Eliminate goto in gcode_M48

This commit is contained in:
Scott Lahteine 2017-08-11 16:59:32 -05:00
parent 75e6ead5fd
commit ac76101ec3

View file

@ -7038,150 +7038,154 @@ inline void gcode_M42() {
// Move to the first point, deploy, and probe // Move to the first point, deploy, and probe
const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level); const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
if (nan_error(t)) goto FAIL; bool probing_good = !isnan(t);
randomSeed(millis()); if (probing_good) {
randomSeed(millis());
for (uint8_t n = 0; n < n_samples; n++) { for (uint8_t n = 0; n < n_samples; n++) {
if (n_legs) { if (n_legs) {
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
float angle = random(0.0, 360.0); float angle = random(0.0, 360.0);
const float radius = random( const float radius = random(
#if ENABLED(DELTA) #if ENABLED(DELTA)
0.1250000000 * (DELTA_PROBEABLE_RADIUS), 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
0.3333333333 * (DELTA_PROBEABLE_RADIUS) 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
#else #else
5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE) 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
#endif #endif
); );
if (verbose_level > 3) {
SERIAL_ECHOPAIR("Starting radius: ", radius);
SERIAL_ECHOPAIR(" angle: ", angle);
SERIAL_ECHOPGM(" Direction: ");
if (dir > 0) SERIAL_ECHOPGM("Counter-");
SERIAL_ECHOLNPGM("Clockwise");
}
for (uint8_t l = 0; l < n_legs - 1; l++) {
double delta_angle;
if (schizoid_flag)
// The points of a 5 point star are 72 degrees apart. We need to
// skip a point and go to the next one on the star.
delta_angle = dir * 2.0 * 72.0;
else
// If we do this line, we are just trying to move further
// around the circle.
delta_angle = dir * (float) random(25, 45);
angle += delta_angle;
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
#if DISABLED(DELTA)
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
#else
// If we have gone out too far, we can do a simple fix and scale the numbers
// back in closer to the origin.
while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
X_current *= 0.8;
Y_current *= 0.8;
if (verbose_level > 3) {
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
SERIAL_ECHOLNPAIR(", ", Y_current);
}
}
#endif
if (verbose_level > 3) { if (verbose_level > 3) {
SERIAL_PROTOCOLPGM("Going to:"); SERIAL_ECHOPAIR("Starting radius: ", radius);
SERIAL_ECHOPAIR(" X", X_current); SERIAL_ECHOPAIR(" angle: ", angle);
SERIAL_ECHOPAIR(" Y", Y_current); SERIAL_ECHOPGM(" Direction: ");
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]); if (dir > 0) SERIAL_ECHOPGM("Counter-");
SERIAL_ECHOLNPGM("Clockwise");
} }
do_blocking_move_to_xy(X_current, Y_current);
} // n_legs loop
} // n_legs
// Probe a single point for (uint8_t l = 0; l < n_legs - 1; l++) {
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0); double delta_angle;
if (nan_error(sample_set[n])) goto FAIL;
/** if (schizoid_flag)
* Get the current mean for the data points we have so far // The points of a 5 point star are 72 degrees apart. We need to
*/ // skip a point and go to the next one on the star.
double sum = 0.0; delta_angle = dir * 2.0 * 72.0;
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1);
NOMORE(min, sample_set[n]); else
NOLESS(max, sample_set[n]); // If we do this line, we are just trying to move further
// around the circle.
delta_angle = dir * (float) random(25, 45);
/** angle += delta_angle;
* Now, use that mean to calculate the standard deviation for the
* data points we have so far
*/
sum = 0.0;
for (uint8_t j = 0; j <= n; j++)
sum += sq(sample_set[j] - mean);
sigma = SQRT(sum / (n + 1)); while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
