parent
7ee275b620
commit
f4a59e4ce5
|
@ -18,6 +18,12 @@
|
||||||
//#define WATCH_TEMP_PERIOD 40000 //40 seconds
|
//#define WATCH_TEMP_PERIOD 40000 //40 seconds
|
||||||
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
|
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
|
||||||
|
|
||||||
|
// Wait for Cooldown
|
||||||
|
// This defines if the M109 call should not block if it is cooling down.
|
||||||
|
// example: From a current temp of 220, you set M109 S200.
|
||||||
|
// if CooldownNoWait is defined M109 will not wait for the cooldown to finish
|
||||||
|
#define CooldownNoWait true
|
||||||
|
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
|
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
|
||||||
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
|
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
|
||||||
|
@ -146,68 +152,6 @@
|
||||||
#define EXTRUDERS 1
|
#define EXTRUDERS 1
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Same again but for Y Axis.
|
|
||||||
#define Y_DUAL_STEPPER_DRIVERS
|
|
||||||
|
|
||||||
// Define if the two Y drives need to rotate in opposite directions
|
|
||||||
#define INVERT_Y2_VS_Y_DIR true
|
|
||||||
|
|
||||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
|
||||||
#undef EXTRUDERS
|
|
||||||
#define EXTRUDERS 1
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef Z_DUAL_STEPPER_DRIVERS && Y_DUAL_STEPPER_DRIVERS
|
|
||||||
#error "You cannot have dual drivers for both Y and Z"
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// Enable this for dual x-carriage printers.
|
|
||||||
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
|
|
||||||
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
|
|
||||||
// allowing faster printing speeds.
|
|
||||||
//#define DUAL_X_CARRIAGE
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
// Configuration for second X-carriage
|
|
||||||
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
|
|
||||||
// the second x-carriage always homes to the maximum endstop.
|
|
||||||
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
|
|
||||||
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
|
|
||||||
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
|
|
||||||
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
|
|
||||||
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
|
|
||||||
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
|
|
||||||
// without modifying the firmware (through the "M218 T1 X???" command).
|
|
||||||
// Remember: you should set the second extruder x-offset to 0 in your slicer.
|
|
||||||
|
|
||||||
// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h)
|
|
||||||
#define X2_ENABLE_PIN 29
|
|
||||||
#define X2_STEP_PIN 25
|
|
||||||
#define X2_DIR_PIN 23
|
|
||||||
|
|
||||||
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
|
|
||||||
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
|
|
||||||
// as long as it supports dual x-carriages. (M605 S0)
|
|
||||||
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
|
|
||||||
// that additional slicer support is not required. (M605 S1)
|
|
||||||
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
|
|
||||||
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
|
|
||||||
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
|
|
||||||
|
|
||||||
// This is the default power-up mode which can be later using M605.
|
|
||||||
#define DEFAULT_DUAL_X_CARRIAGE_MODE 0
|
|
||||||
|
|
||||||
// As the x-carriages are independent we can now account for any relative Z offset
|
|
||||||
#define EXTRUDER1_Z_OFFSET 0.0 // z offset relative to extruder 0
|
|
||||||
|
|
||||||
// Default settings in "Auto-park Mode"
|
|
||||||
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
|
|
||||||
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
|
|
||||||
|
|
||||||
// Default x offset in duplication mode (typically set to half print bed width)
|
|
||||||
#define DEFAULT_DUPLICATION_X_OFFSET 100
|
|
||||||
|
|
||||||
#endif //DUAL_X_CARRIAGE
|
|
||||||
|
|
||||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||||
#define X_HOME_RETRACT_MM 5
|
#define X_HOME_RETRACT_MM 5
|
||||||
#define Y_HOME_RETRACT_MM 5
|
#define Y_HOME_RETRACT_MM 5
|
||||||
|
@ -230,11 +174,6 @@
|
||||||
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
|
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
|
||||||
#define DEFAULT_MINTRAVELFEEDRATE 0.0
|
#define DEFAULT_MINTRAVELFEEDRATE 0.0
|
||||||
|
|
||||||
// Feedrates for manual moves along X, Y, Z, E from panel
|
|
||||||
#ifdef ULTIPANEL
|
|
||||||
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // set the speeds for manual moves (mm/min)
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
|
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
|
||||||
#define DEFAULT_MINSEGMENTTIME 20000
|
#define DEFAULT_MINSEGMENTTIME 20000
|
||||||
|
|
||||||
|
|
|
@ -51,22 +51,22 @@
|
||||||
#define MYSERIAL MSerial
|
#define MYSERIAL MSerial
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define SERIAL_PROTOCOL(x) (MYSERIAL.print(x))
|
#define SERIAL_PROTOCOL(x) MYSERIAL.print(x);
|
||||||
