Merge pull request #7281 from thinkyhead/bf_seen_not_volatile

Fixes for recent merges
This commit is contained in:
Scott Lahteine 2017-07-13 00:54:10 -05:00 committed by GitHub
commit b9809ea86c
6 changed files with 458 additions and 542 deletions

View file

@ -58,67 +58,67 @@
* *
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
* the intersections of those lines (respectively). * the intersections of those lines (respectively).
* *
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
* the user can specify the X and Y position of interest with command parameters. This allows the user to * the user can specify the X and Y position of interest with command parameters. This allows the user to
* focus on a particular area of the Mesh where attention is needed. * focus on a particular area of the Mesh where attention is needed.
* *
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
* *
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
* as the base for any distance comparison. * as the base for any distance comparison.
* *
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
* command to see how well a Mesh as been adjusted to match a print surface. In order to do * command to see how well a Mesh as been adjusted to match a print surface. In order to do
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
* it is on. * it is on.
* *
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
* *
* F # Filament Used to specify the diameter of the filament being used. If not specified * F # Filament Used to specify the diameter of the filament being used. If not specified
* 1.75mm filament is assumed. If you are not getting acceptable results by using the * 1.75mm filament is assumed. If you are not getting acceptable results by using the
* 'correct' numbers, you can scale this number up or down a little bit to change the amount * 'correct' numbers, you can scale this number up or down a little bit to change the amount
* of filament that is being extruded during the printing of the various lines on the bed. * of filament that is being extruded during the printing of the various lines on the bed.
* *
* K Keep-On Keep the heaters turned on at the end of the command. * K Keep-On Keep the heaters turned on at the end of the command.
* *
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
* *
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
* is over kill, but using this parameter will let you get the very first 'circle' perfect * is over kill, but using this parameter will let you get the very first 'circle' perfect
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
* Mesh calibrated. If not specified, a filament length of .3mm is assumed. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
* *
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
* given, no prime action will take place. If the parameter specifies an amount, that much * given, no prime action will take place. If the parameter specifies an amount, that much
* will be purged before continuing. If no amount is specified the command will start * will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with * purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose * printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state. If you do not have * pliers while holding the LCD Click wheel in a depressed state. If you do not have
* an LCD, you must specify a value if you use P. * an LCD, you must specify a value if you use P.
* *
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
* *
* R # Repeat Prints the number of patterns given as a parameter, starting at the current location. * R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
* If a parameter isn't given, every point will be printed unless G26 is interrupted. * If a parameter isn't given, every point will be printed unless G26 is interrupted.
* This works the same way that the UBL G29 P4 R parameter works. * This works the same way that the UBL G29 P4 R parameter works.
* *
* NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
* aware that there's some risk associated with printing without the ability to abort in * aware that there's some risk associated with printing without the ability to abort in
* cases where mesh point Z value may be inaccurate. As above, if you do not include a * cases where mesh point Z value may be inaccurate. As above, if you do not include a
* parameter, every point will be printed. * parameter, every point will be printed.
* *
* S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed. * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
* *
* U # Random Randomize the order that the circles are drawn on the bed. The search for the closest * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
* undrawn cicle is still done. But the distance to the location for each circle has a * undrawn cicle is still done. But the distance to the location for each circle has a
* random number of the size specified added to it. Specifying S50 will give an interesting * random number of the size specified added to it. Specifying S50 will give an interesting
* deviation from the normal behaviour on a 10 x 10 Mesh. * deviation from the normal behaviour on a 10 x 10 Mesh.
* *
* X # X Coord. Specify the starting location of the drawing activity. * X # X Coord. Specify the starting location of the drawing activity.
@ -218,7 +218,7 @@
* nozzle in a problem area and doing a G29 P4 R command. * nozzle in a problem area and doing a G29 P4 R command.
*/ */
void unified_bed_leveling::G26() { void unified_bed_leveling::G26() {
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s)."); SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
float tmp, start_angle, end_angle; float tmp, start_angle, end_angle;
int i, xi, yi; int i, xi, yi;
mesh_index_pair location; mesh_index_pair location;
@ -264,7 +264,7 @@
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
/** /**
* Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
* the CPU load and make the arc drawing faster and more smooth * the CPU load and make the arc drawing faster and more smooth
*/ */
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1]; float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
@ -575,17 +575,17 @@
/** /**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate * to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location. * is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once * We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line. * there, we can use the two coordinates supplied to draw the line.
* *
* Note: Although we assume the first set of coordinates is the start of the line and the second * Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function * set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves * optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line * cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other * segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play. * cases where the optimization comes into play.
*/ */
void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
@ -850,7 +850,7 @@
stepper.synchronize(); // Without this synchronize, the purge is more consistent, stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able // but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth // to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'. // action to give the user a more responsive 'Stop'.
set_destination_to_current(); set_destination_to_current();
idle(); idle();
@ -860,7 +860,7 @@
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue; strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue;
// So... We cheat to get a message up. // So... We cheat to get a message up.
lcd_setstatusPGM(PSTR("Done Priming"), 99); lcd_setstatusPGM(PSTR("Done Priming"), 99);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif

View file

@ -3242,7 +3242,7 @@ inline void gcode_G0_G1(
if (autoretract_enabled && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z')) && parser.seen('E')) { if (autoretract_enabled && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z')) && parser.seen('E')) {
const float echange = destination[E_AXIS] - current_position[E_AXIS]; const float echange = destination[E_AXIS] - current_position[E_AXIS];
// Is this move an attempt to retract or recover? // Is this move an attempt to retract or recover?
