Spindle/Laser power in planner blocks (#14437)

This commit is contained in:
Scott Lahteine 2019-10-15 16:10:20 -05:00 committed by GitHub
parent 53abfdc2c3
commit b7b303f4bf
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 106 additions and 38 deletions

View file

@ -23,7 +23,7 @@
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(FAST_PWM_FAN)
#if ENABLED(FAST_PWM_FAN) || SPINDLE_LASER_PWM
#include "HAL.h"
@ -278,5 +278,5 @@ void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255
}
}
#endif // FAST_PWM_FAN
#endif // FAST_PWM_FAN || SPINDLE_LASER_PWM
#endif // __AVR__

View file

@ -24,7 +24,7 @@
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(FAST_PWM_FAN)
#if ENABLED(FAST_PWM_FAN) || SPINDLE_LASER_PWM
#include <pwm.h>
@ -36,5 +36,5 @@ void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255
pwm_write_ratio(pin, invert ? 1.0f - (float)v / v_size : (float)v / v_size);
}
#endif // FAST_PWM_FAN
#endif // FAST_PWM_FAN || SPINDLE_LASER_PWM
#endif // TARGET_LPC1768

View file

@ -34,14 +34,16 @@ SpindleLaser cutter;
cutter_power_t SpindleLaser::power; // = 0
#define SPINDLE_LASER_PWM_OFF ((SPINDLE_LASER_PWM_INVERT) ? 255 : 0)
void SpindleLaser::init() {
OUT_WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_HIGH); // Init spindle to off
#if ENABLED(SPINDLE_CHANGE_DIR)
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // Init rotation to clockwise (M3)
#endif
#if ENABLED(SPINDLE_LASER_PWM) && PIN_EXISTS(SPINDLE_LASER_PWM)
#if ENABLED(SPINDLE_LASER_PWM)
SET_PWM(SPINDLE_LASER_PWM_PIN);
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // set to lowest speed
#endif
}
@ -54,34 +56,34 @@ void SpindleLaser::init() {
*/
void SpindleLaser::set_ocr(const uint8_t ocr) {
WRITE(SPINDLE_LASER_ENA_PIN, SPINDLE_LASER_ACTIVE_HIGH); // turn spindle on (active low)
#if ENABLED(SPINDLE_LASER_PWM)
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), (SPINDLE_LASER_PWM_INVERT) ? 255 - ocr : ocr);
#endif
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), ocr ^ SPINDLE_LASER_PWM_OFF);
}
#endif
void SpindleLaser::update_output() {
const bool ena = enabled();
void SpindleLaser::apply_power(const cutter_power_t inpow) {
static cutter_power_t last_power_applied = 0;
if (inpow == last_power_applied) return;
last_power_applied = inpow;
#if ENABLED(SPINDLE_LASER_PWM)
if (ena) {
if (enabled()) {
#define _scaled(F) ((F - (SPEED_POWER_INTERCEPT)) * inv_slope)
constexpr float inv_slope = RECIPROCAL(SPEED_POWER_SLOPE),
min_ocr = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * inv_slope, // Minimum allowed
max_ocr = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * inv_slope; // Maximum allowed
min_ocr = _scaled(SPEED_POWER_MIN),
max_ocr = _scaled(SPEED_POWER_MAX);
int16_t ocr_val;
if (power <= SPEED_POWER_MIN) ocr_val = min_ocr; // Use minimum if set below
else if (power >= SPEED_POWER_MAX) ocr_val = max_ocr; // Use maximum if set above
else ocr_val = (power - (SPEED_POWER_INTERCEPT)) * inv_slope; // Use calculated OCR value
if (inpow <= SPEED_POWER_MIN) ocr_val = min_ocr; // Use minimum if set below
else if (inpow >= SPEED_POWER_MAX) ocr_val = max_ocr; // Use maximum if set above
else ocr_val = _scaled(inpow); // Use calculated OCR value
set_ocr(ocr_val & 0xFF); // ...limited to Atmel PWM max
}
else { // Convert RPM to PWM duty cycle
else {
WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_HIGH); // Turn spindle off (active low)
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_INVERT ? 255 : 0); // Only write low byte
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // Only write low byte
}
#else
WRITE(SPINDLE_LASER_ENA_PIN, ena ? SPINDLE_LASER_ACTIVE_HIGH : !SPINDLE_LASER_ACTIVE_HIGH);
WRITE(SPINDLE_LASER_ENA_PIN, (SPINDLE_LASER_ACTIVE_HIGH) ? enabled() : !enabled());
#endif
power_delay(ena);
}
#if ENABLED(SPINDLE_CHANGE_DIR)