#define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y))
|
#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y);
|
||||||
#define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x)))
|
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x));
|
||||||
#define SERIAL_PROTOCOLLN(x) (MYSERIAL.print(x),MYSERIAL.write('\n'))
|
#define SERIAL_PROTOCOLLN(x) {MYSERIAL.print(x);MYSERIAL.write('\n');}
|
||||||
#define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x)),MYSERIAL.write('\n'))
|
#define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(PSTR(x));MYSERIAL.write('\n');}
|
||||||
|
|
||||||
|
|
||||||
const char errormagic[] PROGMEM ="Error:";
|
const char errormagic[] PROGMEM ="Error:";
|
||||||
const char echomagic[] PROGMEM ="echo:";
|
const char echomagic[] PROGMEM ="echo:";
|
||||||
#define SERIAL_ERROR_START (serialprintPGM(errormagic))
|
#define SERIAL_ERROR_START serialprintPGM(errormagic);
|
||||||
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
|
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
|
||||||
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
|
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
|
||||||
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
|
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
|
||||||
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
|
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
|
||||||
|
|
||||||
#define SERIAL_ECHO_START (serialprintPGM(echomagic))
|
#define SERIAL_ECHO_START serialprintPGM(echomagic);
|
||||||
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
|
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
|
||||||
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
|
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
|
||||||
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
|
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
|
||||||
|
@ -96,11 +96,7 @@ void process_commands();
|
||||||
|
|
||||||
void manage_inactivity();
|
void manage_inactivity();
|
||||||
|
|
||||||
#if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \
|
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
|
||||||
&& defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
|
||||||
#define enable_x() do { WRITE(X_ENABLE_PIN, X_ENABLE_ON); WRITE(X2_ENABLE_PIN, X_ENABLE_ON); } while (0)
|
|
||||||
#define disable_x() do { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); WRITE(X2_ENABLE_PIN,!X_ENABLE_ON); } while (0)
|
|
||||||
#elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
|
|
||||||
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
|
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
|
||||||
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
|
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
|
||||||
#else
|
#else
|
||||||
|
@ -109,13 +105,8 @@ void manage_inactivity();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
|
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
|
||||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)
|
||||||
#define enable_y() { WRITE(Y_ENABLE_PIN, Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, Y_ENABLE_ON); }
|
#define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON)
|
||||||
#define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, !Y_ENABLE_ON); }
|
|
||||||
#else
|
|
||||||
#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)
|
|
||||||
#define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON)
|
|
||||||
#endif
|
|
||||||
#else
|
#else
|
||||||
#define enable_y() ;
|
#define enable_y() ;
|
||||||
#define disable_y() ;
|
#define disable_y() ;
|
||||||
|
@ -168,7 +159,6 @@ void ClearToSend();
|
||||||
void get_coordinates();
|
void get_coordinates();
|
||||||
#ifdef DELTA
|
#ifdef DELTA
|
||||||
void calculate_delta(float cartesian[3]);
|
void calculate_delta(float cartesian[3]);
|
||||||
extern float delta[3];
|
|
||||||
#endif
|
#endif
|
||||||
void prepare_move();
|
void prepare_move();
|
||||||
void kill();
|
void kill();
|
||||||
|
|
|
@ -48,8 +48,8 @@ block_t *current_block; // A pointer to the block currently being traced
|
||||||
// Variables used by The Stepper Driver Interrupt
|
// Variables used by The Stepper Driver Interrupt
|
||||||
static unsigned char out_bits; // The next stepping-bits to be output
|
static unsigned char out_bits; // The next stepping-bits to be output
|
||||||
static long counter_x, // Counter variables for the bresenham line tracer
|
static long counter_x, // Counter variables for the bresenham line tracer
|
||||||
counter_y,
|
counter_y,
|
||||||
counter_z,
|
counter_z,
|
||||||
counter_e;
|
counter_e;
|
||||||
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
|
@ -224,27 +224,27 @@ void enable_endstops(bool check)
|
||||||
// | BLOCK 1 | BLOCK 2 | d
|
// | BLOCK 1 | BLOCK 2 | d
|
||||||
//
|
//
|
||||||
// time ----->
|
// time ----->
|
||||||
//
|
//
|
||||||
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
||||||
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
||||||
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
||||||
// The slope of acceleration is calculated with the leib ramp alghorithm.