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) { if ((echange < -(MIN_RETRACT) && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
sync_plan_position_e(); // AND from the planner sync_plan_position_e(); // AND from the planner
retract(!retracted[active_extruder]); retract(!retracted[active_extruder]);
@ -4617,11 +4617,11 @@ void home_all_axes() { gcode_G28(true); }
#if ENABLED(AUTO_BED_LEVELING_LINEAR) #if ENABLED(AUTO_BED_LEVELING_LINEAR)
// mean += measured_z; // I believe this is unused code? mean += measured_z;
// eqnBVector[abl_probe_index] = measured_z; // I believe this is unused code? eqnBVector[abl_probe_index] = measured_z;
// eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe; // I believe this is unused code? eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
// eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe; // I believe this is unused code? eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
// eqnAMatrix[abl_probe_index + 2 * abl2] = 1; // I believe this is unused code? eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
@ -4797,9 +4797,6 @@ void home_all_axes() { gcode_G28(true); }
incremental_LSF(&lsf_results, xProbe, yProbe, measured_z); incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
indexIntoAB[xCount][yCount] = abl_probe_index;
#endif
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
z_values[xCount][yCount] = measured_z + zoffset; z_values[xCount][yCount] = measured_z + zoffset;
@ -4924,11 +4921,10 @@ void home_all_axes() { gcode_G28(true); }
} }
// Create the matrix but don't correct the position yet // Create the matrix but don't correct the position yet
if (!dryrun) { if (!dryrun)
planner.bed_level_matrix = matrix_3x3::create_look_at( planner.bed_level_matrix = matrix_3x3::create_look_at(
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eleminate the '-' here and up above vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
); );
}
// Show the Topography map if enabled // Show the Topography map if enabled
if (do_topography_map) { if (do_topography_map) {

View file

@ -68,4 +68,4 @@ int finish_incremental_LSF(struct linear_fit_data *lsf) {
return 0; return 0;
} }
#endif // AUTO_BED_LEVELING_UBL || ENABLED(AUTO_BED_LEVELING_LINEAR) #endif // AUTO_BED_LEVELING_UBL || ENABLED(AUTO_BED_LEVELING_LINEAR)

View file

@ -34,7 +34,7 @@
#include "MarlinConfig.h" #include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_LINEAR) #if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_LINEAR)
#include "Marlin.h" #include "Marlin.h"
#include "macros.h" #include "macros.h"

View file

@ -976,8 +976,8 @@ static void lcd_implementation_status_screen() {
uint8_t x_map_pixels = ((MAP_MAX_PIXELS_X - 4) / (GRID_MAX_POINTS_X)) * (GRID_MAX_POINTS_X), uint8_t x_map_pixels = ((MAP_MAX_PIXELS_X - 4) / (GRID_MAX_POINTS_X)) * (GRID_MAX_POINTS_X),
y_map_pixels = ((MAP_MAX_PIXELS_Y - 4) / (GRID_MAX_POINTS_Y)) * (GRID_MAX_POINTS_Y), y_map_pixels = ((MAP_MAX_PIXELS_Y - 4) / (GRID_MAX_POINTS_Y)) * (GRID_MAX_POINTS_Y),
pixels_per_X_mesh_pnt = x_map_pixels / (GRID_MAX_POINTS_X), pixels_per_x_mesh_pnt = x_map_pixels / (GRID_MAX_POINTS_X),
pixels_per_Y_mesh_pnt = y_map_pixels / (GRID_MAX_POINTS_Y), pixels_per_y_mesh_pnt = y_map_pixels / (GRID_MAX_POINTS_Y),
x_offset = MAP_UPPER_LEFT_CORNER_X + 1 + (MAP_MAX_PIXELS_X - x_map_pixels - 2) / 2, x_offset = MAP_UPPER_LEFT_CORNER_X + 1 + (MAP_MAX_PIXELS_X - x_map_pixels - 2) / 2,
y_offset = MAP_UPPER_LEFT_CORNER_Y + 1 + (MAP_MAX_PIXELS_Y - y_map_pixels - 2) / 2; y_offset = MAP_UPPER_LEFT_CORNER_Y + 1 + (MAP_MAX_PIXELS_Y - y_map_pixels - 2) / 2;
@ -996,11 +996,11 @@ static void lcd_implementation_status_screen() {
// Display Mesh Point Locations // Display Mesh Point Locations
u8g.setColorIndex(1); u8g.setColorIndex(1);
const uint8_t sx = x_offset + pixels_per_X_mesh_pnt / 2; const uint8_t sx = x_offset + pixels_per_x_mesh_pnt / 2;
uint8_t y = y_offset + pixels_per_Y_mesh_pnt / 2; uint8_t y = y_offset + pixels_per_y_mesh_pnt / 2;
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++, y += pixels_per_Y_mesh_pnt) for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++, y += pixels_per_y_mesh_pnt)
if (PAGE_CONTAINS(y, y)) if (PAGE_CONTAINS(y, y))
for (uint8_t i = 0, x = sx; i < GRID_MAX_POINTS_X; i++, x += pixels_per_X_mesh_pnt) for (uint8_t i = 0, x = sx; i < GRID_MAX_POINTS_X; i++, x += pixels_per_x_mesh_pnt)
u8g.drawBox(sx, y, 1, 1); u8g.drawBox(sx, y, 1, 1);
// Fill in the Specified Mesh Point // Fill in the Specified Mesh Point
@ -1008,11 +1008,11 @@ static void lcd_implementation_status_screen() {
uint8_t inverted_y = GRID_MAX_POINTS_Y - y_plot - 1; // The origin is typically in the lower right corner. We need to uint8_t inverted_y = GRID_MAX_POINTS_Y - y_plot - 1; // The origin is typically in the lower right corner. We need to
// invert the Y to get it to plot in the right location. // invert the Y to get it to plot in the right location.
const uint8_t by = y_offset + inverted_y * pixels_per_Y_mesh_pnt; const uint8_t by = y_offset + inverted_y * pixels_per_y_mesh_pnt;
if (PAGE_CONTAINS(by, by + pixels_per_Y_mesh_pnt)) if (PAGE_CONTAINS(by, by + pixels_per_y_mesh_pnt))
u8g.drawBox( u8g.drawBox(
x_offset + x_plot * pixels_per_X_mesh_pnt, by, x_offset + x_plot * pixels_per_x_mesh_pnt, by,