View file

@ -36,10 +36,10 @@
#define MSG_CUTTER(M) _MSG_CUTTER(M)
#if SPEED_POWER_MAX > 255
#define cutter_power_t uint16_t
typedef uint16_t cutter_power_t;
#define CUTTER_MENU_TYPE uint16_5
#else
#define cutter_power_t uint8_t
typedef uint8_t cutter_power_t;
#define CUTTER_MENU_TYPE uint8
#endif
@ -51,9 +51,17 @@ public:
static inline bool enabled() { return !!power; }
static inline void set_power(const uint8_t pwr) { power = pwr; update_output(); }
static inline void set_power(const cutter_power_t pwr) { power = pwr; }
static inline void set_enabled(const bool enable) { set_power(enable ? 255 : 0); }
static inline void refresh() { apply_power(power); }
static inline void set_enabled(const bool enable) {
const bool was = enabled();
set_power(enable ? 255 : 0);
if (was != enable) power_delay();
}
static void apply_power(const cutter_power_t inpow);
//static bool active() { return READ(SPINDLE_LASER_ENA_PIN) == SPINDLE_LASER_ACTIVE_HIGH; }
@ -61,11 +69,15 @@ public:
#if ENABLED(SPINDLE_LASER_PWM)
static void set_ocr(const uint8_t ocr);
static inline void set_ocr_power(const uint8_t pwr) { power = pwr; set_ocr(pwr); }
static inline void set_ocr_power(const cutter_power_t pwr) { power = pwr; set_ocr(pwr); }
#endif
// Wait for spindle to spin up or spin down
static inline void power_delay(const bool on) { safe_delay(on ? SPINDLE_LASER_POWERUP_DELAY : SPINDLE_LASER_POWERDOWN_DELAY); }
static inline void power_delay() {
#if SPINDLE_LASER_POWERUP_DELAY || SPINDLE_LASER_POWERDOWN_DELAY
safe_delay(enabled() ? SPINDLE_LASER_POWERUP_DELAY : SPINDLE_LASER_POWERDOWN_DELAY);
#endif
}
#if ENABLED(SPINDLE_CHANGE_DIR)
static void set_direction(const bool reverse);

View file

@ -29,10 +29,20 @@
#include "../../module/stepper.h"
/**
* M3 - Cutter ON (Clockwise)
* M4 - Cutter ON (Counter-clockwise)
* Laser:
*
* S<power> - Set power. S0 turns it off.
* M3 - Laser ON/Power (Ramped power)
* M4 - Laser ON/Power (Continuous power)
*
* S<power> - Set power. S0 will turn the laser off.
* O<ocr> - Set power and OCR
*
* Spindle:
*
* M3 - Spindle ON (Clockwise)
* M4 - Spindle ON (Counter-clockwise)
*
* S<power> - Set power. S0 will turn the spindle off.
* O<ocr> - Set power and OCR
*
* If no PWM pin is defined then M3/M4 just turns it on.
@ -61,12 +71,14 @@
*/
void GcodeSuite::M3_M4(const bool is_M4) {
planner.synchronize(); // Wait for previous movement commands (G0/G0/G2/G3) to complete before changing power
#if ENABLED(SPINDLE_FEATURE)
planner.synchronize(); // Wait for movement to complete before changing power
#endif
cutter.set_direction(is_M4);
#if ENABLED(SPINDLE_LASER_PWM)
if (parser.seen('O'))
if (parser.seenval('O'))
cutter.set_ocr_power(parser.value_byte()); // The OCR is a value from 0 to 255 (uint8_t)
else
cutter.set_power(parser.intval('S', 255));
@ -79,7 +91,9 @@ void GcodeSuite::M3_M4(const bool is_M4) {
* M5 - Cutter OFF
*/
void GcodeSuite::M5() {
#if ENABLED(SPINDLE_FEATURE)
planner.synchronize();
#endif
cutter.set_enabled(false);
}

