From d73b169de3b031779771a14a65cad7fe476d3d98 Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Sun, 29 Mar 2015 23:16:12 -0700 Subject: [PATCH] Apply leveling for DELTA, - Fix `prepare_move` function not calling `adjust_delta` - Add more shorthand for plan_buffer_line. - Fix wrong `federate` usage, assuming they are all mm/m - Minor `stepper.cpp` cleanup --- Marlin/Marlin_main.cpp | 996 +++++++++++++++++++++-------------------- Marlin/stepper.cpp | 116 +++-- 2 files changed, 585 insertions(+), 527 deletions(-) diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 6802a82518..29d5266285 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -79,7 +79,7 @@ // G4 - Dwell S or P // G10 - retract filament according to settings of M207 // G11 - retract recover filament according to settings of M208 -// G28 - Home all Axis +// G28 - Home one or more axes // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. // G30 - Single Z Probe, probes bed at current XY location. // G31 - Dock sled (Z_PROBE_SLED only) @@ -306,7 +306,7 @@ int fanSpeed = 0; #ifdef SCARA float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1 static float delta[3] = { 0, 0, 0 }; -#endif +#endif bool cancel_heatup = false; @@ -477,8 +477,6 @@ bool enquecommand(const char *cmd) return true; } - - void setup_killpin() { #if defined(KILL_PIN) && KILL_PIN > -1 @@ -901,7 +899,7 @@ bool code_seen(char code) { strchr_pointer = strchr(cmdbuffer[bufindr], code); return (strchr_pointer != NULL); //Return True if a character was found } - + #define DEFINE_PGM_READ_ANY(type, reader) \ static inline type pgm_read_any(const type *p) \ { return pgm_read_##reader##_near(p); } @@ -932,7 +930,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); static float x_home_pos(int extruder) { if (extruder == 0) - return base_home_pos(X_AXIS) + home_offset[X_AXIS]; + return base_home_pos(X_AXIS) + home_offset[X_AXIS]; else // In dual carriage mode the extruder offset provides an override of the // second X-carriage offset when homed - otherwise X2_HOME_POS is used. @@ -961,15 +959,15 @@ static void axis_is_at_home(int axis) { if (axis == X_AXIS) { if (active_extruder != 0) { current_position[X_AXIS] = x_home_pos(active_extruder); - min_pos[X_AXIS] = X2_MIN_POS; - max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS); + min_pos[X_AXIS] = X2_MIN_POS; + max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS); return; } else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { - current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; - min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS]; - max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS], - max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset); + float xoff = home_offset[X_AXIS]; + current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff; + min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff; + max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset); return; } } @@ -1023,445 +1021,470 @@ static void axis_is_at_home(int axis) { } /** - * Shorthand to tell the planner our current position (in mm). + * Some planner shorthand inline functions */ +inline void line_to_current_position() { + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); +} +inline void line_to_z(float zPosition) { + plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); +} +inline void line_to_destination() { + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); +} inline void sync_plan_position() { plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } #ifdef ENABLE_AUTO_BED_LEVELING -#ifdef AUTO_BED_LEVELING_GRID -#ifndef DELTA - static void set_bed_level_equation_lsq(double *plane_equation_coefficients) { - vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); - planeNormal.debug("planeNormal"); - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - //bedLevel.debug("bedLevel"); + #ifdef AUTO_BED_LEVELING_GRID - //plan_bed_level_matrix.debug("bed level before"); - //vector_3 uncorrected_position = plan_get_position_mm(); - //uncorrected_position.debug("position before"); + #ifndef DELTA - vector_3 corrected_position = plan_get_position(); - //corrected_position.debug("position after"); - current_position[X_AXIS] = corrected_position.x; - current_position[Y_AXIS] = corrected_position.y; - current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z + static void set_bed_level_equation_lsq(double *plane_equation_coefficients) { + vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); + planeNormal.debug("planeNormal"); + plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + //bedLevel.debug("bedLevel"); - sync_plan_position(); + //plan_bed_level_matrix.debug("bed level before"); + //vector_3 uncorrected_position = plan_get_position_mm(); + //uncorrected_position.debug("position before"); + + vector_3 corrected_position = plan_get_position(); + //corrected_position.debug("position after"); + current_position[X_AXIS] = corrected_position.x; + current_position[Y_AXIS] = corrected_position.y; + current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z + + sync_plan_position(); + } + + #endif // !DELTA + + #else // !AUTO_BED_LEVELING_GRID + + static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { + + plan_bed_level_matrix.set_to_identity(); + + vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); + vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); + vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); + vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal(); + + if (planeNormal.z < 0) { + planeNormal.x = -planeNormal.x; + planeNormal.y = -planeNormal.y; + planeNormal.z = -planeNormal.z; + } + + plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + + vector_3 corrected_position = plan_get_position(); + current_position[X_AXIS] = corrected_position.x; + current_position[Y_AXIS] = corrected_position.y; + current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z + + sync_plan_position(); + } + + #endif // !AUTO_BED_LEVELING_GRID + + static void run_z_probe() { + + #ifdef DELTA + + float start_z = current_position[Z_AXIS]; + long start_steps = st_get_position(Z_AXIS); + + // move down slowly until you find the bed + feedrate = homing_feedrate[Z_AXIS] / 4; + destination[Z_AXIS] = -10; + prepare_move_raw(); + st_synchronize(); + endstops_hit_on_purpose(); + + // we have to let the planner know where we are right now as it is not where we said to go. + long stop_steps = st_get_position(Z_AXIS); + float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; + current_position[Z_AXIS] = mm; + calculate_delta(current_position); + plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); + + #else // !DELTA + + plan_bed_level_matrix.set_to_identity(); + feedrate = homing_feedrate[Z_AXIS]; + + // move down until you find the bed + float zPosition = -10; + line_to_z(zPosition); + st_synchronize(); + + // we have to let the planner know where we are right now as it is not where we said to go. + zPosition = st_get_position_mm(Z_AXIS); + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); + + // move up the retract distance + zPosition += home_retract_mm(Z_AXIS); + line_to_z(zPosition); + st_synchronize(); + endstops_hit_on_purpose(); + + // move back down slowly to find bed + if (homing_bump_divisor[Z_AXIS] >= 1) + feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS]; + else { + feedrate = homing_feedrate[Z_AXIS] / 10; + SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1"); + } + + zPosition -= home_retract_mm(Z_AXIS) * 2; + line_to_z(zPosition); + st_synchronize(); + endstops_hit_on_purpose(); + + current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); + // make sure the planner knows where we are as it may be a bit different than we last said to move to + sync_plan_position(); + + #endif // !DELTA } -#endif -#else // not AUTO_BED_LEVELING_GRID - -static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { - - plan_bed_level_matrix.set_to_identity(); - - vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); - vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); - vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); - vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal(); - - if (planeNormal.z < 0) { - planeNormal.x = -planeNormal.x; - planeNormal.y = -planeNormal.y; - planeNormal.z = -planeNormal.z; - } - - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - - vector_3 corrected_position = plan_get_position(); - current_position[X_AXIS] = corrected_position.x; - current_position[Y_AXIS] = corrected_position.y; - current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z - - sync_plan_position(); -} - -#endif // AUTO_BED_LEVELING_GRID - -static void run_z_probe() { - #ifdef DELTA - - float start_z = current_position[Z_AXIS]; - long start_steps = st_get_position(Z_AXIS); - - // move down slowly until you find the bed - feedrate = homing_feedrate[Z_AXIS] / 4; - destination[Z_AXIS] = -10; - prepare_move_raw(); - st_synchronize(); - endstops_hit_on_purpose(); - - // we have to let the planner know where we are right now as it is not where we said to go. - long stop_steps = st_get_position(Z_AXIS); - float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; - current_position[Z_AXIS] = mm; - calculate_delta(current_position); - plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); - - #else - - plan_bed_level_matrix.set_to_identity(); - feedrate = homing_feedrate[Z_AXIS]; - - // move down until you find the bed - float zPosition = -10; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - - // we have to let the planner know where we are right now as it is not where we said to go. - zPosition = st_get_position_mm(Z_AXIS); - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); - - // move up the retract distance - zPosition += home_retract_mm(Z_AXIS); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - endstops_hit_on_purpose(); - - // move back down slowly to find bed - if (homing_bump_divisor[Z_AXIS] >= 1) { - feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS]; - } - else { - feedrate = homing_feedrate[Z_AXIS]/10; - SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1"); - } - - zPosition -= home_retract_mm(Z_AXIS) * 2; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); - endstops_hit_on_purpose(); - - current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); - // make sure the planner knows where we are as it may be a bit different than we last said to move to - sync_plan_position(); - - #endif -} - -static void do_blocking_move_to(float x, float y, float z) { + static void do_blocking_move_to(float x, float y, float z) { float oldFeedRate = feedrate; -#ifdef DELTA + #ifdef DELTA - feedrate = XY_TRAVEL_SPEED; - - destination[X_AXIS] = x; - destination[Y_AXIS] = y; - destination[Z_AXIS] = z; - prepare_move_raw(); - st_synchronize(); + feedrate = XY_TRAVEL_SPEED; + + destination[X_AXIS] = x; + destination[Y_AXIS] = y; + destination[Z_AXIS] = z; + prepare_move_raw(); + st_synchronize(); -#else + #else - feedrate = homing_feedrate[Z_AXIS]; + feedrate = homing_feedrate[Z_AXIS]; - current_position[Z_AXIS] = z; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); + current_position[Z_AXIS] = z; + line_to_current_position(); + st_synchronize(); - feedrate = xy_travel_speed; + feedrate = xy_travel_speed; - current_position[X_AXIS] = x; - current_position[Y_AXIS] = y; - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); - st_synchronize(); + current_position[X_AXIS] = x; + current_position[Y_AXIS] = y; + line_to_current_position(); + st_synchronize(); -#endif + #endif feedrate = oldFeedRate; -} + } -static void setup_for_endstop_move() { + static void setup_for_endstop_move() { saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; feedmultiply = 100; previous_millis_cmd = millis(); - enable_endstops(true); -} - -static void clean_up_after_endstop_move() { -#ifdef ENDSTOPS_ONLY_FOR_HOMING - enable_endstops(false); -#endif + } + static void clean_up_after_endstop_move() { + #ifdef ENDSTOPS_ONLY_FOR_HOMING + enable_endstops(false); + #endif feedrate = saved_feedrate; feedmultiply = saved_feedmultiply; previous_millis_cmd = millis(); -} + } -static void engage_z_probe() { - // Engage Z Servo endstop if enabled - #ifdef SERVO_ENDSTOPS - if (servo_endstops[Z_AXIS] > -1) { - #if SERVO_LEVELING - servos[servo_endstops[Z_AXIS]].attach(0); - #endif - servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]); - #if SERVO_LEVELING - delay(PROBE_SERVO_DEACTIVATION_DELAY); - servos[servo_endstops[Z_AXIS]].detach(); - #endif - } - #elif defined(Z_PROBE_ALLEN_KEY) - feedrate = homing_feedrate[X_AXIS]; - - // Move to the start position to initiate deployment - destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X; - destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y; - destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z; - prepare_move_raw(); + static void engage_z_probe() { - // Home X to touch the belt - feedrate = homing_feedrate[X_AXIS]/10; - destination[X_AXIS] = 0; - prepare_move_raw(); - - // Home Y for safety - feedrate = homing_feedrate[X_AXIS]/2; - destination[Y_AXIS] = 0; - prepare_move_raw(); - - st_synchronize(); - - bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); - if (z_min_endstop) - { - if (!Stopped) - { - SERIAL_ERROR_START; - SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); - LCD_ALERTMESSAGEPGM("Err: ZPROBE"); + #ifdef SERVO_ENDSTOPS + + // Engage Z Servo endstop if enabled + if (servo_endstops[Z_AXIS] >= 0) { + #if SERVO_LEVELING + servos[servo_endstops[Z_AXIS]].attach(0); + #endif + servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]); + #if SERVO_LEVELING + delay(PROBE_SERVO_DEACTIVATION_DELAY); + servos[servo_endstops[Z_AXIS]].detach(); + #endif + } + + #elif defined(Z_PROBE_ALLEN_KEY) + + feedrate = homing_feedrate[X_AXIS]; + + // Move to the start position to initiate deployment + destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X; + destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y; + destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z; + prepare_move_raw(); + + // Home X to touch the belt + feedrate = homing_feedrate[X_AXIS]/10; + destination[X_AXIS] = 0; + prepare_move_raw(); + + // Home Y for safety + feedrate = homing_feedrate[X_AXIS]/2; + destination[Y_AXIS] = 0; + prepare_move_raw(); + + st_synchronize(); + + bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); + if (z_min_endstop) { + if (!Stopped) { + SERIAL_ERROR_START; + SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); + LCD_ALERTMESSAGEPGM("Err: ZPROBE"); } Stop(); - } - #endif + } -} + #endif // Z_PROBE_ALLEN_KEY -static void retract_z_probe() { - // Retract Z Servo endstop if enabled - #ifdef SERVO_ENDSTOPS - if (servo_endstops[Z_AXIS] > -1) - { - #if Z_RAISE_AFTER_PROBING > 0 - do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING); - st_synchronize(); - #endif - - #if SERVO_LEVELING - servos[servo_endstops[Z_AXIS]].attach(0); - #endif - servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]); - #if SERVO_LEVELING - delay(PROBE_SERVO_DEACTIVATION_DELAY); - servos[servo_endstops[Z_AXIS]].detach(); - #endif - } - #elif defined(Z_PROBE_ALLEN_KEY) - // Move up for safety - feedrate = homing_feedrate[X_AXIS]; - destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING; - prepare_move_raw(); + } - // Move to the start position to initiate retraction - destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X; - destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y; - destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z; - prepare_move_raw(); + static void retract_z_probe() { - // Move the nozzle down to push the probe into retracted position - feedrate = homing_feedrate[Z_AXIS]/10; - destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH; - prepare_move_raw(); - - // Move up for safety - feedrate = homing_feedrate[Z_AXIS]/2; - destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2; - prepare_move_raw(); - - // Home XY for safety - feedrate = homing_feedrate[X_AXIS]/2; - destination[X_AXIS] = 0; - destination[Y_AXIS] = 0; - prepare_move_raw(); - - st_synchronize(); - - bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); - if (!z_min_endstop) - { - if (!Stopped) - { - SERIAL_ERROR_START; - SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); - LCD_ALERTMESSAGEPGM("Err: ZPROBE"); + #ifdef SERVO_ENDSTOPS + + // Retract Z Servo endstop if enabled + if (servo_endstops[Z_AXIS] >= 0) { + + #if Z_RAISE_AFTER_PROBING > 0 + do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING); + st_synchronize(); + #endif + + #if SERVO_LEVELING + servos[servo_endstops[Z_AXIS]].attach(0); + #endif + + servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]); + + #if SERVO_LEVELING + delay(PROBE_SERVO_DEACTIVATION_DELAY); + servos[servo_endstops[Z_AXIS]].detach(); + #endif + } + + #elif defined(Z_PROBE_ALLEN_KEY) + + // Move up for safety + feedrate = homing_feedrate[X_AXIS]; + destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING; + prepare_move_raw(); + + // Move to the start position to initiate retraction + destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X; + destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y; + destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z; + prepare_move_raw(); + + // Move the nozzle down to push the probe into retracted position + feedrate = homing_feedrate[Z_AXIS]/10; + destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH; + prepare_move_raw(); + + // Move up for safety + feedrate = homing_feedrate[Z_AXIS]/2; + destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2; + prepare_move_raw(); + + // Home XY for safety + feedrate = homing_feedrate[X_AXIS]/2; + destination[X_AXIS] = 0; + destination[Y_AXIS] = 0; + prepare_move_raw(); + + st_synchronize(); + + bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); + if (!z_min_endstop) { + if (!Stopped) { + SERIAL_ERROR_START; + SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); + LCD_ALERTMESSAGEPGM("Err: ZPROBE"); } Stop(); + } + + #endif + + } + + enum ProbeAction { + ProbeStay = 0, + ProbeEngage = BIT(0), + ProbeRetract = BIT(1), + ProbeEngageAndRetract = (ProbeEngage | ProbeRetract) + }; + + // Probe bed height at position (x,y), returns the measured z value + static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) { + // move to right place + do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); + do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); + + #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) + if (retract_action & ProbeEngage) engage_z_probe(); + #endif + + run_z_probe(); + float measured_z = current_position[Z_AXIS]; + + #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) + if (retract_action & ProbeRetract) retract_z_probe(); + #endif + + if (verbose_level > 2) { + SERIAL_PROTOCOLPGM(MSG_BED); + SERIAL_PROTOCOLPGM(" X: "); + SERIAL_PROTOCOL_F(x, 3); + SERIAL_PROTOCOLPGM(" Y: "); + SERIAL_PROTOCOL_F(y, 3); + SERIAL_PROTOCOLPGM(" Z: "); + SERIAL_PROTOCOL_F(measured_z, 3); + SERIAL_EOL; } - #endif - -} - -enum ProbeAction { - ProbeStay = 0, - ProbeEngage = BIT(0), - ProbeRetract = BIT(1), - ProbeEngageAndRetract = (ProbeEngage | ProbeRetract) -}; - -/// Probe bed height at position (x,y), returns the measured z value -static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) { - // move to right place - do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); - do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); - - #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) - if (retract_action & ProbeEngage) engage_z_probe(); - #endif - - run_z_probe(); - float measured_z = current_position[Z_AXIS]; - - #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) - if (retract_action & ProbeRetract) retract_z_probe(); - #endif - - if (verbose_level > 2) { - SERIAL_PROTOCOLPGM(MSG_BED); - SERIAL_PROTOCOLPGM(" X: "); - SERIAL_PROTOCOL_F(x, 3); - SERIAL_PROTOCOLPGM(" Y: "); - SERIAL_PROTOCOL_F(y, 3); - SERIAL_PROTOCOLPGM(" Z: "); - SERIAL_PROTOCOL_F(measured_z, 3); - SERIAL_EOL; + return measured_z; } - return measured_z; -} -#ifdef DELTA -static void extrapolate_one_point(int x, int y, int xdir, int ydir) { - if (bed_level[x][y] != 0.0) { - return; // Don't overwrite good values. - } - float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right. - float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back. - float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal. - float median = c; // Median is robust (ignores outliers). - if (a < b) { - if (b < c) median = b; - if (c < a) median = a; - } else { // b <= a - if (c < b) median = b; - if (a < c) median = a; - } - bed_level[x][y] = median; -} + #ifdef DELTA -// Fill in the unprobed points (corners of circular print surface) -// using linear extrapolation, away from the center. -static void extrapolate_unprobed_bed_level() { - int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2; - for (int y = 0; y <= half; y++) { - for (int x = 0; x <= half; x++) { - if (x + y < 3) continue; - extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0); - extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0); - extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0); - extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0); + /** + * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING + */ + + static void extrapolate_one_point(int x, int y, int xdir, int ydir) { + if (bed_level[x][y] != 0.0) { + return; // Don't overwrite good values. + } + float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right. + float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back. + float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal. + float median = c; // Median is robust (ignores outliers). + if (a < b) { + if (b < c) median = b; + if (c < a) median = a; + } else { // b <= a + if (c < b) median = b; + if (a < c) median = a; + } + bed_level[x][y] = median; } - } -} -// Print calibration results for plotting or manual frame adjustment. -static void print_bed_level() { - for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { - for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { - SERIAL_PROTOCOL_F(bed_level[x][y], 2); - SERIAL_PROTOCOLPGM(" "); + // Fill in the unprobed points (corners of circular print surface) + // using linear extrapolation, away from the center. + static void extrapolate_unprobed_bed_level() { + int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2; + for (int y = 0; y <= half; y++) { + for (int x = 0; x <= half; x++) { + if (x + y < 3) continue; + extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0); + extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0); + extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0); + extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0); + } + } } - SERIAL_ECHOLN(""); - } -} -// Reset calibration results to zero. -void reset_bed_level() { - for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { - for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { - bed_level[x][y] = 0.0; + // Print calibration results for plotting or manual frame adjustment. + static void print_bed_level() { + for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { + for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { + SERIAL_PROTOCOL_F(bed_level[x][y], 2); + SERIAL_PROTOCOLPGM(" "); + } + SERIAL_ECHOLN(""); + } } - } -} -#endif // DELTA + // Reset calibration results to zero. + void reset_bed_level() { + for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { + for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { + bed_level[x][y] = 0.0; + } + } + } + + #endif // DELTA #endif // ENABLE_AUTO_BED_LEVELING static void homeaxis(int axis) { -#define HOMEAXIS_DO(LETTER) \ - ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) + #define HOMEAXIS_DO(LETTER) \ + ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) - if (axis==X_AXIS ? HOMEAXIS_DO(X) : - axis==Y_AXIS ? HOMEAXIS_DO(Y) : - axis==Z_AXIS ? HOMEAXIS_DO(Z) : - 0) { - int axis_home_dir = home_dir(axis); -#ifdef DUAL_X_CARRIAGE - if (axis == X_AXIS) - axis_home_dir = x_home_dir(active_extruder); -#endif + if (axis == X_AXIS ? HOMEAXIS_DO(X) : + axis == Y_AXIS ? HOMEAXIS_DO(Y) : + axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) { + + int axis_home_dir; + + #ifdef DUAL_X_CARRIAGE + if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder); + #else + axis_home_dir = home_dir(axis); + #endif current_position[axis] = 0; sync_plan_position(); + #ifndef Z_PROBE_SLED + // Engage Servo endstop if enabled + #ifdef SERVO_ENDSTOPS + #if SERVO_LEVELING + if (axis == Z_AXIS) { + engage_z_probe(); + } + else + #endif // SERVO_LEVELING + + if (servo_endstops[axis] > -1) + servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]); + + #endif // SERVO_ENDSTOPS + + #endif // Z_PROBE_SLED -#ifndef Z_PROBE_SLED - // Engage Servo endstop if enabled - #ifdef SERVO_ENDSTOPS - #if SERVO_LEVELING - if (axis==Z_AXIS) { - engage_z_probe(); - } - else - #endif - if (servo_endstops[axis] > -1) { - servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]); - } - #endif -#endif // Z_PROBE_SLED #ifdef Z_DUAL_ENDSTOPS - if (axis==Z_AXIS) In_Homing_Process(true); + if (axis == Z_AXIS) In_Homing_Process(true); #endif + destination[axis] = 1.5 * max_length(axis) * axis_home_dir; feedrate = homing_feedrate[axis]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + line_to_destination(); st_synchronize(); current_position[axis] = 0; sync_plan_position(); destination[axis] = -home_retract_mm(axis) * axis_home_dir; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + line_to_destination(); st_synchronize(); - destination[axis] = 2*home_retract_mm(axis) * axis_home_dir; + destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir; if (homing_bump_divisor[axis] >= 1) - { - feedrate = homing_feedrate[axis]/homing_bump_divisor[axis]; - } - else - { - feedrate = homing_feedrate[axis]/10; - SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1"); + feedrate = homing_feedrate[axis] / homing_bump_divisor[axis]; + else { + feedrate = homing_feedrate[axis] / 10; + SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1"); } - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + line_to_destination(); st_synchronize(); #ifdef Z_DUAL_ENDSTOPS if (axis==Z_AXIS) @@ -1476,7 +1499,7 @@ static void homeaxis(int axis) { destination[axis] = fabs(z_endstop_adj); if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true); } - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + line_to_destination(); st_synchronize(); Lock_z_motor(false); Lock_z2_motor(false); @@ -1489,7 +1512,7 @@ static void homeaxis(int axis) { if (endstop_adj[axis] * axis_home_dir < 0) { sync_plan_position(); destination[axis] = endstop_adj[axis]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + line_to_destination(); st_synchronize(); } #endif @@ -1534,7 +1557,7 @@ void refresh_cmd_timeout(void) } plan_set_e_position(current_position[E_AXIS]); float oldFeedrate = feedrate; - feedrate=retract_feedrate*60; + feedrate = retract_feedrate * 60; retracted[active_extruder]=true; prepare_move(); if(retract_zlift > 0.01) { @@ -1570,8 +1593,8 @@ void