEW 1
#define HAS_GCODE_DEFAULT_VIEW_IN_FLASH 0
#define HAS_LANG_SELECT_SCREEN 1
#define HAS_BAK_VIEW_IN_FLASH 0
#define HAS_LOGO_IN_FLASH 0
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
// Color UI Configs
#elif ENABLED(TFT_480x320)
#define TFT_DRIVER ILI9488
#define TFT_BUFFER_SIZE 14400
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
// Emulated DOGM
#elif ENABLED(FSMC_GRAPHICAL_TFT)
#define GRAPHICAL_TFT_UPSCALE 3
#ifndef XPT2046_X_CALIBRATION #ifndef XPT2046_X_CALIBRATION
#define XPT2046_X_CALIBRATION -12316 #define XPT2046_X_CALIBRATION -12316
@ -155,87 +200,7 @@
#ifndef XPT2046_Y_OFFSET #ifndef XPT2046_Y_OFFSET
#define XPT2046_Y_OFFSET -20 #define XPT2046_Y_OFFSET -20
#endif #endif
#endif
#elif ENABLED(TFT_480x320)
#define TFT_RESET_PIN PF11
#define TFT_BACKLIGHT_PIN PD13
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
#define TOUCH_CS_PIN PB7 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK
#define TOUCH_MISO_PIN PA6 // SPI1_MISO
#define TOUCH_MOSI_PIN PA7 // SPI1_MOSI
#define TFT_DRIVER ILI9488
#define TFT_BUFFER_SIZE 14400
#endif
// SPI Flash
#define SPI_FLASH_SIZE 0x200000 // 2MB
#define HAS_SPI_FLASH 1
// SPI 2
#define W25QXX_CS_PIN PB12
#define W25QXX_MOSI_PIN PB15
#define W25QXX_MISO_PIN PB14
#define W25QXX_SCK_PIN PB13
#if HAS_TFT_LVGL_UI
#define HAS_SPI_FLASH_FONT 0
#define HAS_GCODE_PREVIEW 1
#define HAS_GCODE_DEFAULT_VIEW_IN_FLASH 0
#define HAS_LANG_SELECT_SCREEN 0
#define HAS_BAK_VIEW_IN_FLASH 0
#define HAS_LOGO_IN_FLASH 0
#define TOUCH_CS_PIN PB7 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK
#define TOUCH_MISO_PIN PA6 // SPI1_MISO
#define TOUCH_MOSI_PIN PA7 // SPI1_MOSI
//#define TOUCH_INT_PIN PB6
#if ENABLED(TFT_LVGL_UI_SPI)
#define SPI_TFT_CS_PIN TOUCH_CS_PIN
#define SPI_TFT_SCK_PIN TOUCH_SCK_PIN
#define SPI_TFT_MISO_PIN TOUCH_MISO_PIN
#define SPI_TFT_MOSI_PIN TOUCH_MOSI_PIN
#define SPI_TFT_DC_PIN PB6
#define SPI_TFT_RST_PIN PF11
#endif
#define LCD_RESET_PIN PF11
#define LCD_BACKLIGHT_PIN PD13
#define TFT_RESET_PIN PF11
#define TFT_BACKLIGHT_PIN PD13
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#define LCD_PIXEL_WIDTH 480
#define LCD_PIXEL_HEIGHT 320
#define LCD_FULL_PIXEL_WIDTH LCD_PIXEL_WIDTH
#define LCD_FULL_PIXEL_HEIGHT LCD_PIXEL_HEIGHT
#define LCD_PIXEL_OFFSET_X 48
#define LCD_PIXEL_OFFSET_Y 48
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
#endif #endif
// SPI1(PA7)=LCD & SPI3(PB5)=STUFF, are not available // SPI1(PA7)=LCD & SPI3(PB5)=STUFF, are not available

View file

@ -130,11 +130,11 @@
#define DOGLCD_MOSI -1 // Prevent auto-define by Conditionals_post.h #define DOGLCD_MOSI -1 // Prevent auto-define by Conditionals_post.h
#define DOGLCD_SCK -1 #define DOGLCD_SCK -1
#define FSMC_UPSCALE 2 #define GRAPHICAL_TFT_UPSCALE 2
#define LCD_FULL_PIXEL_WIDTH 320 #define TFT_WIDTH 320
#define LCD_FULL_PIXEL_HEIGHT 240 #define TFT_HEIGHT 240
#define LCD_PIXEL_OFFSET_X 32 #define TFT_PIXEL_OFFSET_X 32
#define LCD_PIXEL_OFFSET_Y 32 #define TFT_PIXEL_OFFSET_Y 32
/** /**
* Note: Alfawise U20/U30 boards DON'T use SPI2, as the hardware designer * Note: Alfawise U20/U30 boards DON'T use SPI2, as the hardware designer

View file

@ -165,8 +165,8 @@
* to let the bootloader init the screen. * to let the bootloader init the screen.