pixels_per_X_mesh_pnt, pixels_per_Y_mesh_pnt pixels_per_x_mesh_pnt, pixels_per_y_mesh_pnt
); );
// Put Relevant Text on Display // Put Relevant Text on Display

View file

@ -42,10 +42,10 @@
#define N_USER_CHARS 8 #define N_USER_CHARS 8
#define TOP_LEFT 0x01 #define TOP_LEFT _BV(0)
#define TOP_RIGHT 0x02 #define TOP_RIGHT _BV(1)
#define LOWER_LEFT 0x04 #define LOWER_LEFT _BV(2)
#define LOWER_RIGHT 0x08 #define LOWER_RIGHT _BV(3)
#endif #endif
#endif #endif
@ -1057,345 +1057,351 @@ static void lcd_implementation_status_screen() {
#endif // LCD_HAS_SLOW_BUTTONS #endif // LCD_HAS_SLOW_BUTTONS
#endif // ULTIPANEL #if ENABLED(LCD_HAS_STATUS_INDICATORS)
#if ENABLED(LCD_HAS_STATUS_INDICATORS) static void lcd_implementation_update_indicators() {
// Set the LEDS - referred to as backlights by the LiquidTWI2 library
static uint8_t ledsprev = 0;
uint8_t leds = 0;
static void lcd_implementation_update_indicators() { if (thermalManager.degTargetBed() > 0) leds |= LED_A;
// Set the LEDS - referred to as backlights by the LiquidTWI2 library
static uint8_t ledsprev = 0;
uint8_t leds = 0;
if (thermalManager.degTargetBed() > 0) leds |= LED_A; if (thermalManager.degTargetHotend(0) > 0) leds |= LED_B;
if (thermalManager.degTargetHotend(0) > 0) leds |= LED_B; #if FAN_COUNT > 0
if (0
#if HAS_FAN0
|| fanSpeeds[0]
#endif
#if HAS_FAN1
|| fanSpeeds[1]
#endif
#if HAS_FAN2
|| fanSpeeds[2]
#endif
) leds |= LED_C;
#endif // FAN_COUNT > 0
#if FAN_COUNT > 0 #if HOTENDS > 1
if (0 if (thermalManager.degTargetHotend(1) > 0) leds |= LED_C;
#if HAS_FAN0 #endif
|| fanSpeeds[0]
#endif
#if HAS_FAN1
|| fanSpeeds[1]
#endif
#if HAS_FAN2
|| fanSpeeds[2]
#endif
) leds |= LED_C;
#endif // FAN_COUNT > 0
#if HOTENDS > 1 if (leds != ledsprev) {
if (thermalManager.degTargetHotend(1) > 0) leds |= LED_C; lcd.setBacklight(leds);
#endif ledsprev = leds;
}
if (leds != ledsprev) {
lcd.setBacklight(leds);
ledsprev = leds;
} }
}
#endif // LCD_HAS_STATUS_INDICATORS #endif // LCD_HAS_STATUS_INDICATORS
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
/** /**
Possible map screens: Possible map screens:
16x2 |X000.00 Y000.00| 16x2 |X000.00 Y000.00|
|(00,00) Z00.000| |(00,00) Z00.000|
20x2 | X:000.00 Y:000.00 | 20x2 | X:000.00 Y:000.00 |
| (00,00) Z:00.000 | | (00,00) Z:00.000 |
16x4 |+-------+(00,00)| 16x4 |+-------+(00,00)|
|| |X000.00| || |X000.00|
|| |Y000.00| || |Y000.00|
|+-------+Z00.000| |+-------+Z00.000|
20x4 | +-------+ (00,00) | 20x4 | +-------+ (00,00) |
| | | X:000.00| | | | X:000.00|
| | | Y:000.00| | | | Y:000.00|
| +-------+ Z:00.000| | +-------+ Z:00.000|
*/ */
struct custom_char { typedef struct {
uint8_t custom_char_bits[ULTRA_Y_PIXELS_PER_CHAR]; uint8_t custom_char_bits[ULTRA_Y_PIXELS_PER_CHAR];
}; } custom_char;
struct coordinate pixel_location(uint8_t x, uint8_t y); typedef struct {
uint8_t column, row;
uint8_t y_pixel_offset, x_pixel_offset;
uint8_t x_pixel_mask;
} coordinate;
struct coordinate { void add_edges_to_custom_char(custom_char * const custom, coordinate * const ul, coordinate * const lr, coordinate * const brc, const uint8_t cell_location);
uint8_t column; FORCE_INLINE static void clear_custom_char(custom_char * const cc) { ZERO(cc->custom_char_bits); }
uint8_t row;
uint8_t y_pixel_offset;
uint8_t x_pixel_offset;
uint8_t x_pixel_mask;
};
void add_edges_to_custom_char(struct custom_char *custom, struct coordinate *ul, struct coordinate *lr, struct coordinate *brc, uint8_t cell_location); /*
extern custom_char user_defined_chars[N_USER_CHARS]; // This debug routine should be deleted by anybody that sees it. It doesn't belong here
inline static void CLEAR_CUSTOM_CHAR(struct custom_char *cc) { uint8_t j; for (j = 0; j < ULTRA_Y_PIXELS_PER_CHAR; j++) cc->custom_char_bits[j] = 0; } // But I'm leaving it for now until we know the 20x4 Radar Map is working right.
// We may need it again if any funny lines show up on the mesh points.
/* void dump_custom_char(char *title, custom_char *c) {
void dump_custom_char(char *title, struct custom_char *c) { // This debug routine should be deleted by anybody that sees it. It doesn't belong here SERIAL_PROTOCOLLN(title);
int i, j; // But I'm leaving it for now until we know the 20x4 Radar Map is working right. for (uint8_t j = 0; j < 8; j++) {
SERIAL_PROTOCOLLN(title); // We will need it again if any funny lines show up on the mesh points. for (uint8_t i = 7; i >= 0; i--)
for(j=0; j<8; j++) { SERIAL_PROTOCOLCHAR(TEST(c->custom_char_bits[j], i) ? '1' : '0');
for(i=7; i>=0; i--) { SERIAL_EOL();
if (c->custom_char_bits[j] & (0x01 << i))
SERIAL_PROTOCOL("1");
else
SERIAL_PROTOCOL("0");
} }
SERIAL_PROTOCOL("\n"); SERIAL_EOL();
} }
SERIAL_PROTOCOL("\n"); //*/
}
*/
void lcd_implementation_ubl_plot(uint8_t x, uint8_t inverted_y) { coordinate pixel_location(int16_t x, int16_t y) {
coordinate ret_val;
int16_t xp, yp, r, c;
#if LCD_WIDTH >= 20 x++; y++; // +1 because lines on the left and top
#define _LCD_W_POS 12
#define _PLOT_X 1
#define _MAP_X 3
#define _LABEL(C,X,Y) lcd.setCursor(X, Y); lcd.print(C)
#define _XLABEL(X,Y) _LABEL("X:",X,Y)
#define _YLABEL(X,Y) _LABEL("Y:",X,Y)
#define _ZLABEL(X,Y) _LABEL("Z:",X,Y)
#else
#define _LCD_W_POS 8
#define _PLOT_X 0
#define _MAP_X 1
#define _LABEL(X,Y,C) lcd.setCursor(X, Y); lcd.write(C)