View file

@ -38,7 +38,7 @@
BACK_ITEM(MSG_MAIN);
if (cutter.enabled()) {
#if ENABLED(SPINDLE_LASER_PWM)
EDIT_ITEM(CUTTER_MENU_TYPE, MSG_CUTTER(POWER), &cutter.power, SPEED_POWER_MIN, SPEED_POWER_MAX, cutter.update_output);
EDIT_ITEM(CUTTER_MENU_TYPE, MSG_CUTTER(POWER), &cutter.power, SPEED_POWER_MIN, SPEED_POWER_MAX);
#endif
ACTION_ITEM(MSG_CUTTER(OFF), cutter.disable);
}

View file

@ -100,6 +100,10 @@
#include "../feature/power_loss_recovery.h"
#endif
#if HAS_CUTTER
#include "../feature/spindle_laser.h"
#endif
// Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
// fewer movements. The delay is measured in milliseconds, and must be less than 250ms
#define BLOCK_DELAY_FOR_1ST_MOVE 100
@ -1220,6 +1224,11 @@ void Planner::check_axes_activity() {
#endif
}
else {
#if HAS_CUTTER
cutter.refresh();
#endif
#if FAN_COUNT > 0
FANS_LOOP(i)
tail_fan_speed[i] = thermalManager.scaledFanSpeed(i);
@ -1235,6 +1244,9 @@ void Planner::check_axes_activity() {
#endif
}
//
// Disable inactive axes
//
#if ENABLED(DISABLE_X)
if (!axis_active.x) disable_X();
#endif
@ -1248,6 +1260,9 @@ void Planner::check_axes_activity() {
if (!axis_active.e) disable_e_steppers();
#endif
//
// Update Fan speeds
//
#if FAN_COUNT > 0
#if FAN_KICKSTART_TIME > 0
@ -1841,6 +1856,10 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
MIXER_POPULATE_BLOCK();
#endif
#if HAS_CUTTER
block->cutter_power = cutter.power;
#endif
#if FAN_COUNT > 0
FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
#endif
@ -2354,13 +2373,21 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
#endif
#ifdef USE_CACHED_SQRT
#define CACHED_SQRT(N, V) \
static float saved_V, N; \
if (V != saved_V) { N = SQRT(V); saved_V = V; }
#else
#define CACHED_SQRT(N, V) const float N = SQRT(V)
#endif
#if HAS_CLASSIC_JERK
/**
* Adapted from Průša MKS firmware
* https://github.com/prusa3d/Prusa-Firmware
*/
const float nominal_speed = SQRT(block->nominal_speed_sqr);
CACHED_SQRT(nominal_speed, block->nominal_speed_sqr);
// Exit speed limited by a jerk to full halt of a previous last segment
static float previous_safe_speed;
@ -2401,7 +2428,8 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
const float previous_nominal_speed = SQRT(previous_nominal_speed_sqr);
CACHED_SQRT(previous_nominal_speed, previous_nominal_speed_sqr);
vmax_junction = _MIN(nominal_speed, previous_nominal_speed);
// Now limit the jerk in all axes.

View file

@ -51,6 +51,10 @@
#include "../feature/mixing.h"
#endif
#if HAS_CUTTER
#include "../feature/spindle_laser.h"
#endif
// Feedrate for manual moves
#ifdef MANUAL_FEEDRATE
constexpr xyze_feedrate_t manual_feedrate_mm_m = MANUAL_FEEDRATE;
@ -145,6 +149,10 @@ typedef struct block_t {
final_rate, // The minimal rate at exit
acceleration_steps_per_s2; // acceleration steps/sec^2
#if HAS_CUTTER
cutter_power_t cutter_power; // Power level for Spindle, Laser, etc.
#endif
#if FAN_COUNT > 0
uint8_t fan_speed[FAN_COUNT];
#endif

View file

@ -1667,6 +1667,10 @@ uint32_t Stepper::stepper_block_phase_isr() {
return interval; // No more queued movements!
}
#if HAS_CUTTER
cutter.apply_power(current_block->cutter_power);
#endif
#if ENABLED(POWER_LOSS_RECOVERY)
recovery.info.sdpos = current_block->sdpos;
#endif