Add volumetric extrusion limit (#17017)

This commit is contained in:
MoellerDi 2020-06-08 10:24:46 +02:00 committed by GitHub
parent 8994cc8b26
commit bac760207c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 176 additions and 25 deletions

View file

@ -2993,9 +2993,21 @@
* Activate to make volumetric extrusion the default method, * Activate to make volumetric extrusion the default method,
* with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter. * with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter.
* *
* M200 D0 to disable, M200 Dn to set a new diameter. * M200 D0 to disable, M200 Dn to set a new diameter (and enable volumetric).
* M200 S0/S1 to disable/enable volumetric extrusion.
*/ */
//#define VOLUMETRIC_DEFAULT_ON //#define VOLUMETRIC_DEFAULT_ON
//#define VOLUMETRIC_EXTRUDER_LIMIT
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
/**
* Default volumetric extrusion limit in cubic mm per second (mm^3/sec).
* This factory setting applies to all extruders.
* Use 'M200 [T<extruder>] L<limit>' to override and 'M502' to reset.
* A non-zero value activates Volume-based Extrusion Limiting.
*/
#define DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT 0.00 // (mm^3/sec)
#endif
#endif #endif
/** /**

View file

@ -30,21 +30,42 @@
* M200: Set filament diameter and set E axis units to cubic units * M200: Set filament diameter and set E axis units to cubic units
* *
* T<extruder> - Optional extruder number. Current extruder if omitted. * T<extruder> - Optional extruder number. Current extruder if omitted.
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis. * D<linear> - Set filament diameter and enable. D0 disables volumetric.
* S<bool> - Turn volumetric ON or OFF.
* L<float> - Volumetric extruder limit (in mm^3/sec). L0 disables the limit.
*/ */
void GcodeSuite::M200() { void GcodeSuite::M200() {
const int8_t target_extruder = get_target_extruder_from_command(); const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return; if (target_extruder < 0) return;
if (parser.seen('D')) { bool vol_enable = parser.volumetric_enabled,
// setting any extruder filament size disables volumetric on the assumption that can_enable = true;
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders if (parser.seenval('D')) {
const float dval = parser.value_linear_units(); const float dval = parser.value_linear_units();
if ( (parser.volumetric_enabled = (dval != 0)) ) if (dval) { // Set filament size for volumetric calculation
planner.set_filament_size(target_extruder, dval); planner.set_filament_size(target_extruder, dval);
vol_enable = true; // Dn = enable for compatibility
}
else
can_enable = false; // D0 = disable for compatibility
} }
// Enable or disable with S1 / S0
parser.volumetric_enabled = can_enable && parser.boolval('S', vol_enable);
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
if (parser.seenval('L')) {
// Set volumetric limit (in mm^3/sec)
const float lval = parser.value_float();
if (WITHIN(lval, 0, 20))
planner.set_volumetric_extruder_limit(target_extruder, lval);
else
SERIAL_ECHOLNPGM("?L value out of range (0-20).");
}
#endif
planner.calculate_volumetric_multipliers(); planner.calculate_volumetric_multipliers();
} }

View file

@ -260,6 +260,13 @@
#define MAX_AUTORETRACT 99 #define MAX_AUTORETRACT 99
#endif #endif
/**
* Provide a DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT in case NO_VOLUMETRICS is enabled
*/
#ifndef DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT
#define DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT 0.00
#endif
/** /**
* LCD Contrast for Graphical Displays * LCD Contrast for Graphical Displays
*/ */

View file

@ -1479,6 +1479,17 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
#endif #endif
#endif #endif
/**
* Volumetric Extruder Limit
*/
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
#if ENABLED(NO_VOLUMETRICS)
#error "VOLUMETRIC_EXTRUDER_LIMIT requires NO_VOLUMETRICS to be disabled."
#elif MIN_STEPS_PER_SEGMENT > 1
#error "VOLUMETRIC_EXTRUDER_LIMIT is not compatible with MIN_STEPS_PER_SEGMENT greater than 1."
#endif
#endif
/** /**
* ULTIPANEL encoder * ULTIPANEL encoder
*/ */