#define _XLABEL(X,Y) _LABEL('X',X,Y)
#define _YLABEL(X,Y) _LABEL('Y',X,Y)
#define _ZLABEL(X,Y) _LABEL('Z',X,Y)
#endif
#if LCD_HEIGHT <= 3 // 16x2 or 20x2 display c = x / (ULTRA_X_PIXELS_PER_CHAR);
r = y / (ULTRA_Y_PIXELS_PER_CHAR);
/** ret_val.column = c;
* Show X and Y positions ret_val.row = r;
*/
_XLABEL(_PLOT_X, 0);
lcd.print(ftostr32(LOGICAL_X_POSITION(pgm_read_float(&ubl._mesh_index_to_xpos[x]))));
_YLABEL(_LCD_W_POS, 0); xp = x - c * (ULTRA_X_PIXELS_PER_CHAR); // get the pixel offsets into the character cell
lcd.print(ftostr32(LOGICAL_Y_POSITION(pgm_read_float(&ubl._mesh_index_to_ypos[inverted_y])))); xp = ULTRA_X_PIXELS_PER_CHAR - 1 - xp; // column within relevant character cell (0 on the right)
yp = y - r * (ULTRA_Y_PIXELS_PER_CHAR);
lcd.setCursor(_PLOT_X, 0); ret_val.x_pixel_mask = _BV(xp);
ret_val.x_pixel_offset = xp;
ret_val.y_pixel_offset = yp;
return ret_val;
}
#else // 16x4 or 20x4 display coordinate pixel_location(uint8_t x, uint8_t y) { return pixel_location((int16_t)x, (int16_t)y); }
struct coordinate upper_left, lower_right, bottom_right_corner; void lcd_implementation_ubl_plot(uint8_t x, uint8_t inverted_y) {
struct custom_char new_char;
uint8_t i, j, k, l, m, n, n_rows, n_cols, y;
uint8_t bottom_line, right_edge;
uint8_t x_map_pixels, y_map_pixels;
uint8_t pixels_per_X_mesh_pnt, pixels_per_Y_mesh_pnt;
uint8_t suppress_x_offset=0, suppress_y_offset=0;
// ******************************************************** #if LCD_WIDTH >= 20
// ************ Clear and setup everything ********* #define _LCD_W_POS 12
// ******************************************************** #define _PLOT_X 1
#define _MAP_X 3
#define _LABEL(C,X,Y) lcd.setCursor(X, Y); lcd.print(C)
#define _XLABEL(X,Y) _LABEL("X:",X,Y)
#define _YLABEL(X,Y) _LABEL("Y:",X,Y)
#define _ZLABEL(X,Y) _LABEL("Z:",X,Y)
#else
#define _LCD_W_POS 8
#define _PLOT_X 0
#define _MAP_X 1
#define _LABEL(X,Y,C) lcd.setCursor(X, Y); lcd.write(C)
#define _XLABEL(X,Y) _LABEL('X',X,Y)
#define _YLABEL(X,Y) _LABEL('Y',X,Y)
#define _ZLABEL(X,Y) _LABEL('Z',X,Y)
#endif
y = GRID_MAX_POINTS_Y - inverted_y - 1; #if LCD_HEIGHT <= 3 // 16x2 or 20x2 display
upper_left.column = 0; /**
upper_left.row = 0; * Show X and Y positions
lower_right.column = 0; */
lower_right.row = 0; _XLABEL(_PLOT_X, 0);
lcd.print(ftostr32(LOGICAL_X_POSITION(pgm_read_float(&ubl._mesh_index_to_xpos[x]))));
lcd_implementation_clear(); _YLABEL(_LCD_W_POS, 0);
lcd.print(ftostr32(LOGICAL_Y_POSITION(pgm_read_float(&ubl._mesh_index_to_ypos[inverted_y]))));
x_map_pixels = ULTRA_X_PIXELS_PER_CHAR * ULTRA_COLUMNS_FOR_MESH_MAP - 2; // minus 2 because we are drawing a box around the map lcd.setCursor(_PLOT_X, 0);
y_map_pixels = ULTRA_Y_PIXELS_PER_CHAR * ULTRA_ROWS_FOR_MESH_MAP - 2;
pixels_per_X_mesh_pnt = x_map_pixels / GRID_MAX_POINTS_X; #else // 16x4 or 20x4 display
pixels_per_Y_mesh_pnt = y_map_pixels / GRID_MAX_POINTS_Y;
if (pixels_per_X_mesh_pnt >= ULTRA_X_PIXELS_PER_CHAR) { // There are only 2 custom characters available, so the X coordinate upper_left, lower_right, bottom_right_corner;
pixels_per_X_mesh_pnt = ULTRA_X_PIXELS_PER_CHAR; // size of the mesh point needs to fit within them independent custom_char new_char;
suppress_x_offset = 1; // of where the starting pixel is located. uint8_t i, j, k, l, m, n, n_rows, n_cols, y,
} bottom_line, right_edge,
x_map_pixels, y_map_pixels,
pixels_per_x_mesh_pnt, pixels_per_y_mesh_pnt,
suppress_x_offset = 0, suppress_y_offset = 0;
if (pixels_per_Y_mesh_pnt >= ULTRA_Y_PIXELS_PER_CHAR) { // There are only 2 custom characters available, so the Y y = GRID_MAX_POINTS_Y - inverted_y - 1;
pixels_per_Y_mesh_pnt = ULTRA_Y_PIXELS_PER_CHAR; // size of the mesh point needs to fit within them independent
suppress_y_offset = 1; // of where the starting pixel is located.
}
x_map_pixels = pixels_per_X_mesh_pnt * GRID_MAX_POINTS_X; // now we have the right number of pixels to make both upper_left.column = 0;
y_map_pixels = pixels_per_Y_mesh_pnt * GRID_MAX_POINTS_Y; // directions fit nicely upper_left.row = 0;
lower_right.column = 0;
lower_right.row = 0;
right_edge = pixels_per_X_mesh_pnt * GRID_MAX_POINTS_X + 1; // find location of right edge within the character cell lcd_implementation_clear();
bottom_line= pixels_per_Y_mesh_pnt * GRID_MAX_POINTS_Y + 1; // find location of bottome line within the character cell
n_rows = (bottom_line / ULTRA_Y_PIXELS_PER_CHAR) + 1; x_map_pixels = (ULTRA_X_PIXELS_PER_CHAR) * (ULTRA_COLUMNS_FOR_MESH_MAP) - 2; // minus 2 because we are drawing a box around the map
n_cols = (right_edge / ULTRA_X_PIXELS_PER_CHAR) + 1; y_map_pixels = (ULTRA_Y_PIXELS_PER_CHAR) * (ULTRA_ROWS_FOR_MESH_MAP) - 2;
for (i = 0; i < n_cols; i++) { pixels_per_x_mesh_pnt = x_map_pixels / (GRID_MAX_POINTS_X);
lcd.setCursor(i, 0); pixels_per_y_mesh_pnt = y_map_pixels / (GRID_MAX_POINTS_Y);
lcd.print((char) 0x00); // top line of the box
lcd.setCursor(i, n_rows-1); if (pixels_per_x_mesh_pnt >= ULTRA_X_PIXELS_PER_CHAR) { // There are only 2 custom characters available, so the X
lcd.write(0x01); // bottom line of the box pixels_per_x_mesh_pnt = ULTRA_X_PIXELS_PER_CHAR; // size of the mesh point needs to fit within them independent
} suppress_x_offset = 1; // of where the starting pixel is located.
