- Rename WRITE_E_STEP for consistency
- Add BIT and TEST macros - Add _APPLY_ macros to stepper.cpp to help with consolidation - Consolidate code in stepper.cpp using macros - Apply standards in stepper.cpp - Use >= 0 instead of > -1 as a better semantic - Replace DUAL_Y_CARRIAGE with Y_DUAL_STEPPER_DRIVERS
This commit is contained in:
parent
2f3c77b751
commit
c37f7d15c9
|
@ -32,6 +32,9 @@
|
||||||
#include "WProgram.h"
|
#include "WProgram.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#define BIT(b) (1<<(b))
|
||||||
|
#define TEST(n,b) ((n)&BIT(b)!=0)
|
||||||
|
|
||||||
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
|
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
|
||||||
#ifndef analogInputToDigitalPin
|
#ifndef analogInputToDigitalPin
|
||||||
#define analogInputToDigitalPin(p) ((p) + 0xA0)
|
#define analogInputToDigitalPin(p) ((p) + 0xA0)
|
||||||
|
|
|
@ -47,7 +47,7 @@
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
#if HAS_DIGIPOTSS
|
||||||
#include <SPI.h>
|
#include <SPI.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
|
@ -47,7 +47,7 @@
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
#if HAS_DIGIPOTSS
|
||||||
#include <SPI.h>
|
#include <SPI.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
|
@ -76,7 +76,7 @@ void MarlinSerial::begin(long baud) {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
if (useU2X) {
|
if (useU2X) {
|
||||||
M_UCSRxA = 1 << M_U2Xx;
|
M_UCSRxA = BIT(M_U2Xx);
|
||||||
baud_setting = (F_CPU / 4 / baud - 1) / 2;
|
baud_setting = (F_CPU / 4 / baud - 1) / 2;
|
||||||
} else {
|
} else {
|
||||||
M_UCSRxA = 0;
|
M_UCSRxA = 0;
|
||||||
|
|
|
@ -97,14 +97,14 @@ class MarlinSerial { //: public Stream
|
||||||
}
|
}
|
||||||
|
|
||||||
FORCE_INLINE void write(uint8_t c) {
|
FORCE_INLINE void write(uint8_t c) {
|
||||||
while (!((M_UCSRxA) & (1 << M_UDREx)))
|
while (!TEST(M_UCSRxA, M_UDREx))
|
||||||
;
|
;
|
||||||
|
|
||||||
M_UDRx = c;
|
M_UDRx = c;
|
||||||
}
|
}
|
||||||
|
|
||||||
FORCE_INLINE void checkRx(void) {
|
FORCE_INLINE void checkRx(void) {
|
||||||
if ((M_UCSRxA & (1<<M_RXCx)) != 0) {
|
if (TEST(M_UCSRxA, M_RXCx)) {
|
||||||
unsigned char c = M_UDRx;
|
unsigned char c = M_UDRx;
|
||||||
int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;
|
int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;
|
||||||
|
|
||||||
|
|
|
@ -62,7 +62,7 @@
|
||||||
#include "Servo.h"
|
#include "Servo.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
#if HAS_DIGIPOTSS
|
||||||
#include <SPI.h>
|
#include <SPI.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -4190,7 +4190,7 @@ inline void gcode_M503() {
|
||||||
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
||||||
*/
|
*/
|
||||||
inline void gcode_M907() {
|
inline void gcode_M907() {
|
||||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
#if HAS_DIGIPOTSS
|
||||||
for (int i=0;i<NUM_AXIS;i++)
|
for (int i=0;i<NUM_AXIS;i++)
|
||||||
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
|
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
|
||||||
if (code_seen('B')) digipot_current(4, code_value());
|
if (code_seen('B')) digipot_current(4, code_value());
|
||||||
|
@ -4213,7 +4213,7 @@ inline void gcode_M907() {
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
#if HAS_DIGIPOTSS
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
||||||
|
@ -4225,7 +4225,7 @@ inline void gcode_M907() {
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // DIGIPOTSS_PIN
|
#endif // HAS_DIGIPOTSS
|
||||||
|
|
||||||
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||||
inline void gcode_M350() {
|
inline void gcode_M350() {
|
||||||
|
@ -4812,11 +4812,11 @@ void process_commands() {
|
||||||
gcode_M907();
|
gcode_M907();
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
#if HAS_DIGIPOTSS
|
||||||
case 908: // M908 Control digital trimpot directly.