View file

@ -317,6 +317,8 @@ namespace Language_en {
PROGMEM Language_Str MSG_MOTION = _UxGT("Motion"); PROGMEM Language_Str MSG_MOTION = _UxGT("Motion");
PROGMEM Language_Str MSG_FILAMENT = _UxGT("Filament"); PROGMEM Language_Str MSG_FILAMENT = _UxGT("Filament");
PROGMEM Language_Str MSG_VOLUMETRIC_ENABLED = _UxGT("E in mm³"); PROGMEM Language_Str MSG_VOLUMETRIC_ENABLED = _UxGT("E in mm³");
PROGMEM Language_Str MSG_VOLUMETRIC_LIMIT = _UxGT("E Limit in mm³");
PROGMEM Language_Str MSG_VOLUMETRIC_LIMIT_E = _UxGT("E Limit *");
PROGMEM Language_Str MSG_FILAMENT_DIAM = _UxGT("Fil. Dia."); PROGMEM Language_Str MSG_FILAMENT_DIAM = _UxGT("Fil. Dia.");
PROGMEM Language_Str MSG_FILAMENT_DIAM_E = _UxGT("Fil. Dia. *"); PROGMEM Language_Str MSG_FILAMENT_DIAM_E = _UxGT("Fil. Dia. *");
PROGMEM Language_Str MSG_FILAMENT_UNLOAD = _UxGT("Unload mm"); PROGMEM Language_Str MSG_FILAMENT_UNLOAD = _UxGT("Unload mm");

View file

@ -117,6 +117,14 @@ void menu_cancelobject();
#if DISABLED(NO_VOLUMETRICS) #if DISABLED(NO_VOLUMETRICS)
EDIT_ITEM(bool, MSG_VOLUMETRIC_ENABLED, &parser.volumetric_enabled, planner.calculate_volumetric_multipliers); EDIT_ITEM(bool, MSG_VOLUMETRIC_ENABLED, &parser.volumetric_enabled, planner.calculate_volumetric_multipliers);
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
EDIT_ITEM_FAST(float42_52, MSG_VOLUMETRIC_LIMIT, &planner.volumetric_extruder_limit[active_extruder], 0.0f, 20.0f, planner.calculate_volumetric_extruder_limits);
#if EXTRUDERS > 1
LOOP_L_N(n, EXTRUDERS)
EDIT_ITEM_FAST_N(float42_52, n, MSG_VOLUMETRIC_LIMIT_E, &planner.volumetric_extruder_limit[n], 0.0f, 20.00f, planner.calculate_volumetric_extruder_limits);
#endif
#endif
if (parser.volumetric_enabled) { if (parser.volumetric_enabled) {
EDIT_ITEM_FAST(float43, MSG_FILAMENT_DIAM, &planner.filament_size[active_extruder], 1.5f, 3.25f, planner.calculate_volumetric_multipliers); EDIT_ITEM_FAST(float43, MSG_FILAMENT_DIAM, &planner.filament_size[active_extruder], 1.5f, 3.25f, planner.calculate_volumetric_multipliers);
#if EXTRUDERS > 1 #if EXTRUDERS > 1