refresh_cmd_timeout(void) } plan_set_e_position(current_position[E_AXIS]); float oldFeedrate = feedrate; - feedrate=retract_recover_feedrate*60; - retracted[active_extruder]=false; + feedrate = retract_recover_feedrate * 60; + retracted[active_extruder] = false; prepare_move(); feedrate = oldFeedrate; } @@ -1725,17 +1748,16 @@ inline void gcode_G4() { */ inline void gcode_G28() { #ifdef ENABLE_AUTO_BED_LEVELING + plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) #ifdef DELTA reset_bed_level(); - #else - plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) #endif #endif #if defined(MESH_BED_LEVELING) uint8_t mbl_was_active = mbl.active; mbl.active = 0; - #endif // MESH_BED_LEVELING + #endif saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; @@ -1758,7 +1780,7 @@ inline void gcode_G28() { for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH; feedrate = 1.732 * homing_feedrate[X_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + line_to_destination(); st_synchronize(); endstops_hit_on_purpose(); @@ -1806,7 +1828,7 @@ inline void gcode_G28() { } else { feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); } - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + line_to_destination(); st_synchronize(); axis_is_at_home(X_AXIS); @@ -1814,7 +1836,7 @@ inline void gcode_G28() { sync_plan_position(); destination[X_AXIS] = current_position[X_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + line_to_destination(); feedrate = 0.0; st_synchronize(); endstops_hit_on_purpose(); @@ -1881,7 +1903,7 @@ inline void gcode_G28() { #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0 destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed feedrate = max_feedrate[Z_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + line_to_destination(); st_synchronize(); #endif HOMEAXIS(Z); @@ -1893,11 +1915,11 @@ inline void gcode_G28() { destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed - feedrate = XY_TRAVEL_SPEED / 60; + feedrate = XY_TRAVEL_SPEED; current_position[Z_AXIS] = 0; sync_plan_position(); - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + line_to_destination(); st_synchronize(); current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; @@ -1919,7 +1941,7 @@ inline void gcode_G28() { plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]); destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed feedrate = max_feedrate[Z_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + line_to_destination(); st_synchronize(); HOMEAXIS(Z); } @@ -1972,7 +1994,7 @@ inline void gcode_G28() { destination[Z_AXIS] = current_position[Z_AXIS]; destination[E_AXIS] = current_position[E_AXIS]; feedrate = homing_feedrate[X_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); + line_to_destination(); st_synchronize(); current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; sync_plan_position(); @@ -1986,6 +2008,19 @@ inline void gcode_G28() { endstops_hit_on_purpose(); } +#if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING) + + // Check for known positions in X and Y + bool can_run_bed_leveling() { + if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true; + LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN); + SERIAL_ECHO_START; + SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN); + return false; + } + +#endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING + #ifdef MESH_BED_LEVELING /** @@ -2000,6 +2035,10 @@ inline void gcode_G28() { * */ inline void gcode_G29() { + + // Prevent leveling without first homing in X and Y + if (!can_run_bed_leveling()) return; + static int probe_point = -1; int state = 0; if (code_seen('S') || code_seen('s')) { @@ -2116,13 +2155,8 @@ inline void gcode_G28() { */ inline void gcode_G29() { - // Prevent user from running a G29 without first homing in X and Y - if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) { - LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN); - SERIAL_ECHO_START; - SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN); - return; - } + // Prevent leveling without first homing in X and Y + if (!can_run_bed_leveling()) return; int verbose_level = 1; @@ -2204,16 +2238,15 @@ inline void gcode_G28() { st_synchronize(); - if (!dryrun) - { + if (!dryrun) { + // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong + plan_bed_level_matrix.set_to_identity(); + #ifdef DELTA reset_bed_level(); #else //!DELTA - - // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly //vector_3 corrected_position = plan_get_position_mm(); //corrected_position.debug("position before G29"); - plan_bed_level_matrix.set_to_identity(); vector_3 uncorrected_position = plan_get_position(); //uncorrected_position.debug("position during G29"); current_position[X_AXIS] = uncorrected_position.x; @@ -2221,7 +2254,7 @@ inline void gcode_G28() { current_position[Z_AXIS] = uncorrected_position.z; sync_plan_position(); - #endif + #endif // !DELTA } setup_for_endstop_move(); @@ -2287,8 +2320,7 @@ inline void gcode_G28() { #ifdef DELTA // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe); - if (distance_from_center > DELTA_PROBABLE_RADIUS) - continue; + if (distance_from_center > DELTA_PROBABLE_RADIUS) continue; #endif //DELTA // Enhanced G29 - Do not retract servo between probes @@ -2316,6 +2348,11 @@ inline void gcode_G28() { #endif probePointCounter++; + + manage_heater(); + manage_inactivity(); + lcd_update(); + } //xProbe } //yProbe @@ -2402,16 +2439,14 @@ inline