|
case 908: // M908 Control digital trimpot directly.
|
||||||
gcode_M908();
|
gcode_M908();
|
||||||
break;
|
break;
|
||||||
#endif // DIGIPOTSS_PIN
|
#endif // HAS_DIGIPOTSS
|
||||||
|
|
||||||
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||||
gcode_M350();
|
gcode_M350();
|
||||||
|
|
|
@ -35,14 +35,14 @@
|
||||||
*/
|
*/
|
||||||
static void spiInit(uint8_t spiRate) {
|
static void spiInit(uint8_t spiRate) {
|
||||||
// See avr processor documentation
|
// See avr processor documentation
|
||||||
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1);
|
SPCR = BIT(SPE) | BIT(MSTR) | (spiRate >> 1);
|
||||||
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X;
|
SPSR = spiRate & 1 || spiRate == 6 ? 0 : BIT(SPI2X);
|
||||||
}
|
}
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
/** SPI receive a byte */
|
/** SPI receive a byte */
|
||||||
static uint8_t spiRec() {
|
static uint8_t spiRec() {
|
||||||
SPDR = 0XFF;
|
SPDR = 0XFF;
|
||||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||||
return SPDR;
|
return SPDR;
|
||||||
}
|
}
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
|
@ -52,18 +52,18 @@ void spiRead(uint8_t* buf, uint16_t nbyte) {
|
||||||
if (nbyte-- == 0) return;
|
if (nbyte-- == 0) return;
|
||||||
SPDR = 0XFF;
|
SPDR = 0XFF;
|
||||||
for (uint16_t i = 0; i < nbyte; i++) {
|
for (uint16_t i = 0; i < nbyte; i++) {
|
||||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||||
buf[i] = SPDR;
|
buf[i] = SPDR;
|
||||||
SPDR = 0XFF;
|
SPDR = 0XFF;
|
||||||
}
|
}
|
||||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||||
buf[nbyte] = SPDR;
|
buf[nbyte] = SPDR;
|
||||||
}
|
}
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
/** SPI send a byte */
|
/** SPI send a byte */
|
||||||
static void spiSend(uint8_t b) {
|
static void spiSend(uint8_t b) {
|
||||||
SPDR = b;
|
SPDR = b;
|
||||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||||
}
|
}
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
/** SPI send block - only one call so force inline */
|
/** SPI send block - only one call so force inline */
|
||||||
|
@ -71,12 +71,12 @@ static inline __attribute__((always_inline))
|
||||||
void spiSendBlock(uint8_t token, const uint8_t* buf) {
|
void spiSendBlock(uint8_t token, const uint8_t* buf) {
|
||||||
SPDR = token;
|
SPDR = token;
|
||||||
for (uint16_t i = 0; i < 512; i += 2) {
|
for (uint16_t i = 0; i < 512; i += 2) {
|
||||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||||
SPDR = buf[i];
|
SPDR = buf[i];
|
||||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||||
SPDR = buf[i + 1];
|
SPDR = buf[i + 1];
|
||||||
}
|
}
|
||||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||||
}
|
}
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
#else // SOFTWARE_SPI
|
#else // SOFTWARE_SPI
|
||||||
|
|
|
@ -334,9 +334,9 @@ static inline __attribute__((always_inline))
|
||||||
void setPinMode(uint8_t pin, uint8_t mode) {
|
void setPinMode(uint8_t pin, uint8_t mode) {
|
||||||
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
|
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
|
||||||
if (mode) {
|
if (mode) {
|
||||||
*digitalPinMap[pin].ddr |= 1 << digitalPinMap[pin].bit;
|
*digitalPinMap[pin].ddr |= BIT(digitalPinMap[pin].bit);
|
||||||
} else {
|
} else {
|
||||||
*digitalPinMap[pin].ddr &= ~(1 << digitalPinMap[pin].bit);
|