if (verbose_level > 0) { angle -= 360.0; // Arduino documentation says the trig functions should not be given values
if (verbose_level > 1) { while (angle < 0.0) // outside of this range. It looks like they behave correctly with
SERIAL_PROTOCOL(n + 1); angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
SERIAL_PROTOCOLPGM(" of ");
SERIAL_PROTOCOL((int)n_samples); X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
SERIAL_PROTOCOLPGM(": z: "); Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
SERIAL_PROTOCOL_F(sample_set[n], 3);
if (verbose_level > 2) { #if DISABLED(DELTA)
SERIAL_PROTOCOLPGM(" mean: "); X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
SERIAL_PROTOCOL_F(mean, 4); Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
SERIAL_PROTOCOLPGM(" sigma: "); #else
SERIAL_PROTOCOL_F(sigma, 6); // If we have gone out too far, we can do a simple fix and scale the numbers
SERIAL_PROTOCOLPGM(" min: "); // back in closer to the origin.
SERIAL_PROTOCOL_F(min, 3); while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
SERIAL_PROTOCOLPGM(" max: "); X_current *= 0.8;
SERIAL_PROTOCOL_F(max, 3); Y_current *= 0.8;
SERIAL_PROTOCOLPGM(" range: "); if (verbose_level > 3) {
SERIAL_PROTOCOL_F(max-min, 3); SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
SERIAL_ECHOLNPAIR(", ", Y_current);
}
}
#endif
if (verbose_level > 3) {
SERIAL_PROTOCOLPGM("Going to:");
SERIAL_ECHOPAIR(" X", X_current);
SERIAL_ECHOPAIR(" Y", Y_current);
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
}
do_blocking_move_to_xy(X_current, Y_current);
} // n_legs loop
} // n_legs
// Probe a single point
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
// Break the loop if the probe fails
probing_good = !isnan(sample_set[n]);
if (!probing_good) break;
/**
* Get the current mean for the data points we have so far
*/
double sum = 0.0;
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1);
NOMORE(min, sample_set[n]);
NOLESS(max, sample_set[n]);
/**
* Now, use that mean to calculate the standard deviation for the
* data points we have so far
*/
sum = 0.0;
for (uint8_t j = 0; j <= n; j++)
sum += sq(sample_set[j] - mean);
sigma = SQRT(sum / (n + 1));
if (verbose_level > 0) {
if (verbose_level > 1) {
SERIAL_PROTOCOL(n + 1);
SERIAL_PROTOCOLPGM(" of ");
SERIAL_PROTOCOL((int)n_samples);
SERIAL_PROTOCOLPGM(": z: ");
SERIAL_PROTOCOL_F(sample_set[n], 3);
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(" mean: ");
SERIAL_PROTOCOL_F(mean, 4);
SERIAL_PROTOCOLPGM(" sigma: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM(" min: ");
SERIAL_PROTOCOL_F(min, 3);
SERIAL_PROTOCOLPGM(" max: ");
SERIAL_PROTOCOL_F(max, 3);
SERIAL_PROTOCOLPGM(" range: ");
SERIAL_PROTOCOL_F(max-min, 3);
}
SERIAL_EOL();
} }
SERIAL_EOL();
} }
}
} // End of probe loop } // n_samples loop
if (STOW_PROBE()) goto FAIL;
SERIAL_PROTOCOLPGM("Finished!");
SERIAL_EOL();
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM(" Min: ");
SERIAL_PROTOCOL_F(min, 3);
SERIAL_PROTOCOLPGM(" Max: ");
SERIAL_PROTOCOL_F(max, 3);
SERIAL_PROTOCOLPGM(" Range: ");
SERIAL_PROTOCOL_F(max-min, 3);
SERIAL_EOL();
} }
SERIAL_PROTOCOLPGM("Standard Deviation: "); STOW_PROBE();
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_EOL();
SERIAL_EOL();
FAIL: if (probing_good) {
SERIAL_PROTOCOLLNPGM("Finished!");
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM(" Min: ");
SERIAL_PROTOCOL_F(min, 3);
SERIAL_PROTOCOLPGM(" Max: ");
SERIAL_PROTOCOL_F(max, 3);
SERIAL_PROTOCOLPGM(" Range: ");
SERIAL_PROTOCOL_F(max-min, 3);
SERIAL_EOL();
}
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_EOL();
SERIAL_EOL();
}
clean_up_after_endstop_or_probe_move(); clean_up_after_endstop_or_probe_move();