View file

@ -37,7 +37,7 @@
*/ */
// Change EEPROM version if the structure changes // Change EEPROM version if the structure changes
#define EEPROM_VERSION "V79" #define EEPROM_VERSION "V80"
#define EEPROM_OFFSET 100 #define EEPROM_OFFSET 100
// Check the integrity of data offsets. // Check the integrity of data offsets.
@ -320,8 +320,9 @@ typedef struct SettingsDataStruct {
// //
// !NO_VOLUMETRIC // !NO_VOLUMETRIC
// //
bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[] float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
// //
// HAS_TRINAMIC_CONFIG // HAS_TRINAMIC_CONFIG
@ -935,12 +936,20 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(parser.volumetric_enabled); EEPROM_WRITE(parser.volumetric_enabled);
EEPROM_WRITE(planner.filament_size); EEPROM_WRITE(planner.filament_size);
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
EEPROM_WRITE(planner.volumetric_extruder_limit);
#else
dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
#endif
#else #else
const bool volumetric_enabled = false; const bool volumetric_enabled = false;
dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
EEPROM_WRITE(volumetric_enabled); EEPROM_WRITE(volumetric_enabled);
dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf); for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
#endif #endif
@ -1787,6 +1796,9 @@ void MarlinSettings::postprocess() {
struct { struct {
bool volumetric_enabled; bool volumetric_enabled;
float filament_size[EXTRUDERS]; float filament_size[EXTRUDERS];
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
float volumetric_extruder_limit[EXTRUDERS];
#endif
} storage; } storage;
_FIELD_TEST(parser_volumetric_enabled); _FIELD_TEST(parser_volumetric_enabled);
@ -1796,6 +1808,9 @@ void MarlinSettings::postprocess() {
if (!validating) { if (!validating) {
parser.volumetric_enabled = storage.volumetric_enabled; parser.volumetric_enabled = storage.volumetric_enabled;
COPY(planner.filament_size, storage.filament_size); COPY(planner.filament_size, storage.filament_size);
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
#endif
} }
#endif #endif
} }
@ -2598,6 +2613,10 @@ void MarlinSettings::reset() {
parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON); parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
LOOP_L_N(q, COUNT(planner.filament_size)) LOOP_L_N(q, COUNT(planner.filament_size))
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
#endif
#endif #endif
endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)); endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
@ -2750,7 +2769,7 @@ void MarlinSettings::reset() {
SERIAL_EOL(); SERIAL_EOL();
#if DISABLED(NO_VOLUMETRICS) #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
/** /**
* Volumetric extrusion M200 * Volumetric extrusion M200
@ -2765,20 +2784,26 @@ void MarlinSettings::reset() {
#if EXTRUDERS == 1 #if EXTRUDERS == 1
CONFIG_ECHO_START(); CONFIG_ECHO_START();
SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0])); SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)
#elif EXTRUDERS , " D", LINEAR_UNIT(planner.filament_size[0]),
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
, " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
#endif
);
#else
LOOP_L_N(i, EXTRUDERS) { LOOP_L_N(i, EXTRUDERS) {
CONFIG_ECHO_START(); CONFIG_ECHO_START();
SERIAL_ECHOPGM(" M200"); SERIAL_ECHOLNPAIR(" M200 T", int(i)
if (i) SERIAL_ECHOPAIR_P(SP_T_STR, int(i)); , " D", LINEAR_UNIT(planner.filament_size[i])
SERIAL_ECHOLNPAIR(" D", LINEAR_UNIT(planner.filament_size[i])); #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
, " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
#endif
);
} }
CONFIG_ECHO_START();
SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled));
#endif #endif
#endif // EXTRUDERS && !NO_VOLUMETRICS
if (!parser.volumetric_enabled)
CONFIG_ECHO_MSG(" M200 D0");
#endif // !NO_VOLUMETRICS
CONFIG_ECHO_HEADING("Steps per unit:"); CONFIG_ECHO_HEADING("Steps per unit:");
report_M92(!forReplay); report_M92(!forReplay);