*digitalPinMap[pin].ddr &= ~BIT(digitalPinMap[pin].bit);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
badPinNumber();
|
badPinNumber();
|
||||||
|
@ -354,9 +354,9 @@ static inline __attribute__((always_inline))
|
||||||
void fastDigitalWrite(uint8_t pin, uint8_t value) {
|
void fastDigitalWrite(uint8_t pin, uint8_t value) {
|
||||||
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
|
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
|
||||||
if (value) {
|
if (value) {
|
||||||
*digitalPinMap[pin].port |= 1 << digitalPinMap[pin].bit;
|
*digitalPinMap[pin].port |= BIT(digitalPinMap[pin].bit);
|
||||||
} else {
|
} else {
|
||||||
*digitalPinMap[pin].port &= ~(1 << digitalPinMap[pin].bit);
|
*digitalPinMap[pin].port &= ~BIT(digitalPinMap[pin].bit);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
badPinNumber();
|
badPinNumber();
|
||||||
|
|
|
@ -171,9 +171,9 @@ static inline uint8_t FAT_SECOND(uint16_t fatTime) {
|
||||||
return 2*(fatTime & 0X1F);
|
return 2*(fatTime & 0X1F);
|
||||||
}
|
}
|
||||||
/** Default date for file timestamps is 1 Jan 2000 */
|
/** Default date for file timestamps is 1 Jan 2000 */
|
||||||
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1;
|
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | BIT(5) | 1;
|
||||||
/** Default time for file timestamp is 1 am */
|
/** Default time for file timestamp is 1 am */
|
||||||
uint16_t const FAT_DEFAULT_TIME = (1 << 11);
|
uint16_t const FAT_DEFAULT_TIME = BIT(11);
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
/**
|
/**
|
||||||
* \class SdBaseFile
|
* \class SdBaseFile
|
||||||
|
|
|
@ -360,7 +360,7 @@ bool SdVolume::init(Sd2Card* dev, uint8_t part) {
|
||||||
blocksPerCluster_ = fbs->sectorsPerCluster;
|
blocksPerCluster_ = fbs->sectorsPerCluster;
|
||||||
// determine shift that is same as multiply by blocksPerCluster_
|
// determine shift that is same as multiply by blocksPerCluster_
|
||||||
clusterSizeShift_ = 0;
|
clusterSizeShift_ = 0;
|
||||||
while (blocksPerCluster_ != (1 << clusterSizeShift_)) {
|
while (blocksPerCluster_ != BIT(clusterSizeShift_)) {
|
||||||
// error if not power of 2
|
// error if not power of 2
|
||||||
if (clusterSizeShift_++ > 7) goto fail;
|
if (clusterSizeShift_++ > 7) goto fail;
|
||||||
}
|
}
|
||||||
|
|
|
@ -24,9 +24,9 @@
|
||||||
#define BLEN_A 0
|
#define BLEN_A 0
|
||||||
#define BLEN_B 1
|
#define BLEN_B 1
|
||||||
#define BLEN_C 2
|
#define BLEN_C 2
|
||||||
#define EN_A (1<<BLEN_A)
|
#define EN_A BIT(BLEN_A)
|
||||||
#define EN_B (1<<BLEN_B)
|
#define EN_B BIT(BLEN_B)
|
||||||
#define EN_C (1<<BLEN_C)
|
#define EN_C BIT(BLEN_C)
|
||||||
#define LCD_CLICKED (buttons&EN_C)
|
#define LCD_CLICKED (buttons&EN_C)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
|
@ -13,7 +13,6 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#ifndef MASK
|
#ifndef MASK
|
||||||
/// MASKING- returns \f$2^PIN\f$
|
|
||||||
#define MASK(PIN) (1 << PIN)
|
#define MASK(PIN) (1 << PIN)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
|
@ -184,4 +184,6 @@
|
||||||
analogInputToDigitalPin(TEMP_BED_PIN) \
|
analogInputToDigitalPin(TEMP_BED_PIN) \
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#define HAS_DIGIPOTSS (DIGIPOTSS_PIN >= 0)
|
||||||
|
|
||||||
#endif //__PINS_H
|
#endif //__PINS_H
|
||||||
|
|
|
@ -623,37 +623,37 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
|
||||||
#ifndef COREXY
|
#ifndef COREXY
|
||||||