|
// The slope of acceleration is calculated with the leib ramp alghorithm.
|
||||||
|
|
||||||
void st_wake_up() {
|
void st_wake_up() {
|
||||||
// TCNT1 = 0;
|
// TCNT1 = 0;
|
||||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||||
}
|
}
|
||||||
|
|
||||||
void step_wait(){
|
void step_wait(){
|
||||||
for(int8_t i=0; i < 6; i++){
|
for(int8_t i=0; i < 6; i++){
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||||
unsigned short timer;
|
unsigned short timer;
|
||||||
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
|
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
|
||||||
|
|
||||||
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
||||||
step_rate = (step_rate >> 2)&0x3fff;
|
step_rate = (step_rate >> 2)&0x3fff;
|
||||||
step_loops = 4;
|
step_loops = 4;
|
||||||
|
@ -255,11 +255,11 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
step_loops = 1;
|
step_loops = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
|
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
|
||||||
step_rate -= (F_CPU/500000); // Correct for minimal speed
|
step_rate -= (F_CPU/500000); // Correct for minimal speed
|
||||||
if(step_rate >= (8*256)){ // higher step rate
|
if(step_rate >= (8*256)){ // higher step rate
|
||||||
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
|
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
|
||||||
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||||||
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
|
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
|
||||||
|
@ -276,7 +276,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||||
return timer;
|
return timer;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Initializes the trapezoid generator from the current block. Called whenever a new
|
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||||||
// block begins.
|
// block begins.
|
||||||
FORCE_INLINE void trapezoid_generator_reset() {
|
FORCE_INLINE void trapezoid_generator_reset() {
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
|
@ -284,7 +284,7 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
||||||
final_advance = current_block->final_advance;
|
final_advance = current_block->final_advance;
|
||||||
// Do E steps + advance steps
|
// Do E steps + advance steps
|
||||||
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
||||||
old_advance = advance >>8;
|
old_advance = advance >>8;
|
||||||
#endif
|
#endif
|
||||||
deceleration_time = 0;
|
deceleration_time = 0;
|
||||||
// step_rate to timer interval
|
// step_rate to timer interval
|
||||||
|
@ -294,7 +294,7 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
||||||
acc_step_rate = current_block->initial_rate;
|
acc_step_rate = current_block->initial_rate;
|
||||||
acceleration_time = calc_timer(acc_step_rate);
|
acceleration_time = calc_timer(acc_step_rate);
|
||||||
OCR1A = acceleration_time;
|
OCR1A = acceleration_time;
|
||||||
|
|
||||||
// SERIAL_ECHO_START;
|
// SERIAL_ECHO_START;
|
||||||
// SERIAL_ECHOPGM("advance :");
|
// SERIAL_ECHOPGM("advance :");
|
||||||
// SERIAL_ECHO(current_block->advance/256.0);
|
// SERIAL_ECHO(current_block->advance/256.0);
|
||||||
|
@ -304,13 +304,13 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
||||||
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
||||||
// SERIAL_ECHOPGM("final advance :");
|
// SERIAL_ECHOPGM("final advance :");
|
||||||
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||||
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||||
ISR(TIMER1_COMPA_vect)
|
ISR(TIMER1_COMPA_vect)
|
||||||
{
|
{
|
||||||
// If there is no current block, attempt to pop one from the buffer
|
// If there is no current block, attempt to pop one from the buffer
|
||||||
if (current_block == NULL) {
|
if (current_block == NULL) {
|
||||||
// Anything in the buffer?
|
// Anything in the buffer?
|
||||||
|
@ -322,24 +322,24 @@ ISR(TIMER1_COMPA_vect)
|
||||||
counter_y = counter_x;
|
counter_y = counter_x;
|
||||||
counter_z = counter_x;
|
counter_z = counter_x;
|
||||||
counter_e = counter_x;
|
counter_e = counter_x;
|
||||||
step_events_completed = 0;
|
step_events_completed = 0;
|
||||||
|
|
||||||
#ifdef Z_LATE_ENABLE
|
#ifdef Z_LATE_ENABLE
|
||||||
if(current_block->steps_z > 0) {
|
if(current_block->steps_z > 0) {
|
||||||
enable_z();
|
enable_z();
|
||||||
OCR1A = 2000; //1ms wait
|
OCR1A = 2000; //1ms wait
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// #ifdef ADVANCE
|
// #ifdef ADVANCE
|
||||||
// e_steps[current_block->active_extruder] = 0;
|
// e_steps[current_block->active_extruder] = 0;
|
||||||
// #endif
|
// #endif
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
OCR1A=2000; // 1kHz.
|
OCR1A=2000; // 1kHz.