*/ */
#if ENABLED(TFT_LVGL_UI_FSMC) // Shared FSMC Configs
#if HAS_FSMC_TFT
#define FSMC_CS_PIN PD7 // NE4 #define FSMC_CS_PIN PD7 // NE4
#define FSMC_RS_PIN PD11 // A0 #define FSMC_RS_PIN PD11 // A0
@ -175,59 +175,10 @@
#define TOUCH_MISO_PIN PB14 // SPI2_MISO #define TOUCH_MISO_PIN PB14 // SPI2_MISO
#define TOUCH_MOSI_PIN PB15 // SPI2_MOSI #define TOUCH_MOSI_PIN PB15 // SPI2_MOSI
#define LCD_BACKLIGHT_PIN PD13
#define XPT2046_X_CALIBRATION 17880
#define XPT2046_Y_CALIBRATION -12234
#define XPT2046_X_OFFSET -45
#define XPT2046_Y_OFFSET 349
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#elif ENABLED(FSMC_GRAPHICAL_TFT)
#define DOGLCD_MOSI -1 // prevent redefine Conditionals_post.h
#define DOGLCD_SCK -1
#ifndef FSMC_UPSCALE
#define FSMC_UPSCALE 3
#endif
#ifndef LCD_FULL_PIXEL_WIDTH
#define LCD_FULL_PIXEL_WIDTH 480
#endif
#ifndef LCD_PIXEL_OFFSET_X
#define LCD_PIXEL_OFFSET_X 48
#endif
#ifndef LCD_FULL_PIXEL_HEIGHT
#define LCD_FULL_PIXEL_HEIGHT 320
#endif
#ifndef LCD_PIXEL_OFFSET_Y
#define LCD_PIXEL_OFFSET_Y 32
#endif
#define FSMC_CS_PIN PD7 // NE4
#define FSMC_RS_PIN PD11 // A0
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#define LCD_RESET_PIN PC6 // FSMC_RST #define LCD_RESET_PIN PC6 // FSMC_RST
#define LCD_BACKLIGHT_PIN PD13 #define LCD_BACKLIGHT_PIN PD13
#if NEED_TOUCH_PINS #define TFT_RESET_PIN PC6 // FSMC_RST
#define TOUCH_CS_PIN PA7 // SPI2_NSS
#define TOUCH_SCK_PIN PB13 // SPI2_SCK
#define TOUCH_MISO_PIN PB14 // SPI2_MISO
#define TOUCH_MOSI_PIN PB15 // SPI2_MOSI
#endif
#elif ENABLED(TFT_480x320)
#define TFT_RESET_PIN PC6
#define TFT_BACKLIGHT_PIN PD13 #define TFT_BACKLIGHT_PIN PD13
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT #define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
@ -236,15 +187,58 @@
#define FSMC_DMA_DEV DMA2 #define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5 #define FSMC_DMA_CHANNEL DMA_CH5
#define TOUCH_BUTTONS_HW_SPI
#define TOUCH_BUTTONS_HW_SPI_DEVICE 2
#endif
// LVGL Configs
#if ENABLED(TFT_LVGL_UI_FSMC)
#define XPT2046_X_CALIBRATION 17880 #define XPT2046_X_CALIBRATION 17880
#define XPT2046_Y_CALIBRATION -12234 #define XPT2046_Y_CALIBRATION -12234
#define XPT2046_X_OFFSET -45 #define XPT2046_X_OFFSET -45
#define XPT2046_Y_OFFSET 349 #define XPT2046_Y_OFFSET 349
#define TOUCH_CS_PIN PA7 // SPI2_NSS // Emulated DOGM Configs
#define TOUCH_SCK_PIN PB13 // SPI2_SCK #elif ENABLED(FSMC_GRAPHICAL_TFT)
#define TOUCH_MISO_PIN PB14 // SPI2_MISO
#define TOUCH_MOSI_PIN PB15 // SPI2_MOSI #define DOGLCD_MOSI -1 // prevent redefine Conditionals_post.h
#define DOGLCD_SCK -1
#ifndef GRAPHICAL_TFT_UPSCALE
#define GRAPHICAL_TFT_UPSCALE 3