if (target[X_AXIS] < position[X_AXIS])
|
if (target[X_AXIS] < position[X_AXIS])
|
||||||
{
|
{
|
||||||
block->direction_bits |= (1<<X_AXIS);
|
block->direction_bits |= BIT(X_AXIS);
|
||||||
}
|
}
|
||||||
if (target[Y_AXIS] < position[Y_AXIS])
|
if (target[Y_AXIS] < position[Y_AXIS])
|
||||||
{
|
{
|
||||||
block->direction_bits |= (1<<Y_AXIS);
|
block->direction_bits |= BIT(Y_AXIS);
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
if (target[X_AXIS] < position[X_AXIS])
|
if (target[X_AXIS] < position[X_AXIS])
|
||||||
{
|
{
|
||||||
block->direction_bits |= (1<<X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
|
block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
|
||||||
}
|
}
|
||||||
if (target[Y_AXIS] < position[Y_AXIS])
|
if (target[Y_AXIS] < position[Y_AXIS])
|
||||||
{
|
{
|
||||||
block->direction_bits |= (1<<Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
|
block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
|
||||||
}
|
}
|
||||||
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
||||||
{
|
{
|
||||||
block->direction_bits |= (1<<X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
|
block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
|
||||||
}
|
}
|
||||||
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
||||||
{
|
{
|
||||||
block->direction_bits |= (1<<Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
|
block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
if (target[Z_AXIS] < position[Z_AXIS])
|
if (target[Z_AXIS] < position[Z_AXIS])
|
||||||
{
|
{
|
||||||
block->direction_bits |= (1<<Z_AXIS);
|
block->direction_bits |= BIT(Z_AXIS);
|
||||||
}
|
}
|
||||||
if (target[E_AXIS] < position[E_AXIS])
|
if (target[E_AXIS] < position[E_AXIS])
|
||||||
{
|
{
|
||||||
block->direction_bits |= (1<<E_AXIS);
|
block->direction_bits |= BIT(E_AXIS);
|
||||||
}
|
}
|
||||||
|
|
||||||
block->active_extruder = extruder;
|
block->active_extruder = extruder;
|
||||||
|
@ -864,7 +864,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||||
old_direction_bits = block->direction_bits;
|
old_direction_bits = block->direction_bits;
|
||||||
segment_time = lround((float)segment_time / speed_factor);
|
segment_time = lround((float)segment_time / speed_factor);
|
||||||
|
|
||||||
if((direction_change & (1<<X_AXIS)) == 0)
|
if((direction_change & BIT(X_AXIS)) == 0)
|
||||||
{
|
{
|
||||||
x_segment_time[0] += segment_time;
|
x_segment_time[0] += segment_time;
|
||||||
}
|
}
|
||||||
|
@ -874,7 +874,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||||
x_segment_time[1] = x_segment_time[0];
|
x_segment_time[1] = x_segment_time[0];
|
||||||
x_segment_time[0] = segment_time;
|
x_segment_time[0] = segment_time;
|
||||||
}
|
}
|
||||||
if((direction_change & (1<<Y_AXIS)) == 0)
|
if((direction_change & BIT(Y_AXIS)) == 0)
|
||||||
{
|
{
|
||||||
y_segment_time[0] += segment_time;
|
y_segment_time[0] += segment_time;
|
||||||
}
|
}
|
||||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -25,26 +25,26 @@
|
||||||
#include "stepper_indirection.h"
|
#include "stepper_indirection.h"
|
||||||
|
|
||||||
#if EXTRUDERS > 3
|
#if EXTRUDERS > 3
|
||||||
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
|
#define E_STEP_WRITE(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
|
||||||
#define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
|
#define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