View file

@ -171,6 +171,11 @@ float Planner::steps_to_mm[XYZE_N]; // (mm) Millimeters per step
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
#endif #endif
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
float Planner::volumetric_extruder_limit[EXTRUDERS], // max mm^3/sec the extruder is able to handle
Planner::volumetric_extruder_feedrate_limit[EXTRUDERS]; // pre calculated extruder feedrate limit based on volumetric_extruder_limit; pre-calculated to reduce computation in the planner
#endif
#if HAS_LEVELING #if HAS_LEVELING
bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
#if ABL_PLANAR #if ABL_PLANAR
@ -1407,10 +1412,28 @@ void Planner::check_axes_activity() {
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
refresh_e_factor(i); refresh_e_factor(i);
} }
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
calculate_volumetric_extruder_limits(); // update volumetric_extruder_limits as well.
#endif
} }
#endif // !NO_VOLUMETRICS #endif // !NO_VOLUMETRICS
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
/**
* Convert volumetric based limits into pre calculated extruder feedrate limits.
*/
void Planner::calculate_volumetric_extruder_limit(const uint8_t e) {
const float &lim = volumetric_extruder_limit[e], &siz = filament_size[e];
volumetric_extruder_feedrate_limit[e] = (lim && siz) ? lim / CIRCLE_AREA(siz * 0.5f) : 0;
}
void Planner::calculate_volumetric_extruder_limits() {
LOOP_L_N(e, EXTRUDERS) calculate_volumetric_extruder_limit(e);
}
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
/** /**
* Convert the ratio value given by the filament width sensor * Convert the ratio value given by the filament width sensor
@ -2077,10 +2100,33 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
if (mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL) if (mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL)
current_speed.e *= MIXING_STEPPERS; current_speed.e *= MIXING_STEPPERS;
#endif #endif
const feedRate_t cs = ABS(current_speed.e), const feedRate_t cs = ABS(current_speed.e),
max_fr = settings.max_feedrate_mm_s[E_AXIS_N(extruder)] max_fr = settings.max_feedrate_mm_s[E_AXIS_N(extruder)]
* TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1); * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1);
if (cs > max_fr) NOMORE(speed_factor, max_fr / cs);
if (cs > max_fr) NOMORE(speed_factor, max_fr / cs); //respect max feedrate on any movement (doesn't matter if E axes only or not)
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
const feedRate_t max_vfr = volumetric_extruder_feedrate_limit[extruder]
* TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1);
// TODO: Doesn't work properly for joined segments. Set MIN_STEPS_PER_SEGMENT 1 as workaround.
if (block->steps.a || block->steps.b || block->steps.c) {
if (max_vfr > 0 && cs > max_vfr) {
NOMORE(speed_factor, max_vfr / cs); // respect volumetric extruder limit (if any)
/* <-- add a slash to enable
SERIAL_ECHOPAIR("volumetric extruder limit enforced: ", (cs * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
SERIAL_ECHOPAIR(" mm^3/s (", cs);
SERIAL_ECHOPAIR(" mm/s) limited to ", (max_vfr * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
SERIAL_ECHOPAIR(" mm^3/s (", max_vfr);
SERIAL_ECHOLNPGM(" mm/s)");
//*/
}
}
#endif
} }
#endif #endif

View file

@ -333,6 +333,11 @@ class Planner {
// May be auto-adjusted by a filament width sensor // May be auto-adjusted by a filament width sensor
#endif #endif
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
static float volumetric_extruder_limit[EXTRUDERS], // Maximum mm^3/sec the extruder can handle
volumetric_extruder_feedrate_limit[EXTRUDERS]; // Feedrate limit (mm/s) calculated from volume limit
#endif
static planner_settings_t settings; static planner_settings_t settings;
#if ENABLED(LASER_POWER_INLINE) #if ENABLED(LASER_POWER_INLINE)
@ -473,9 +478,6 @@ class Planner {
// Manage fans, paste pressure, etc. // Manage fans, paste pressure, etc.
static void check_axes_activity(); static void check_axes_activity();
// Update multipliers based on new diameter measurements
static void calculate_volumetric_multipliers();
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
void apply_filament_width_sensor(const int8_t encoded_ratio); void apply_filament_width_sensor(const int8_t encoded_ratio);
@ -489,8 +491,18 @@ class Planner {
#if DISABLED(NO_VOLUMETRICS) #if DISABLED(NO_VOLUMETRICS)
// Update multipliers based on new diameter measurements
static void calculate_volumetric_multipliers();
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
// Update pre calculated extruder feedrate limits based on volumetric values
static void calculate_volumetric_extruder_limit(const uint8_t e);
static void calculate_volumetric_extruder_limits();
#endif
FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) { FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
filament_size[e] = v; filament_size[e] = v;
if (v > 0) volumetric_area_nominal = CIRCLE_AREA(v * 0.5); //TODO: should it be per extruder
// make sure all extruders have some sane value for the filament size // make sure all extruders have some sane value for the filament size
LOOP_L_N(i, COUNT(filament_size)) LOOP_L_N(i, COUNT(filament_size))
if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
@ -498,6 +510,13 @@ class Planner {
#endif #endif
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
FORCE_INLINE static void set_volumetric_extruder_limit(const uint8_t e, const float &v) {
volumetric_extruder_limit[e] = v;
calculate_volumetric_extruder_limit(e);
}
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
/** /**