#endif
#ifndef TFT_WIDTH
#define TFT_WIDTH 480
#endif
#ifndef TFT_PIXEL_OFFSET_X
#define TFT_PIXEL_OFFSET_X 48
#endif
#ifndef TFT_HEIGHT
#define TFT_HEIGHT 320
#endif
#ifndef TFT_PIXEL_OFFSET_Y
#define TFT_PIXEL_OFFSET_Y 32
#endif
#ifndef XPT2046_X_CALIBRATION
#define XPT2046_X_CALIBRATION 12149
#endif
#ifndef XPT2046_Y_CALIBRATION
#define XPT2046_Y_CALIBRATION -8746
#endif
#ifndef XPT2046_X_OFFSET
#define XPT2046_X_OFFSET -35
#endif
#ifndef XPT2046_Y_OFFSET
#define XPT2046_Y_OFFSET 256
#endif
#elif ENABLED(TFT_480x320)
#define XPT2046_X_CALIBRATION 17880
#define XPT2046_Y_CALIBRATION -12234
#define XPT2046_X_OFFSET -45
#define XPT2046_Y_OFFSET 349
#define TFT_DRIVER ILI9488 #define TFT_DRIVER ILI9488
#define TFT_BUFFER_SIZE 14400 #define TFT_BUFFER_SIZE 14400

View file

@ -29,6 +29,8 @@
#error "Oops! Select an STM32F1 board in 'Tools > Board.'" #error "Oops! Select an STM32F1 board in 'Tools > Board.'"
#elif HOTENDS > 2 || E_STEPPERS > 2 #elif HOTENDS > 2 || E_STEPPERS > 2
#error "MKS Robin nano supports up to 2 hotends / E-steppers. Comment out this line to continue." #error "MKS Robin nano supports up to 2 hotends / E-steppers. Comment out this line to continue."
#elif HAS_FSMC_TFT
#error "MKS Robin nano v2 doesn't support FSMC-based TFT displays."
#endif #endif
#define BOARD_INFO_NAME "MKS Robin nano V2.0" #define BOARD_INFO_NAME "MKS Robin nano V2.0"
@ -241,14 +243,9 @@
* to let the bootloader init the screen. * to let the bootloader init the screen.
*/ */
#if ENABLED(TFT_LVGL_UI_SPI) #if HAS_SPI_TFT
#define SPI_TFT_CS_PIN PD11 // Shared SPI TFT
#define SPI_TFT_SCK_PIN PA5
#define SPI_TFT_MISO_PIN PA6
#define SPI_TFT_MOSI_PIN PA7
#define SPI_TFT_DC_PIN PD10
#define SPI_TFT_RST_PIN PC6
#define LCD_BACKLIGHT_PIN PD13 #define LCD_BACKLIGHT_PIN PD13
@ -272,66 +269,52 @@
#define TFT_RESET_PIN PC6 #define TFT_RESET_PIN PC6
#define TFT_BACKLIGHT_PIN PD13 #define TFT_BACKLIGHT_PIN PD13
#define XPT2046_X_CALIBRATION -17253
#define XPT2046_Y_CALIBRATION 11579
#define XPT2046_X_OFFSET 514
#define XPT2046_Y_OFFSET -24
#define TOUCH_BUTTONS_HW_SPI #define TOUCH_BUTTONS_HW_SPI
#define TOUCH_BUTTONS_HW_SPI_DEVICE 1 #define TOUCH_BUTTONS_HW_SPI_DEVICE 1
#ifndef LCD_FULL_PIXEL_WIDTH #ifndef TFT_WIDTH
#define LCD_FULL_PIXEL_WIDTH 480 #define TFT_WIDTH 480
#endif #endif
#ifndef LCD_FULL_PIXEL_HEIGHT #ifndef TFT_HEIGHT
#define LCD_FULL_PIXEL_HEIGHT 320 #define TFT_HEIGHT 320
#endif #endif
#endif
#if HAS_SPI_LCD
#if ENABLED(SPI_GRAPHICAL_TFT) // Emulated DOGM SPI
#define SPI_TFT_CS_PIN PD11
#define SPI_TFT_SCK_PIN PA5
#define SPI_TFT_MISO_PIN PA6
#define SPI_TFT_MOSI_PIN PA7