for (j = 0; j < n_rows; j++) {
lcd.setCursor(0, j);
lcd.write(0x02); // Left edge of the box
lcd.setCursor(n_cols-1, j);
lcd.write(0x03); // right edge of the box
}
//
/* if the entire 4th row is not in use, do not put vertical bars all the way down to the bottom of the display */
//
k = pixels_per_Y_mesh_pnt * GRID_MAX_POINTS_Y + 2;
l = ULTRA_Y_PIXELS_PER_CHAR * n_rows;
if ((k != l) && ((l-k)>=ULTRA_Y_PIXELS_PER_CHAR/2)) {
lcd.setCursor(0, n_rows-1); // left edge of the box
lcd.write(' ');
lcd.setCursor(n_cols-1, n_rows-1); // right edge of the box
lcd.write(' ');
}
CLEAR_CUSTOM_CHAR(&new_char);
new_char.custom_char_bits[0] = (unsigned char) 0B11111; // char #0 is used for the top line of the box
lcd.createChar(0, (uint8_t *) &new_char);
CLEAR_CUSTOM_CHAR(&new_char);
k = GRID_MAX_POINTS_Y * pixels_per_Y_mesh_pnt + 1; // row of pixels for the bottom box line
l = k % ULTRA_Y_PIXELS_PER_CHAR; // row within relivant character cell
new_char.custom_char_bits[l] = (unsigned char) 0B11111; // char #1 is used for the bottom line of the box
lcd.createChar(1, (uint8_t *) &new_char);
CLEAR_CUSTOM_CHAR(&new_char);
for (j = 0; j < ULTRA_Y_PIXELS_PER_CHAR; j++)
new_char.custom_char_bits[j] = (unsigned char) 0B10000; // char #2 is used for the left edge of the box
lcd.createChar(2, (uint8_t *) &new_char);
CLEAR_CUSTOM_CHAR(&new_char);
m = GRID_MAX_POINTS_X * pixels_per_X_mesh_pnt + 1; // column of pixels for the right box line
n = m % ULTRA_X_PIXELS_PER_CHAR; // column within relivant character cell
i = ULTRA_X_PIXELS_PER_CHAR - 1 - n; // column within relivant character cell (0 on the right)
for (j = 0; j < ULTRA_Y_PIXELS_PER_CHAR; j++)
new_char.custom_char_bits[j] = (unsigned char) 0B00001 << i; // char #3 is used for the right edge of the box
lcd.createChar(3, (uint8_t *) &new_char);
i = x*pixels_per_X_mesh_pnt - suppress_x_offset;
j = y*pixels_per_Y_mesh_pnt - suppress_y_offset;
upper_left = pixel_location(i, j);
k = (x+1)*pixels_per_X_mesh_pnt-1-suppress_x_offset;
l = (y+1)*pixels_per_Y_mesh_pnt-1-suppress_y_offset;
lower_right = pixel_location(k, l);
bottom_right_corner = pixel_location(x_map_pixels, y_map_pixels);
/*
* First, handle the simple case where everything is within a single character cell.
* If part of the Mesh Plot is outside of this character cell, we will follow up
* and deal with that next.
*/
//dump_custom_char("at entry:", &new_char);
CLEAR_CUSTOM_CHAR(&new_char);
for(j=upper_left.y_pixel_offset; j<upper_left.y_pixel_offset+pixels_per_Y_mesh_pnt; j++) {
if (j >= ULTRA_Y_PIXELS_PER_CHAR)
break;
i=upper_left.x_pixel_mask;
for(k=0; k<pixels_per_X_mesh_pnt; k++) {
new_char.custom_char_bits[j] |= i;
i = i >> 1;
} }
}
//dump_custom_char("after loops:", &new_char);
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, TOP_LEFT); if (pixels_per_y_mesh_pnt >= ULTRA_Y_PIXELS_PER_CHAR) { // There are only 2 custom characters available, so the Y
//dump_custom_char("after add edges", &new_char); pixels_per_y_mesh_pnt = ULTRA_Y_PIXELS_PER_CHAR; // size of the mesh point needs to fit within them independent
lcd.createChar(4, (uint8_t *) &new_char); suppress_y_offset = 1; // of where the starting pixel is located.
}
lcd.setCursor(upper_left.column, upper_left.row); x_map_pixels = pixels_per_x_mesh_pnt * (GRID_MAX_POINTS_X); // now we have the right number of pixels to make both
lcd.write(0x04); y_map_pixels = pixels_per_y_mesh_pnt * (GRID_MAX_POINTS_Y); // directions fit nicely
//dump_custom_char("after lcd update:", &new_char);
/* right_edge = pixels_per_x_mesh_pnt * (GRID_MAX_POINTS_X) + 1; // find location of right edge within the character cell
* Next, check for two side by side character cells being used to display the Mesh Point bottom_line= pixels_per_y_mesh_pnt * (GRID_MAX_POINTS_Y) + 1; // find location of bottome line within the character cell
* If found... do the right hand character cell next.
*/ n_rows = bottom_line / (ULTRA_Y_PIXELS_PER_CHAR) + 1;
if (upper_left.column+1 == lower_right.column) { n_cols = right_edge / (ULTRA_X_PIXELS_PER_CHAR) + 1;
l = upper_left.x_pixel_offset;
CLEAR_CUSTOM_CHAR(&new_char); for (i = 0; i < n_cols; i++) {
for (j = upper_left.y_pixel_offset; j < upper_left.y_pixel_offset + pixels_per_Y_mesh_pnt; j++) { lcd.setCursor(i, 0);
if (j >= ULTRA_Y_PIXELS_PER_CHAR) lcd.print((char)0x00); // top line of the box
break;
i=0x01 << (ULTRA_X_PIXELS_PER_CHAR-1); // fill in the left side of the right character cell lcd.setCursor(i, n_rows - 1);
for(k=0; k<pixels_per_X_mesh_pnt-1-l; k++) { lcd.write(0x01); // bottom line of the box
}
for (j = 0; j < n_rows; j++) {
lcd.setCursor(0, j);
lcd.write(0x02); // Left edge of the box
lcd.setCursor(n_cols - 1, j);
lcd.write(0x03); // right edge of the box
}
/**
* If the entire 4th row is not in use, do not put vertical bars all the way down to the bottom of the display
*/
k = pixels_per_y_mesh_pnt * (GRID_MAX_POINTS_Y) + 2;
l = (ULTRA_Y_PIXELS_PER_CHAR) * n_rows;
if (l > k && l - k >= (ULTRA_Y_PIXELS_PER_CHAR) / 2) {
lcd.setCursor(0, n_rows - 1); // left edge of the box
lcd.write(' ');
lcd.setCursor(n_cols - 1, n_rows - 1); // right edge of the box
lcd.write(' ');
}
clear_custom_char(&new_char);
new_char.custom_char_bits[0] = 0B11111U; // char #0 is used for the top line of the box
lcd.createChar(0, (uint8_t*)&new_char);
clear_custom_char(&new_char);
k = (GRID_MAX_POINTS_Y) * pixels_per_y_mesh_pnt + 1; // row of pixels for the bottom box line
l = k % (ULTRA_Y_PIXELS_PER_CHAR); // row within relevant character cell
new_char.custom_char_bits[l] = 0B11111U; // char #1 is used for the bottom line of the box
lcd.createChar(1, (uint8_t*)&new_char);
clear_custom_char(&new_char);
for (j = 0; j < ULTRA_Y_PIXELS_PER_CHAR; j++)
new_char.custom_char_bits[j] = 0B10000U; // char #2 is used for the left edge of the box
lcd.createChar(2, (uint8_t*)&new_char);
clear_custom_char(&new_char);
m = (GRID_MAX_POINTS_X) * pixels_per_x_mesh_pnt + 1; // Column of pixels for the right box line
n = m % (ULTRA_X_PIXELS_PER_CHAR); // Column within relevant character cell
i = ULTRA_X_PIXELS_PER_CHAR - 1 - n; // Column within relevant character cell (0 on the right)
for (j = 0; j < ULTRA_Y_PIXELS_PER_CHAR; j++)
new_char.custom_char_bits[j] = (uint8_t)_BV(i); // Char #3 is used for the right edge of the box
lcd.createChar(3, (uint8_t*)&new_char);
i = x * pixels_per_x_mesh_pnt - suppress_x_offset;
j = y * pixels_per_y_mesh_pnt - suppress_y_offset;
upper_left = pixel_location(i, j);
k = (x + 1) * pixels_per_x_mesh_pnt - 1 - suppress_x_offset;
l = (y + 1) * pixels_per_y_mesh_pnt - 1 - suppress_y_offset;
lower_right = pixel_location(k, l);
bottom_right_corner = pixel_location(x_map_pixels, y_map_pixels);
/**
* First, handle the simple case where everything is within a single character cell.