|
||||||
#define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
|
#define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
|
||||||
#elif EXTRUDERS > 2
|
#elif EXTRUDERS > 2
|
||||||
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
|
#define E_STEP_WRITE(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
|
||||||
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
|
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
|
||||||
#define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
|
#define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
|
||||||
#elif EXTRUDERS > 1
|
#elif EXTRUDERS > 1
|
||||||
#ifndef DUAL_X_CARRIAGE
|
#ifndef DUAL_X_CARRIAGE
|
||||||
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
#define E_STEP_WRITE(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||||
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
||||||
#define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
#define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
||||||
#else
|
#else
|
||||||
extern bool extruder_duplication_enabled;
|
extern bool extruder_duplication_enabled;
|
||||||
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
#define E_STEP_WRITE(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||||
#define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
#define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
||||||
#define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
#define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
||||||
#endif
|
#endif
|
||||||
#else
|
#else
|
||||||
#define WRITE_E_STEP(v) E0_STEP_WRITE(v)
|
#define E_STEP_WRITE(v) E0_STEP_WRITE(v)
|
||||||
#define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
|
#define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
|
||||||
#define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
|
#define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -878,8 +878,8 @@ void tp_init()
|
||||||
{
|
{
|
||||||
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
||||||
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
||||||
MCUCR=(1<<JTD);
|
MCUCR=BIT(JTD);
|
||||||
MCUCR=(1<<JTD);
|
MCUCR=BIT(JTD);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Finish init of mult extruder arrays
|
// Finish init of mult extruder arrays
|
||||||
|
@ -937,13 +937,13 @@ void tp_init()
|
||||||
#endif //HEATER_0_USES_MAX6675
|
#endif //HEATER_0_USES_MAX6675
|
||||||
|
|
||||||
#ifdef DIDR2
|
#ifdef DIDR2
|
||||||
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0)
|
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
|
||||||
#else
|
#else
|
||||||
#define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0)
|
#define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Set analog inputs
|
// Set analog inputs
|
||||||
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
|
||||||
DIDR0 = 0;
|
DIDR0 = 0;
|
||||||
#ifdef DIDR2
|
#ifdef DIDR2
|
||||||
DIDR2 = 0;
|
DIDR2 = 0;
|
||||||
|
@ -970,7 +970,7 @@ void tp_init()
|
||||||
// Use timer0 for temperature measurement
|
// Use timer0 for temperature measurement
|
||||||
// Interleave temperature interrupt with millies interrupt
|
// Interleave temperature interrupt with millies interrupt
|
||||||
OCR0B = 128;
|
OCR0B = 128;
|
||||||
TIMSK0 |= (1<<OCIE0B);
|
TIMSK0 |= BIT(OCIE0B);
|
||||||
|
|
||||||