#define SPI_TFT_DC_PIN PD10
#define SPI_TFT_RST_PIN PC6
#define LCD_BACKLIGHT_PIN PD13
#define LCD_READ_ID 0xD3 #define LCD_READ_ID 0xD3
#define LCD_USE_DMA_SPI #define LCD_USE_DMA_SPI
#define TOUCH_BUTTONS_HW_SPI #endif
#define TOUCH_BUTTONS_HW_SPI_DEVICE 1
//#define TOUCH_SCREEN #if ENABLED(TFT_LVGL_UI_SPI)
#if EITHER(TOUCH_SCREEN, NEED_TOUCH_PINS)
#define TOUCH_CS_PIN PE14 // SPI1_NSS // LVGL
#define TOUCH_SCK_PIN PA5 // SPI1_SCK
#define TOUCH_MISO_PIN PA6 // SPI1_MISO #define XPT2046_X_CALIBRATION -17253
#define TOUCH_MOSI_PIN PA7 // SPI1_MOSI #define XPT2046_Y_CALIBRATION 11579
#define XPT2046_X_OFFSET 514
#define XPT2046_Y_OFFSET -24
#elif ENABLED(SPI_GRAPHICAL_TFT)
// Emulated DOGM SPI
#ifndef XPT2046_X_CALIBRATION #ifndef XPT2046_X_CALIBRATION
#define XPT2046_X_CALIBRATION -5481 #define XPT2046_X_CALIBRATION -11386
#endif #endif
#ifndef XPT2046_Y_CALIBRATION #ifndef XPT2046_Y_CALIBRATION
#define XPT2046_Y_CALIBRATION 4000 #define XPT2046_Y_CALIBRATION 8684
#endif #endif
#ifndef XPT2046_X_OFFSET #ifndef XPT2046_X_OFFSET
#define XPT2046_X_OFFSET 343 #define XPT2046_X_OFFSET 339
#endif #endif
#ifndef XPT2046_Y_OFFSET #ifndef XPT2046_Y_OFFSET
#define XPT2046_Y_OFFSET 0 #define XPT2046_Y_OFFSET -18
#endif
#endif #endif
#ifndef FSMC_UPSCALE #ifndef GRAPHICAL_TFT_UPSCALE
#define FSMC_UPSCALE 3 #define GRAPHICAL_TFT_UPSCALE 3
#endif #endif
#ifndef LCD_PIXEL_OFFSET_Y #ifndef TFT_PIXEL_OFFSET_Y
#define LCD_PIXEL_OFFSET_Y 32 #define TFT_PIXEL_OFFSET_Y 32
#endif #endif
#define BTN_ENC PE13 #define BTN_ENC PE13
@ -341,7 +324,22 @@
#define LCD_PINS_ENABLE PD13 #define LCD_PINS_ENABLE PD13
#define LCD_PINS_RS PC6 #define LCD_PINS_RS PC6
#elif ENABLED(MKS_MINI_12864) #elif ENABLED(TFT_480x320_SPI)
#define XPT2046_X_CALIBRATION -17253
#define XPT2046_Y_CALIBRATION 11579
#define XPT2046_X_OFFSET 514
#define XPT2046_Y_OFFSET -24
#define TFT_DRIVER ST7796
#define TFT_BUFFER_SIZE 14400
#endif
#if HAS_SPI_LCD && !HAS_SPI_TFT
// NON TFT Displays
#if ENABLED(MKS_MINI_12864)
// MKS MINI12864 and MKS LCD12864B // MKS MINI12864 and MKS LCD12864B
// If using MKS LCD12864A (Need to remove RPK2 resistor) // If using MKS LCD12864A (Need to remove RPK2 resistor)
@ -357,37 +355,6 @@
#define MKS_LCD12864B #define MKS_LCD12864B
#undef SHOW_BOOTSCREEN #undef SHOW_BOOTSCREEN
#elif ENABLED(TFT_480x320_SPI)
#define TFT_CS_PIN PD11
#define TFT_SCK_PIN PA5
#define TFT_MISO_PIN PA6
#define TFT_MOSI_PIN PA7
#define TFT_DC_PIN PD10
#define TFT_RST_PIN PC6
#define TFT_A0_PIN TFT_DC_PIN
#define TFT_RESET_PIN PC6
#define TFT_BACKLIGHT_PIN PD13
#define XPT2046_X_CALIBRATION -17253
#define XPT2046_Y_CALIBRATION 11579