void gcode_G28() { if (verbose_level > 0) plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); - // Correct the Z height difference from z-probe position and hotend tip position. - // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. - // When the bed is uneven, this height must be corrected. - if (!dryrun) - { - float x_tmp, y_tmp, z_tmp, real_z; - real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) - x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; - y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; - z_tmp = current_position[Z_AXIS]; + if (!dryrun) { + // Correct the Z height difference from z-probe position and hotend tip position. + // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. + // When the bed is uneven, this height must be corrected. + float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, + y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, + z_tmp = current_position[Z_AXIS], + real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. @@ -4686,18 +4721,14 @@ void process_commands() { gcode_G28(); break; - #if defined(MESH_BED_LEVELING) - case 29: // G29 Handle mesh based leveling + #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING) + case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. gcode_G29(); break; #endif #ifdef ENABLE_AUTO_BED_LEVELING - case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. - gcode_G29(); - break; - #ifndef Z_PROBE_SLED case 30: // G30 Single Z Probe @@ -5392,69 +5423,72 @@ void prepare_move() #ifdef SCARA //for now same as delta-code -float difference[NUM_AXIS]; -for (int8_t i=0; i < NUM_AXIS; i++) { - difference[i] = destination[i] - current_position[i]; -} + float difference[NUM_AXIS]; + for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; -float cartesian_mm = sqrt( sq(difference[X_AXIS]) + - sq(difference[Y_AXIS]) + - sq(difference[Z_AXIS])); -if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); } -if (cartesian_mm < 0.000001) { return; } -float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; -int steps = max(1, int(scara_segments_per_second * seconds)); - //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); - //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); - //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); -for (int s = 1; s <= steps; s++) { - float fraction = float(s) / float(steps); - for(int8_t i=0; i < NUM_AXIS; i++) { - destination[i] = current_position[i] + difference[i] * fraction; - } + float cartesian_mm = sqrt( sq(difference[X_AXIS]) + + sq(difference[Y_AXIS]) + + sq(difference[Z_AXIS])); + if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); } + if (cartesian_mm < 0.000001) { return; } + float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; + int steps = max(1, int(scara_segments_per_second * seconds)); + //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); + //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); + //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); + + for (int s = 1; s <= steps; s++) { + float fraction = float(s) / float(steps); + for(int8_t i = 0; i < NUM_AXIS; i++) { + destination[i] = current_position[i] + difference[i] * fraction; + } - calculate_delta(destination); - //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]); - //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]); - //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]); - //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]); - //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); - //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]); - - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], - destination[E_AXIS], feedrate*feedmultiply/60/100.0, - active_extruder); -} -#endif // SCARA - -#ifdef DELTA - float difference[NUM_AXIS]; - for (int8_t i=0; i < NUM_AXIS; i++) { - difference[i] = destination[i] - current_position[i]; - } - float cartesian_mm = sqrt(sq(difference[X_AXIS]) + - sq(difference[Y_AXIS]) + - sq(difference[Z_AXIS])); - if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); } - if (cartesian_mm < 0.000001) { return; } - float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; - int steps = max(1, int(delta_segments_per_second * seconds)); - // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); - // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); - // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); - for (int s = 1; s <= steps; s++) { - float fraction = float(s) / float(steps); - for(int8_t i=0; i < NUM_AXIS; i++) { - destination[i] = current_position[i] + difference[i] * fraction; + calculate_delta(destination); + //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]); + //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]); + //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]); + //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]); + //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); + //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]); + + plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], + destination[E_AXIS], feedrate*feedmultiply/60/100.0, + active_extruder); } - calculate_delta(destination); - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], - destination[E_AXIS], feedrate*feedmultiply/60/100.0, - active_extruder); - } + + #endif // SCARA -#endif // DELTA + #ifdef DELTA + + float difference[NUM_AXIS]; + for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; + + float