// Wait for temperature measurement to settle
|
// Wait for temperature measurement to settle
|
||||||
delay(250);
|
delay(250);
|
||||||
|
@ -1174,12 +1174,12 @@ void disable_heater() {
|
||||||
max6675_temp = 0;
|
max6675_temp = 0;
|
||||||
|
|
||||||
#ifdef PRR
|
#ifdef PRR
|
||||||
PRR &= ~(1<<PRSPI);
|
PRR &= ~BIT(PRSPI);
|
||||||
#elif defined(PRR0)
|
#elif defined(PRR0)
|
||||||
PRR0 &= ~(1<<PRSPI);
|
PRR0 &= ~BIT(PRSPI);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
|
SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
|
||||||
|
|
||||||
// enable TT_MAX6675
|
// enable TT_MAX6675
|
||||||
WRITE(MAX6675_SS, 0);
|
WRITE(MAX6675_SS, 0);
|
||||||
|
@ -1190,13 +1190,13 @@ void disable_heater() {
|
||||||
|
|
||||||
// read MSB
|
// read MSB
|
||||||
SPDR = 0;
|
SPDR = 0;
|
||||||
for (;(SPSR & (1<<SPIF)) == 0;);
|
for (;(SPSR & BIT(SPIF)) == 0;);
|
||||||
max6675_temp = SPDR;
|
max6675_temp = SPDR;
|
||||||
max6675_temp <<= 8;
|
max6675_temp <<= 8;
|
||||||
|
|
||||||
// read LSB
|
// read LSB
|
||||||
SPDR = 0;
|
SPDR = 0;
|
||||||
for (;(SPSR & (1<<SPIF)) == 0;);
|
for (;(SPSR & BIT(SPIF)) == 0;);
|
||||||
max6675_temp |= SPDR;
|
max6675_temp |= SPDR;
|
||||||
|
|
||||||
// disable TT_MAX6675
|
// disable TT_MAX6675
|
||||||
|
@ -1246,7 +1246,7 @@ ISR(TIMER0_COMPB_vect) {
|
||||||
static unsigned long raw_temp_3_value = 0;
|
static unsigned long raw_temp_3_value = 0;
|
||||||
static unsigned long raw_temp_bed_value = 0;
|
static unsigned long raw_temp_bed_value = 0;
|
||||||
static TempState temp_state = StartupDelay;
|
static TempState temp_state = StartupDelay;
|
||||||
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
|
static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
|
||||||
|
|
||||||
// Static members for each heater
|
// Static members for each heater
|
||||||
#ifdef SLOW_PWM_HEATERS
|
#ifdef SLOW_PWM_HEATERS
|
||||||
|
@ -1331,7 +1331,7 @@ ISR(TIMER0_COMPB_vect) {
|
||||||
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
pwm_count += (1 << SOFT_PWM_SCALE);
|
pwm_count += BIT(SOFT_PWM_SCALE);
|
||||||
pwm_count &= 0x7f;
|
pwm_count &= 0x7f;
|
||||||
|
|
||||||
#else // SLOW_PWM_HEATERS
|
#else // SLOW_PWM_HEATERS
|
||||||
|
@ -1412,7 +1412,7 @@ ISR(TIMER0_COMPB_vect) {
|
||||||
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
||||||
#endif //FAN_SOFT_PWM
|
#endif //FAN_SOFT_PWM
|
||||||
|
|
||||||
pwm_count += (1 << SOFT_PWM_SCALE);
|
pwm_count += BIT(SOFT_PWM_SCALE);
|
||||||
pwm_count &= 0x7f;
|
pwm_count &= 0x7f;
|
||||||
|
|
||||||
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
|
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
|
||||||
|
@ -1438,9 +1438,9 @@ ISR(TIMER0_COMPB_vect) {
|
||||||
|
|
||||||
#endif // SLOW_PWM_HEATERS
|
#endif // SLOW_PWM_HEATERS
|
||||||
|
|
||||||
#define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC
|
#define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
|
||||||
#ifdef MUX5
|
#ifdef MUX5
|
||||||
#define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
#define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||||
#else
|
#else
|
||||||
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -1426,7 +1426,7 @@ void lcd_buttons_update() {
|
||||||
WRITE(SHIFT_LD, HIGH);
|
WRITE(SHIFT_LD, HIGH);
|
||||||
for(int8_t i = 0; i < 8; i++) {
|
for(int8_t i = 0; i < 8; i++) {
|
||||||
newbutton_reprapworld_keypad >>= 1;
|
newbutton_reprapworld_keypad >>= 1;