* If part of the Mesh Plot is outside of this character cell, we will follow up
* and deal with that next.
*/
//dump_custom_char("at entry:", &new_char);
clear_custom_char(&new_char);
const uint8_t ypix = min(upper_left.y_pixel_offset + pixels_per_y_mesh_pnt, ULTRA_Y_PIXELS_PER_CHAR);
for (j = upper_left.y_pixel_offset; j < ypix; j++) {
i = upper_left.x_pixel_mask;
for (k = 0; k < pixels_per_x_mesh_pnt; k++) {
new_char.custom_char_bits[j] |= i; new_char.custom_char_bits[j] |= i;
i = i >> 1; i >>= 1;
} }
} }
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, TOP_RIGHT); //dump_custom_char("after loops:", &new_char);
lcd.createChar(5, (uint8_t *) &new_char); add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, TOP_LEFT);
//dump_custom_char("after add edges", &new_char);
lcd.createChar(4, (uint8_t*)&new_char);
lcd.setCursor(lower_right.column, upper_left.row); lcd.setCursor(upper_left.column, upper_left.row);
lcd.write(0x05); lcd.write(0x04);
} //dump_custom_char("after lcd update:", &new_char);
/* /**
* Next, check for two character cells stacked on top of each other being used to display the Mesh Point * Next, check for two side by side character cells being used to display the Mesh Point
*/ * If found... do the right hand character cell next.
if (upper_left.row+1 == lower_right.row) { */
l = ULTRA_Y_PIXELS_PER_CHAR - upper_left.y_pixel_offset; // number of pixel rows in top character cell if (upper_left.column == lower_right.column - 1) {
k = pixels_per_Y_mesh_pnt - l; // number of pixel rows in bottom character cell
CLEAR_CUSTOM_CHAR(&new_char);
for(j=0; j<k; j++) {
i=upper_left.x_pixel_mask;
for(m=0; m<pixels_per_X_mesh_pnt; m++) { // fill in the top side of the bottom character cell
new_char.custom_char_bits[j] |= i;
i = i >> 1;
if (!i)
break;
}
}
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, LOWER_LEFT);
lcd.createChar(6, (uint8_t *) &new_char);
lcd.setCursor(upper_left.column, lower_right.row);
lcd.write(0x06);
}
/*
* Next, check for four character cells being used to display the Mesh Point. If that is
* what is here, we work to fill in the character cell that is down one and to the right one
* from the upper_left character cell.
*/
if (upper_left.column+1 == lower_right.column && upper_left.row+1 == lower_right.row) {
l = ULTRA_Y_PIXELS_PER_CHAR - upper_left.y_pixel_offset; // number of pixel rows in top character cell
k = pixels_per_Y_mesh_pnt - l; // number of pixel rows in bottom character cell
CLEAR_CUSTOM_CHAR(&new_char);
for (j = 0; j<k; j++) {
l = upper_left.x_pixel_offset; l = upper_left.x_pixel_offset;
i = 0x01 << (ULTRA_X_PIXELS_PER_CHAR - 1); // fill in the left side of the right character cell clear_custom_char(&new_char);
for (m = 0; m<pixels_per_X_mesh_pnt - 1 - l; m++) { // fill in the top side of the bottom character cell for (j = upper_left.y_pixel_offset; j < ypix; j++) {
new_char.custom_char_bits[j] |= i; i = _BV(ULTRA_X_PIXELS_PER_CHAR - 1); // Fill in the left side of the right character cell
i = i >> 1; for (k = 0; k < pixels_per_x_mesh_pnt - 1 - l; k++) {
new_char.custom_char_bits[j] |= i;
i >>= 1;
}
} }
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, TOP_RIGHT);
lcd.createChar(5, (uint8_t *) &new_char);
lcd.setCursor(lower_right.column, upper_left.row);
lcd.write(0x05);
} }
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, LOWER_RIGHT);
lcd.createChar(7, (uint8_t *) &new_char);
lcd.setCursor(lower_right.column, lower_right.row); /**
lcd.write(0x07); * Next, check for two character cells stacked on top of each other being used to display the Mesh Point
} */
if (upper_left.row == lower_right.row - 1) {
l = ULTRA_Y_PIXELS_PER_CHAR - upper_left.y_pixel_offset; // Number of pixel rows in top character cell
k = pixels_per_y_mesh_pnt - l; // Number of pixel rows in bottom character cell
clear_custom_char(&new_char);
for (j = 0; j < k; j++) {
i = upper_left.x_pixel_mask;
for (m = 0; m < pixels_per_x_mesh_pnt; m++) { // Fill in the top side of the bottom character cell
new_char.custom_char_bits[j] |= i;
if (!(i >>= 1)) break;
}
}
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, LOWER_LEFT);
lcd.createChar(6, (uint8_t *) &new_char);
#endif lcd.setCursor(upper_left.column, lower_right.row);
lcd.write(0x06);
}
/**
* Next, check for four character cells being used to display the Mesh Point. If that is
* what is here, we work to fill in the character cell that is down one and to the right one
* from the upper_left character cell.