#define XPT2046_X_OFFSET 514
#define XPT2046_Y_OFFSET -24
#define TOUCH_CS_PIN PE14 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK
#define TOUCH_MISO_PIN PA6 // SPI1_MISO
#define TOUCH_MOSI_PIN PA7 // SPI1_MOSI
#define TFT_DRIVER ST7796
#define TFT_BUFFER_SIZE 14400
#define LCD_READ_ID 0xD3
#define LCD_USE_DMA_SPI
#define TOUCH_BUTTONS_HW_SPI
#define TOUCH_BUTTONS_HW_SPI_DEVICE 1
#else // !MKS_MINI_12864 #else // !MKS_MINI_12864
#define LCD_PINS_D4 PE14 #define LCD_PINS_D4 PE14
@ -409,7 +376,7 @@
#endif // !MKS_MINI_12864 #endif // !MKS_MINI_12864
#endif // HAS_SPI_LCD #endif // HAS_SPI_LCD && !HAS_SPI_TFT
#define HAS_SPI_FLASH 1 #define HAS_SPI_FLASH 1
#define SPI_FLASH_SIZE 0x1000000 // 16MB #define SPI_FLASH_SIZE 0x1000000 // 16MB

View file

@ -38,10 +38,12 @@ for (let m of mpatt) mexpr.push(new RegExp('^' + m + '$'));
const argv = process.argv.slice(2), argc = argv.length; const argv = process.argv.slice(2), argc = argv.length;
var src_file = 0, src_name = 'STDIN', dst_file; var src_file = 0, src_name = 'STDIN', dst_file, do_log = false;
if (argc > 0) { if (argc > 0) {
src_file = src_name = argv[0]; let ind = 0;
dst_file = argv[argc > 1 ? 1 : 0]; if (argv[0] == '-v') { do_log = true; ind++; }
dst_file = src_file = src_name = argv[ind++];
if (ind < argc) dst_file = argv[ind];
} }
// Read from file or STDIN until it terminates // Read from file or STDIN until it terminates
@ -81,7 +83,7 @@ function process_text(txt) {
aliasPatt = new RegExp('^(\\s*(//)?#define)\\s+([A-Z_][A-Z0-9_]+)\\s+([A-Z_][A-Z0-9_()]+)\\s*(//.*)?$'), aliasPatt = new RegExp('^(\\s*(//)?#define)\\s+([A-Z_][A-Z0-9_]+)\\s+([A-Z_][A-Z0-9_()]+)\\s*(//.*)?$'),
switchPatt = new RegExp('^(\\s*(//)?#define)\\s+([A-Z_][A-Z0-9_]+)\\s*(//.*)?$'), switchPatt = new RegExp('^(\\s*(//)?#define)\\s+([A-Z_][A-Z0-9_]+)\\s*(//.*)?$'),
undefPatt = new RegExp('^(\\s*(//)?#undef)\\s+([A-Z_][A-Z0-9_]+)\\s*(//.*)?$'), undefPatt = new RegExp('^(\\s*(//)?#undef)\\s+([A-Z_][A-Z0-9_]+)\\s*(//.*)?$'),
defPatt = new RegExp('^(\\s*(//)?#define)\\s+([A-Z_][A-Z0-9_]+)\\s+(\\w+)\\s*(//.*)?$'), defPatt = new RegExp('^(\\s*(//)?#define)\\s+([A-Z_][A-Z0-9_]+)\\s+([-_\\w]+)\\s*(//.*)?$'),
condPatt = new RegExp('^(\\s*(//)?#(if|ifn?def|else|elif)(\\s+\\S+)*)\\s+(//.*)$'), condPatt = new RegExp('^(\\s*(//)?#(if|ifn?def|else|elif)(\\s+\\S+)*)\\s+(//.*)$'),
commPatt = new RegExp('^\\s{20,}(//.*)?$'); commPatt = new RegExp('^\\s{20,}(//.*)?$');
const col_value_lj = col_comment - patt.pad - 2; const col_value_lj = col_comment - patt.pad - 2;
@ -98,6 +100,7 @@ function process_text(txt) {
// //
// #define MY_PIN [pin] // #define MY_PIN [pin]