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (current_block != NULL) {
|
if (current_block != NULL) {
|
||||||
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
||||||
|
@ -348,58 +348,22 @@ ISR(TIMER1_COMPA_vect)
|
||||||
|
|
||||||
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
|
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
|
||||||
if((out_bits & (1<<X_AXIS))!=0){
|
if((out_bits & (1<<X_AXIS))!=0){
|
||||||
#ifdef DUAL_X_CARRIAGE
|
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||||
if (extruder_duplication_enabled){
|
|
||||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
|
||||||
WRITE(X2_DIR_PIN, INVERT_X_DIR);
|
|
||||||
}
|
|
||||||
else{
|
|
||||||
if (current_block->active_extruder != 0)
|
|
||||||
WRITE(X2_DIR_PIN, INVERT_X_DIR);
|
|
||||||
else
|
|
||||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
|
||||||
#endif
|
|
||||||
count_direction[X_AXIS]=-1;
|
count_direction[X_AXIS]=-1;
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
#ifdef DUAL_X_CARRIAGE
|
WRITE(X_DIR_PIN, !INVERT_X_DIR);
|
||||||
if (extruder_duplication_enabled){
|
|
||||||
WRITE(X_DIR_PIN, !INVERT_X_DIR);
|
|
||||||
WRITE(X2_DIR_PIN, !INVERT_X_DIR);
|
|
||||||
}
|
|
||||||
else{
|
|
||||||
if (current_block->active_extruder != 0)
|
|
||||||
WRITE(X2_DIR_PIN, !INVERT_X_DIR);
|
|
||||||
else
|
|
||||||
WRITE(X_DIR_PIN, !INVERT_X_DIR);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
WRITE(X_DIR_PIN, !INVERT_X_DIR);
|
|
||||||
#endif
|
|
||||||
count_direction[X_AXIS]=1;
|
count_direction[X_AXIS]=1;
|
||||||
}
|
}
|
||||||
if((out_bits & (1<<Y_AXIS))!=0){
|
if((out_bits & (1<<Y_AXIS))!=0){
|
||||||
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
|
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
|
||||||
|
|
||||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
|
||||||
WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
|
|
||||||
#endif
|
|
||||||
|
|
||||||
count_direction[Y_AXIS]=-1;
|
count_direction[Y_AXIS]=-1;
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
|
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
|
||||||
|
|
||||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
|
||||||
WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
|
|
||||||
#endif
|
|
||||||
|
|
||||||
count_direction[Y_AXIS]=1;
|
count_direction[Y_AXIS]=1;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Set direction en check limit switches
|
// Set direction en check limit switches
|
||||||
#ifndef COREXY
|
#ifndef COREXY
|
||||||
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
|
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
|
||||||
|
@ -408,43 +372,29 @@ ISR(TIMER1_COMPA_vect)
|
||||||
#endif
|
#endif
|
||||||
CHECK_ENDSTOPS
|
CHECK_ENDSTOPS
|
||||||
{
|
{
|
||||||
#ifdef DUAL_X_CARRIAGE
|
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
|
||||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
|
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
||||||
|| (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||||
#endif
|
endstop_x_hit=true;
|
||||||
{
|
step_events_completed = current_block->step_event_count;
|
||||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
}
|
||||||
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
|
old_x_min_endstop = x_min_endstop;
|
||||||
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
#endif
|
||||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
||||||
endstop_x_hit=true;
|
|
||||||
step_events_completed = current_block->step_event_count;
|
|
||||||
}
|
|
||||||
old_x_min_endstop = x_min_endstop;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else { // +direction
|
else { // +direction
|
||||||
CHECK_ENDSTOPS
|
CHECK_ENDSTOPS
|
||||||
{
|
{
|
||||||
#ifdef DUAL_X_CARRIAGE
|
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
|
||||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
|
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
||||||
|| (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||||
#endif
|
endstop_x_hit=true;
|
||||||
{
|
step_events_completed = current_block->step_event_count;
|
||||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
}
|
||||||
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
|
old_x_max_endstop = x_max_endstop;
|
||||||
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
#endif
|
||||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
||||||
endstop_x_hit=true;
|
|
||||||
step_events_completed = current_block->step_event_count;
|
|
||||||
}
|
|
||||||
old_x_max_endstop = x_max_endstop;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -456,7 +406,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
CHECK_ENDSTOPS
|
CHECK_ENDSTOPS
|
||||||
{
|
{
|
||||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
||||||
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
|
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
|
||||||
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