*/
if (upper_left.column == lower_right.column - 1 && upper_left.row == lower_right.row - 1) {
l = ULTRA_Y_PIXELS_PER_CHAR - upper_left.y_pixel_offset; // Number of pixel rows in top character cell
k = pixels_per_y_mesh_pnt - l; // Number of pixel rows in bottom character cell
clear_custom_char(&new_char);
for (j = 0; j < k; j++) {
l = upper_left.x_pixel_offset;
i = _BV(ULTRA_X_PIXELS_PER_CHAR - 1); // Fill in the left side of the right character cell
for (m = 0; m < pixels_per_x_mesh_pnt - 1 - l; m++) { // Fill in the top side of the bottom character cell
new_char.custom_char_bits[j] |= i;
i >>= 1;
}
}
add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, LOWER_RIGHT);
lcd.createChar(7, (uint8_t*)&new_char);
lcd.setCursor(lower_right.column, lower_right.row);
lcd.write(0x07);
}
#endif
/** /**
* Print plot position * Print plot position
@ -1407,209 +1413,123 @@ static void lcd_implementation_status_screen() {
lcd.print(inverted_y); lcd.print(inverted_y);
lcd.write(')'); lcd.write(')');
#if LCD_HEIGHT <= 3 // 16x2 or 20x2 display #if LCD_HEIGHT <= 3 // 16x2 or 20x2 display
/**
* Print Z values
*/
_ZLABEL(_LCD_W_POS, 1);
if (!isnan(ubl.z_values[x][inverted_y]))
lcd.print(ftostr43sign(ubl.z_values[x][inverted_y]));
else
lcd_printPGM(PSTR(" -----"));
#else // 16x4 or 20x4 display
/**
* Show all values at right of screen
*/
_XLABEL(_LCD_W_POS, 1);
lcd.print(ftostr32(LOGICAL_X_POSITION(pgm_read_float(&ubl._mesh_index_to_xpos[x]))));
_YLABEL(_LCD_W_POS, 2);
lcd.print(ftostr32(LOGICAL_Y_POSITION(pgm_read_float(&ubl._mesh_index_to_ypos[inverted_y]))));
/**
* Show the location value
*/
_ZLABEL(_LCD_W_POS, 3);
if (!isnan(ubl.z_values[x][inverted_y]))
lcd.print(ftostr43sign(ubl.z_values[x][inverted_y]));
else
lcd_printPGM(PSTR(" -----"));
#endif // LCD_HEIGHT > 3
}
void add_edges_to_custom_char(custom_char * const custom, coordinate * const ul, coordinate * const lr, coordinate * const brc, uint8_t cell_location) {
uint8_t i, k;
int16_t n_rows = lr->row - ul->row + 1,
n_cols = lr->column - ul->column + 1;
/** /**
* Print Z values * Check if Top line of box needs to be filled in
*/ */
_ZLABEL(_LCD_W_POS, 1); if (ul->row == 0 && ((cell_location & TOP_LEFT) || (cell_location & TOP_RIGHT))) { // Only fill in the top line for the top character cells
if (!isnan(ubl.z_values[x][inverted_y]))
lcd.print(ftostr43sign(ubl.z_values[x][inverted_y]));
else
lcd_printPGM(PSTR(" -----"));
#else // 16x4 or 20x4 display if (n_cols == 1) {
if (ul->column != brc->column)
/** custom->custom_char_bits[0] = 0xFF; // Single column in middle
* Show all values at right of screen else
*/ for (i = brc->x_pixel_offset; i < ULTRA_X_PIXELS_PER_CHAR; i++) // Single column on right side
_XLABEL(_LCD_W_POS, 1); SBI(custom->custom_char_bits[0], i);
lcd.print(ftostr32(LOGICAL_X_POSITION(pgm_read_float(&ubl._mesh_index_to_xpos[x]))));
_YLABEL(_LCD_W_POS, 2);
lcd.print(ftostr32(LOGICAL_Y_POSITION(pgm_read_float(&ubl._mesh_index_to_ypos[inverted_y]))));
/**
* Show the location value
*/
_ZLABEL(_LCD_W_POS, 3);
if (!isnan(ubl.z_values[x][inverted_y]))
lcd.print(ftostr43sign(ubl.z_values[x][inverted_y]));
else
lcd_printPGM(PSTR(" -----"));
#endif // LCD_HEIGHT > 3
return;
}
void add_edges_to_custom_char(struct custom_char *custom, struct coordinate *ul, struct coordinate *lr, struct coordinate *brc, unsigned char cell_location) {
unsigned char i, k;
int n_rows, n_cols;
n_rows = lr->row - ul->row + 1;
n_cols = lr->column - ul->column + 1;
/*
* Check if Top line of box needs to be filled in
*/
if ((ul->row == 0) && ((cell_location&TOP_LEFT) || (cell_location&TOP_RIGHT))) { // Only fill in the top line for the top character cells
if (n_cols == 1) {
if (ul->column != brc->column)
custom->custom_char_bits[0] = 0xff; // single column in middle
else {
for (i = brc->x_pixel_offset; i<ULTRA_X_PIXELS_PER_CHAR; i++) // single column on right side
custom->custom_char_bits[0] |= 0x01 << i;
}
}
else {
if (cell_location & TOP_LEFT)
custom->custom_char_bits[0] = 0xff; // multiple column in the middle
else
if (lr->column != brc->column)
custom->custom_char_bits[0] = 0xff; // multiple column with right cell in middle
else {
for (i = brc->x_pixel_offset; i<ULTRA_X_PIXELS_PER_CHAR; i++)
custom->custom_char_bits[0] |= 0x01 << i;
} }
else if ((cell_location & TOP_LEFT) || lr->column != brc->column) // Multiple column in the middle or with right cell in middle
custom->custom_char_bits[0] = 0xFF;
else
for (i = brc->x_pixel_offset; i < ULTRA_X_PIXELS_PER_CHAR; i++)
SBI(custom->custom_char_bits[0], i);
}
/**
* Check if left line of box needs to be filled in
*/
if ((cell_location & TOP_LEFT) || (cell_location & LOWER_LEFT)) {
if (ul->column == 0) { // Left column of characters on LCD Display
k = ul->row == brc->row ? brc->y_pixel_offset : ULTRA_Y_PIXELS_PER_CHAR; // If it isn't the last row... do the full character cell
for (i = 0; i < k; i++)
SBI(custom->custom_char_bits[i], ULTRA_X_PIXELS_PER_CHAR - 1);
}
}
/**
* Check if bottom line of box needs to be filled in
*/
// Single row of mesh plot cells
if (n_rows == 1 /* && (cell_location == TOP_LEFT || cell_location == TOP_RIGHT) */ && ul->row == brc->row) {
if (n_cols == 1) // Single row, single column case
k = ul->column == brc->column ? brc->x_pixel_mask : 0x01;