// //
if (do_log) console.log("pin:", line);
const pinnum = r[4].charAt(0) == 'P' ? r[4] : r[4].lpad(patt.pad); const pinnum = r[4].charAt(0) == 'P' ? r[4] : r[4].lpad(patt.pad);
line = r[1] + ' ' + r[3]; line = r[1] + ' ' + r[3];
line = line.rpad(col_value_lj) + pinnum; line = line.rpad(col_value_lj) + pinnum;
@ -107,31 +110,57 @@ function process_text(txt) {
// //
// #define MY_PIN -1 // #define MY_PIN -1
// //
if (do_log) console.log("pin -1:", line);
line = r[1] + ' ' + r[3]; line = r[1] + ' ' + r[3];
line = line.rpad(col_value_lj) + '-1'; line = line.rpad(col_value_lj) + '-1';
if (r[5]) line = line.rpad(col_comment) + r[5]; if (r[5]) line = line.rpad(col_comment) + r[5];
} }
else if ((r = skipPatt.exec(line)) !== null) { else if ((r = skipPatt.exec(line)) !== null) {
//
// #define SKIP_ME
//
if (do_log) console.log("skip:", line);
} }
else if ((r = aliasPatt.exec(line)) !== null) { else if ((r = aliasPatt.exec(line)) !== null) {
//
// #define ALIAS OTHER
//
if (do_log) console.log("alias:", line);
line = r[1] + ' ' + r[3]; line = r[1] + ' ' + r[3];
line += r[4].lpad(col_value_rj + 1 - line.length); line += r[4].lpad(col_value_rj + 1 - line.length);
if (r[5]) line = line.rpad(col_comment) + r[5]; if (r[5]) line = line.rpad(col_comment) + r[5];
} }
else if ((r = switchPatt.exec(line)) !== null) { else if ((r = switchPatt.exec(line)) !== null) {
//
// #define SWITCH
//
if (do_log) console.log("switch:", line);
line = r[1] + ' ' + r[3]; line = r[1] + ' ' + r[3];
if (r[4]) line = line.rpad(col_comment) + r[4]; if (r[4]) line = line.rpad(col_comment) + r[4];
check_comment_next = true; check_comment_next = true;
} }
else if ((r = defPatt.exec(line)) !== null) { else if ((r = defPatt.exec(line)) !== null) {
line = r[1] + ' ' + r[3] + ' ' + r[4]; //
if (r[5]) line = line.rpad(col_comment) + r[5]; // #define ...
//
if (do_log) console.log("def:", line);
line = r[1] + ' ' + r[3] + ' ';
line += r[4].lpad(col_value_rj + 1 - line.length);
if (r[5]) line = line.rpad(col_comment - 1) + ' ' + r[5];
} }
else if ((r = undefPatt.exec(line)) !== null) { else if ((r = undefPatt.exec(line)) !== null) {
//
// #undef ...
//
if (do_log) console.log("undef:", line);
line = r[1] + ' ' + r[3]; line = r[1] + ' ' + r[3];
if (r[4]) line = line.rpad(col_comment) + r[4]; if (r[4]) line = line.rpad(col_comment) + r[4];
} }
else if ((r = condPatt.exec(line)) !== null) { else if ((r = condPatt.exec(line)) !== null) {
//
// #if ...
//
if (do_log) console.log("cond:", line);
line = r[1].rpad(col_comment) + r[5]; line = r[1].rpad(col_comment) + r[5];
check_comment_next = true; check_comment_next = true;
} }