Split moves on grid boundaries with bilinear ABL on cartesian

This commit is contained in:
Scott Lahteine 2016-11-01 07:19:00 -05:00
parent fa6bf12697
commit ee5b8d6dc8

View file

@ -8652,7 +8652,68 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
mesh_line_to_destination(fr_mm_s, x_splits, y_splits); mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
} }
#endif // MESH_BED_LEVELING #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
/**
* Prepare a mesh-leveled linear move in a Cartesian setup,
* splitting the move where it crosses mesh borders.
*/
void bilinear_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
int cx1 = RAW_CURRENT_POSITION(X_AXIS) / bilinear_grid_spacing[X_AXIS],
cy1 = RAW_CURRENT_POSITION(Y_AXIS) / bilinear_grid_spacing[Y_AXIS],
cx2 = RAW_X_POSITION(destination[X_AXIS]) / bilinear_grid_spacing[X_AXIS],
cy2 = RAW_Y_POSITION(destination[Y_AXIS]) / bilinear_grid_spacing[Y_AXIS];
NOMORE(cx1, ABL_GRID_POINTS_X - 2);
NOMORE(cy1, ABL_GRID_POINTS_Y - 2);
NOMORE(cx2, ABL_GRID_POINTS_X - 2);
NOMORE(cy2, ABL_GRID_POINTS_Y - 2);
if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
#define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
float normalized_dist, end[NUM_AXIS];
// Split at the left/front border of the right/top square
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) {
memcpy(end, destination, sizeof(end));
destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + bilinear_grid_spacing[X_AXIS] * gcx);
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = LINE_SEGMENT_END(Y);
CBI(x_splits, gcx);
}
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
memcpy(end, destination, sizeof(end));
destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + bilinear_grid_spacing[Y_AXIS] * gcy);
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = LINE_SEGMENT_END(X);
CBI(y_splits, gcy);
}
else {
// Already split on a border
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
destination[Z_AXIS] = LINE_SEGMENT_END(Z);
destination[E_AXIS] = LINE_SEGMENT_END(E);
// Do the split and look for more borders
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
memcpy(destination, end, sizeof(end));
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
}
#endif // AUTO_BED_LEVELING_BILINEAR
#if IS_KINEMATIC #if IS_KINEMATIC
@ -8846,6 +8907,12 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
return false; return false;
} }
else else
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (planner.abl_enabled) {
bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
return false;
}
else
#endif #endif
line_to_destination(MMS_SCALED(feedrate_mm_s)); line_to_destination(MMS_SCALED(feedrate_mm_s));
} }