||||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||||
endstop_y_hit=true;
|
endstop_y_hit=true;
|
||||||
|
@ -470,7 +420,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
CHECK_ENDSTOPS
|
CHECK_ENDSTOPS
|
||||||
{
|
{
|
||||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
||||||
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
|
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
|
||||||
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
||||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||||
endstop_y_hit=true;
|
endstop_y_hit=true;
|
||||||
|
@ -484,15 +434,15 @@ ISR(TIMER1_COMPA_vect)
|
||||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||||
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
||||||
|
|
||||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||||
WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
|
WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
count_direction[Z_AXIS]=-1;
|
count_direction[Z_AXIS]=-1;
|
||||||
CHECK_ENDSTOPS
|
CHECK_ENDSTOPS
|
||||||
{
|
{
|
||||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
||||||
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
|
||||||
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
||||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||||
endstop_z_hit=true;
|
endstop_z_hit=true;
|
||||||
|
@ -505,7 +455,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
else { // +direction
|
else { // +direction
|
||||||
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
||||||
|
|
||||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||||
WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
|
WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -513,7 +463,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
CHECK_ENDSTOPS
|
CHECK_ENDSTOPS
|
||||||
{
|
{
|
||||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
||||||
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
|
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
|
||||||
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
||||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||||
endstop_z_hit=true;
|
endstop_z_hit=true;
|
||||||
|
@ -534,10 +484,10 @@ ISR(TIMER1_COMPA_vect)
|
||||||
count_direction[E_AXIS]=1;
|
count_direction[E_AXIS]=1;
|
||||||
}
|
}
|
||||||
#endif //!ADVANCE
|
#endif //!ADVANCE
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
||||||
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
|
||||||
#ifndef AT90USB
|
#ifndef AT90USB
|
||||||
MSerial.checkRx(); // Check for serial chars.
|
MSerial.checkRx(); // Check for serial chars.
|
||||||
#endif
|
#endif
|
||||||
|
@ -552,73 +502,38 @@ ISR(TIMER1_COMPA_vect)
|
||||||
else {
|
else {
|
||||||
e_steps[current_block->active_extruder]++;
|
e_steps[current_block->active_extruder]++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif //ADVANCE
|
#endif //ADVANCE
|
||||||
|
|
||||||
counter_x += current_block->steps_x;
|
counter_x += current_block->steps_x;
|
||||||
if (counter_x > 0) {
|
if (counter_x > 0) {
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
if (extruder_duplication_enabled){
|
|
||||||
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
|
||||||
WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
if (current_block->active_extruder != 0)
|
|
||||||
WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
|
|
||||||
else
|
|
||||||
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||||
#endif
|
|
||||||
counter_x -= current_block->step_event_count;
|
counter_x -= current_block->step_event_count;
|
||||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
if (extruder_duplication_enabled){
|
|
||||||
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
|
|
||||||
WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
if (current_block->active_extruder != 0)
|
|
||||||
WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
|
|
||||||
else
|
|
||||||
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
|
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
counter_y += current_block->steps_y;
|
counter_y += current_block->steps_y;
|
||||||
if (counter_y > 0) {
|
if (counter_y > 0) {
|
||||||
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||||
|
counter_y -= current_block->step_event_count;
|
||||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||||
WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
counter_y -= current_block->step_event_count;
|
|
||||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
|
||||||
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||||
|
|
||||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
|
||||||
WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
counter_z += current_block->steps_z;
|
counter_z += current_block->steps_z;
|
||||||
if (counter_z > 0) {
|
if (counter_z > 0) {
|
||||||
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
||||||
|
|
||||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||||
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