|
||||||
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7);
|
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= BIT(7);
|
||||||
WRITE(SHIFT_CLK, HIGH);
|
WRITE(SHIFT_CLK, HIGH);
|
||||||
WRITE(SHIFT_CLK, LOW);
|
WRITE(SHIFT_CLK, LOW);
|
||||||
}
|
}
|
||||||
|
@ -1439,7 +1439,7 @@ void lcd_buttons_update() {
|
||||||
unsigned char tmp_buttons = 0;
|
unsigned char tmp_buttons = 0;
|
||||||
for(int8_t i=0; i<8; i++) {
|
for(int8_t i=0; i<8; i++) {
|
||||||
newbutton >>= 1;
|
newbutton >>= 1;
|
||||||
if (READ(SHIFT_OUT)) newbutton |= (1 << 7);
|
if (READ(SHIFT_OUT)) newbutton |= BIT(7);
|
||||||
WRITE(SHIFT_CLK, HIGH);
|
WRITE(SHIFT_CLK, HIGH);
|
||||||
WRITE(SHIFT_CLK, LOW);
|
WRITE(SHIFT_CLK, LOW);
|
||||||
}
|
}
|
||||||
|
|
|
@ -57,20 +57,20 @@
|
||||||
void lcd_ignore_click(bool b=true);
|
void lcd_ignore_click(bool b=true);
|
||||||
|
|
||||||
#ifdef NEWPANEL
|
#ifdef NEWPANEL
|
||||||
#define EN_C (1<<BLEN_C)
|
#define EN_C BIT(BLEN_C)
|
||||||
#define EN_B (1<<BLEN_B)
|
#define EN_B BIT(BLEN_B)
|
||||||
#define EN_A (1<<BLEN_A)
|
#define EN_A BIT(BLEN_A)
|
||||||
|
|
||||||
#define LCD_CLICKED (buttons&EN_C)
|
#define LCD_CLICKED (buttons&EN_C)
|
||||||
#ifdef REPRAPWORLD_KEYPAD
|
#ifdef REPRAPWORLD_KEYPAD
|
||||||
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<BLEN_REPRAPWORLD_KEYPAD_F3)
|
#define EN_REPRAPWORLD_KEYPAD_F3 BIT(BLEN_REPRAPWORLD_KEYPAD_F3)
|
||||||
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<BLEN_REPRAPWORLD_KEYPAD_F2)
|
#define EN_REPRAPWORLD_KEYPAD_F2 BIT(BLEN_REPRAPWORLD_KEYPAD_F2)
|
||||||
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<BLEN_REPRAPWORLD_KEYPAD_F1)
|
#define EN_REPRAPWORLD_KEYPAD_F1 BIT(BLEN_REPRAPWORLD_KEYPAD_F1)
|
||||||
#define EN_REPRAPWORLD_KEYPAD_UP (1<<BLEN_REPRAPWORLD_KEYPAD_UP)
|
#define EN_REPRAPWORLD_KEYPAD_UP BIT(BLEN_REPRAPWORLD_KEYPAD_UP)
|
||||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<BLEN_REPRAPWORLD_KEYPAD_RIGHT)
|
#define EN_REPRAPWORLD_KEYPAD_RIGHT BIT(BLEN_REPRAPWORLD_KEYPAD_RIGHT)
|
||||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
|
#define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT(BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
|
||||||
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<BLEN_REPRAPWORLD_KEYPAD_DOWN)
|
#define EN_REPRAPWORLD_KEYPAD_DOWN BIT(BLEN_REPRAPWORLD_KEYPAD_DOWN)
|
||||||
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<BLEN_REPRAPWORLD_KEYPAD_LEFT)
|
#define EN_REPRAPWORLD_KEYPAD_LEFT BIT(BLEN_REPRAPWORLD_KEYPAD_LEFT)
|
||||||
|
|
||||||
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
|
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
|
||||||
#define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2)
|
#define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2)
|
||||||
|
@ -83,14 +83,14 @@
|
||||||
#endif //REPRAPWORLD_KEYPAD
|
#endif //REPRAPWORLD_KEYPAD
|
||||||
#else
|
#else
|
||||||
//atomic, do not change
|
//atomic, do not change
|
||||||
#define B_LE (1<<BL_LE)
|
#define B_LE BIT(BL_LE)
|
||||||
#define B_UP (1<<BL_UP)
|
#define B_UP BIT(BL_UP)
|
||||||
#define B_MI (1<<BL_MI)
|
#define B_MI BIT(BL_MI)
|
||||||
#define B_DW (1<<BL_DW)
|
#define B_DW BIT(BL_DW)
|
||||||
#define B_RI (1<<BL_RI)
|
#define B_RI BIT(BL_RI)
|
||||||
#define B_ST (1<<BL_ST)
|
#define B_ST BIT(BL_ST)
|
||||||
#define EN_B (1<<BLEN_B)
|