cartesian_mm = sqrt(sq(difference[X_AXIS]) + + sq(difference[Y_AXIS]) + + sq(difference[Z_AXIS])); + if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); + if (cartesian_mm < 0.000001) return; + float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; + int steps = max(1, int(delta_segments_per_second * seconds)); + + // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); + // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); + // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); + + for (int s = 1; s <= steps; s++) { + float fraction = float(s) / float(steps); + for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction; + calculate_delta(destination); + #ifdef ENABLE_AUTO_BED_LEVELING + adjust_delta(destination); + #endif + plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], + destination[E_AXIS], feedrate*feedmultiply/60/100.0, + active_extruder); + } + + #endif // DELTA #ifdef DUAL_X_CARRIAGE if (active_extruder_parked) @@ -5500,13 +5534,13 @@ for (int s = 1; s <= steps; s++) { #if ! (defined DELTA || defined SCARA) // Do not use feedmultiply for E or Z only moves if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); + line_to_destination(); } else { #if defined(MESH_BED_LEVELING) - mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); + mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder); return; #else - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder); #endif // MESH_BED_LEVELING } #endif // !(DELTA || SCARA) diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index bb45fe2a8d..a4da4f6ff9 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -507,83 +507,107 @@ ISR(TIMER1_COMPA_vect) { } if (TEST(out_bits, Z_AXIS)) { // -direction + Z_APPLY_DIR(INVERT_Z_DIR,0); count_direction[Z_AXIS] = -1; - if (check_endstops) - { - #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 - #ifndef Z_DUAL_ENDSTOPS - UPDATE_ENDSTOP(z, Z, min, MIN); - #else - bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); - #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1 - bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING); - #else - bool z2_min_endstop=z_min_endstop; - #endif - if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0)) - { + + if (check_endstops) { + + #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0 + + #ifdef Z_DUAL_ENDSTOPS + + bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING, + z2_min_endstop = + #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0 + READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING + #else + z_min_endstop + #endif + ; + + bool z_min_both = z_min_endstop && old_z_min_endstop, + z2_min_both = z2_min_endstop && old_z2_min_endstop; + if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - endstop_z_hit=true; - if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing... - { + endstop_z_hit = true; + if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing... step_events_completed = current_block->step_event_count; - } } old_z_min_endstop = z_min_endstop; old_z2_min_endstop = z2_min_endstop; - #endif - #endif - } + + #else // !Z_DUAL_ENDSTOPS + + UPDATE_ENDSTOP(z, Z, min, MIN); + + #endif // !Z_DUAL_ENDSTOPS + + #endif // Z_MIN_PIN + + } // check_endstops + } else { // +direction + Z_APPLY_DIR(!INVERT_Z_DIR,0); count_direction[Z_AXIS] = 1; + if (check_endstops) { + #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0 - #ifndef Z_DUAL_ENDSTOPS - UPDATE_ENDSTOP(z, Z, max, MAX); - #else - bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING); - #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1 - bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING); - #else - bool z2_max_endstop=z_max_endstop; - #endif - if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0)) - { + + #ifdef Z_DUAL_ENDSTOPS + + bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING, + z2_max_endstop = + #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0 + READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING + #else + z_max_endstop + #endif + ; + + bool z_max_both = z_max_endstop && old_z_max_endstop, + z2_max_both = z2_max_endstop && old_z2_max_endstop; + if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - endstop_z_hit=true; + endstop_z_hit = true; -// if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true"); -// if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true"); + // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true"); + // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true"); - - if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing... - { + if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing... step_events_completed = current_block->step_event_count; - } } old_z_max_endstop = z_max_endstop; old_z2_max_endstop = z2_max_endstop; - #endif - #endif - } - } + + #else // !Z_DUAL_ENDSTOPS + + UPDATE_ENDSTOP(z, Z, max, MAX); + + #endif // !Z_DUAL_ENDSTOPS + + #endif // Z_MAX_PIN + + } // check_endstops + + } // +direction #ifndef ADVANCE if (TEST(out_bits, E_AXIS)) { // -direction REV_E_DIR(); - count_direction[E_AXIS]=-1; + count_direction[E_AXIS] = -1; } else { // +direction NORM_E_DIR(); - count_direction[E_AXIS]=1; + count_direction[E_AXIS] = 1; } #endif //!ADVANCE // Take multiple steps per interrupt (For high speed moves) - for (int8_t i=0; i < step_loops; i++) { + for (int8_t i = 0; i < step_loops; i++) { #ifndef AT90USB MSerial.checkRx(); // Check for serial chars. #endif