else if (cell_location & TOP_RIGHT) // Single row, multiple column case
k = lr->column == brc->column ? brc->x_pixel_mask : 0x01;
else // Single row, left of multiple columns
k = 0x01;
while (k < _BV(ULTRA_X_PIXELS_PER_CHAR)) {
custom->custom_char_bits[brc->y_pixel_offset] |= k;
k <<= 1;
}
}
// Double row of characters on LCD Display
// And this is a bottom custom character
if (n_rows == 2 && (cell_location == LOWER_LEFT || cell_location == LOWER_RIGHT) && lr->row == brc->row) {
if (n_cols == 1) // Double row, single column case
k = ul->column == brc->column ? brc->x_pixel_mask : 0x01;
else if (cell_location & LOWER_RIGHT) // Double row, multiple column case
k = lr->column == brc->column ? brc->x_pixel_mask : 0x01;
else // Double row, left of multiple columns
k = 0x01;
while (k < _BV(ULTRA_X_PIXELS_PER_CHAR)) {
custom->custom_char_bits[brc->y_pixel_offset] |= k;
k <<= 1;
}
}
/**
* Check if right line of box needs to be filled in
*/
// Nothing to do if the lower right part of the mesh pnt isn't in the same column as the box line
if (lr->column == brc->column) {
// This mesh point is in the same character cell as the right box line
if (ul->column == brc->column || (cell_location & TOP_RIGHT) || (cell_location & LOWER_RIGHT)) {
// If not the last row... do the full character cell
k = ul->row == brc->row ? brc->y_pixel_offset : ULTRA_Y_PIXELS_PER_CHAR;
for (i = 0; i < k; i++) custom->custom_char_bits[i] |= brc->x_pixel_mask;
}
}
} }
}
/* #endif // AUTO_BED_LEVELING_UBL
* Check if left line of box needs to be filled in
*/
if ((cell_location & TOP_LEFT) || (cell_location & LOWER_LEFT)) {
if (ul->column == 0) { // Left column of characters on LCD Display
if (ul->row != brc->row)
k = ULTRA_Y_PIXELS_PER_CHAR; // if it isn't the last row... do the full character cell
else
k = brc->y_pixel_offset;
for (i = 0; i < k; i++) #endif // ULTIPANEL
custom->custom_char_bits[i] |= 0x01 << (ULTRA_X_PIXELS_PER_CHAR - 1);
}
}
/*
* Check if bottom line of box needs to be filled in
*/
// Single row of mesh plot cells
if ((n_rows==1) /* && ((cell_location == TOP_LEFT) || (cell_location==TOP_RIGHT)) */) {
if (ul->row == brc->row) {
if (n_cols == 1) { // single row, single column case
if (ul->column != brc->column)
k = 0x01;
else
k = brc->x_pixel_mask;
} else {
if (cell_location & TOP_RIGHT) { // single row, multiple column case
if(lr->column != brc->column)
k = 0x01;
else
k = brc->x_pixel_mask;
} else // single row, left of multiple columns
k = 0x01;
}
while (k < (0x01 << ULTRA_X_PIXELS_PER_CHAR)) {
custom->custom_char_bits[brc->y_pixel_offset] |= k;
k = k << 1;
}
}
}
// Double row of characters on LCD Display
// And this is a bottom custom character
if ((n_rows==2) && ((cell_location == LOWER_LEFT) || (cell_location==LOWER_RIGHT))) {
if (lr->row == brc->row) {
if (n_cols == 1) { // double row, single column case
if (ul->column != brc->column)
k = 0x01;
else
k = brc->x_pixel_mask;
} else {
if (cell_location & LOWER_RIGHT) { // double row, multiple column case
if(lr->column != brc->column)
k = 0x01;
else
k = brc->x_pixel_mask;
} else // double row, left of multiple columns
k = 0x01;
}
while (k < (0x01 << ULTRA_X_PIXELS_PER_CHAR)) {
custom->custom_char_bits[brc->y_pixel_offset] |= k;
k = k << 1;
}
}
}
/*
* Check if right line of box needs to be filled in
*/
if (lr->column == brc->column) { // nothing to do if the lower right part of the mesh pnt isn't in the same column as the box line
if ((ul->column == brc->column) ||
((lr->column == brc->column) && (cell_location&TOP_RIGHT)) ||
((lr->column == brc->column) && (cell_location&LOWER_RIGHT))) { // This mesh point is in the same character cell as the right box line
if (ul->row != brc->row)
k = ULTRA_Y_PIXELS_PER_CHAR; // if it isn't the last row... do the full character cell
else
k = brc->y_pixel_offset;
for (i = 0; i < k; i++)
custom->custom_char_bits[i] |= brc->x_pixel_mask;
}
}
}
struct coordinate pixel_location(int x, int y) {
struct coordinate ret_val;
int xp, yp, r, c;
x++; // +1 because there is a line on the left
y++; // and a line at the top to make the box
c = x / ULTRA_X_PIXELS_PER_CHAR;
r = y / ULTRA_Y_PIXELS_PER_CHAR;
ret_val.column = c;
ret_val.row = r;
xp = x - c * ULTRA_X_PIXELS_PER_CHAR; // get the pixel offsets into the character cell
xp = ULTRA_X_PIXELS_PER_CHAR - 1 - xp; // column within relivant character cell (0 on the right)
yp = y - r * ULTRA_Y_PIXELS_PER_CHAR;
ret_val.x_pixel_mask = 0x01 << xp;
ret_val.x_pixel_offset = xp;
ret_val.y_pixel_offset = yp;
return ret_val;
}
struct coordinate pixel_location(uint8_t x, uint8_t y) {
struct coordinate ret_val;
uint8_t xp, yp, r, c;
x++; // +1 because there is a line on the left
y++; // and a line at the top to make the box
c = x / ULTRA_X_PIXELS_PER_CHAR;
r = y / ULTRA_Y_PIXELS_PER_CHAR;
ret_val.column = c;
ret_val.row = r;
xp = x - c * ULTRA_X_PIXELS_PER_CHAR; // get the pixel offsets into the character cell
xp = ULTRA_X_PIXELS_PER_CHAR - 1 - xp; // column within relivant character cell (0 on the right)
yp = y - r * ULTRA_Y_PIXELS_PER_CHAR;
ret_val.x_pixel_mask = 0x01 << xp;
ret_val.x_pixel_offset = xp;
ret_val.y_pixel_offset = yp;
return ret_val;
}
#endif // AUTO_BED_LEVELING_UBL
#endif // ULTRALCD_IMPL_HD44780_H #endif // ULTRALCD_IMPL_HD44780_H