#define EN_B BIT(BLEN_B)
|
||||||
#define EN_A (1<<BLEN_A)
|
#define EN_A BIT(BLEN_A)
|
||||||
|
|
||||||
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
|
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
|
||||||
#endif//NEWPANEL
|
#endif//NEWPANEL
|
||||||
|
|
|
@ -24,13 +24,13 @@
|
||||||
#define BLEN_B 1
|
#define BLEN_B 1
|
||||||
#define BLEN_A 0
|
#define BLEN_A 0
|
||||||
|
|
||||||
#define EN_B (1<<BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
|
#define EN_B BIT(BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
|
||||||
#define EN_A (1<<BLEN_A)
|
#define EN_A BIT(BLEN_A)
|
||||||
|
|
||||||
#if defined(BTN_ENC) && BTN_ENC > -1
|
#if defined(BTN_ENC) && BTN_ENC > -1
|
||||||
// encoder click is directly connected
|
// encoder click is directly connected
|
||||||
#define BLEN_C 2
|
#define BLEN_C 2
|
||||||
#define EN_C (1<<BLEN_C)
|
#define EN_C BIT(BLEN_C)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
//
|
//
|
||||||
|
@ -85,14 +85,14 @@
|
||||||
|
|
||||||
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
|
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
|
||||||
|
|
||||||
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
|
#define EN_REPRAPWORLD_KEYPAD_F3 BIT((BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
|
||||||
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
|
#define EN_REPRAPWORLD_KEYPAD_F2 BIT((BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
|
||||||
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
|
#define EN_REPRAPWORLD_KEYPAD_F1 BIT((BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
|
||||||
#define EN_REPRAPWORLD_KEYPAD_UP (1<<(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
|
#define EN_REPRAPWORLD_KEYPAD_UP BIT((BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
|
||||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
|
#define EN_REPRAPWORLD_KEYPAD_RIGHT BIT((BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
|
||||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
|
#define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT((BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
|
||||||
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
|
#define EN_REPRAPWORLD_KEYPAD_DOWN BIT((BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
|
||||||
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
|
#define EN_REPRAPWORLD_KEYPAD_LEFT BIT((BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
|
||||||
|
|
||||||
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
|
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
|
||||||
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
|
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
|
||||||
|
@ -113,12 +113,12 @@
|
||||||
#define BL_ST 2
|
#define BL_ST 2
|
||||||
|
|
||||||
//automatic, do not change
|
//automatic, do not change
|
||||||
#define B_LE (1<<BL_LE)
|
#define B_LE BIT(BL_LE)
|
||||||
#define B_UP (1<<BL_UP)
|
#define B_UP BIT(BL_UP)
|
||||||
#define B_MI (1<<BL_MI)
|
#define B_MI BIT(BL_MI)
|
||||||
#define B_DW (1<<BL_DW)
|
#define B_DW BIT(BL_DW)
|
||||||
#define B_RI (1<<BL_RI)
|
#define B_RI BIT(BL_RI)
|
||||||
#define B_ST (1<<BL_ST)
|
#define B_ST BIT(BL_ST)
|
||||||
|
|
||||||
#define LCD_CLICKED (buttons&(B_MI|B_ST))
|
#define LCD_CLICKED (buttons&(B_MI|B_ST))
|
||||||
#endif
|
#endif
|
||||||
|
|
Loading…
Reference in a new issue