|
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
counter_z -= current_block->step_event_count;
|
counter_z -= current_block->step_event_count;
|
||||||
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
||||||
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
||||||
|
|
||||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||||
WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
|
WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
@ -632,17 +547,17 @@ ISR(TIMER1_COMPA_vect)
|
||||||
WRITE_E_STEP(INVERT_E_STEP_PIN);
|
WRITE_E_STEP(INVERT_E_STEP_PIN);
|
||||||
}
|
}
|
||||||
#endif //!ADVANCE
|
#endif //!ADVANCE
|
||||||
step_events_completed += 1;
|
step_events_completed += 1;
|
||||||
if(step_events_completed >= current_block->step_event_count) break;
|
if(step_events_completed >= current_block->step_event_count) break;
|
||||||
}
|
}
|
||||||
// Calculare new timer value
|
// Calculare new timer value
|
||||||
unsigned short timer;
|
unsigned short timer;
|
||||||
unsigned short step_rate;
|
unsigned short step_rate;
|
||||||
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
|
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
|
||||||
|
|
||||||
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||||
acc_step_rate += current_block->initial_rate;
|
acc_step_rate += current_block->initial_rate;
|
||||||
|
|
||||||
// upper limit
|
// upper limit
|
||||||
if(acc_step_rate > current_block->nominal_rate)
|
if(acc_step_rate > current_block->nominal_rate)
|
||||||
acc_step_rate = current_block->nominal_rate;
|
acc_step_rate = current_block->nominal_rate;
|
||||||
|
@ -658,13 +573,13 @@ ISR(TIMER1_COMPA_vect)
|
||||||
//if(advance > current_block->advance) advance = current_block->advance;
|
//if(advance > current_block->advance) advance = current_block->advance;
|
||||||
// Do E steps + advance steps
|
// Do E steps + advance steps
|
||||||
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
||||||
old_advance = advance >>8;
|
old_advance = advance >>8;
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
||||||
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
||||||
|
|
||||||
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
||||||
step_rate = current_block->final_rate;
|
step_rate = current_block->final_rate;
|
||||||
}
|
}
|
||||||
|
@ -687,7 +602,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
if(advance < final_advance) advance = final_advance;
|
if(advance < final_advance) advance = final_advance;
|
||||||
// Do E steps + advance steps
|
// Do E steps + advance steps
|
||||||
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
||||||
old_advance = advance >>8;
|
old_advance = advance >>8;
|
||||||
#endif //ADVANCE
|
#endif //ADVANCE
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
|
@ -696,12 +611,12 @@ ISR(TIMER1_COMPA_vect)
|
||||||
step_loops = step_loops_nominal;
|
step_loops = step_loops_nominal;
|
||||||
}
|
}
|
||||||
|
|
||||||
// If current block is finished, reset pointer
|
// If current block is finished, reset pointer
|
||||||
if (step_events_completed >= current_block->step_event_count) {
|
if (step_events_completed >= current_block->step_event_count) {
|
||||||
current_block = NULL;
|
current_block = NULL;
|
||||||
plan_discard_current_block();
|
plan_discard_current_block();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
|
@ -720,7 +635,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
WRITE(E0_DIR_PIN, INVERT_E0_DIR);
|
WRITE(E0_DIR_PIN, INVERT_E0_DIR);
|
||||||
e_steps[0]++;
|
e_steps[0]++;
|
||||||
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
||||||
}
|
}
|
||||||
else if (e_steps[0] > 0) {
|
else if (e_steps[0] > 0) {
|
||||||
WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
|
WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
|
||||||
e_steps[0]--;
|
e_steps[0]--;
|
||||||
|
@ -734,7 +649,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
WRITE(E1_DIR_PIN, INVERT_E1_DIR);
|
WRITE(E1_DIR_PIN, INVERT_E1_DIR);
|
||||||
e_steps[1]++;
|
e_steps[1]++;
|
||||||
WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
|
WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
|
||||||
}
|
}
|
||||||
else if (e_steps[1] > 0) {
|
else if (e_steps[1] > 0) {
|
||||||
WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
|
WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
|
||||||
e_steps[1]--;
|
e_steps[1]--;
|
||||||
|
@ -749,7 +664,7 @@ ISR(TIMER1_COMPA_vect)
|
||||||
WRITE(E2_DIR_PIN, INVERT_E2_DIR);
|
WRITE(E2_DIR_PIN, INVERT_E2_DIR);
|
||||||
e_steps[2]++;
|
e_steps[2]++;
|
||||||
WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
|
WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
|
||||||
}
|
}
|
||||||
else if (e_steps[2] > 0) {
|
else if (e_steps[2] > 0) {
|
||||||
WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
|
WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
|
||||||
e_steps[2]--;
|
e_steps[2]--;
|
||||||
|
@ -765,29 +680,22 @@ void st_init()
|
||||||
{
|
{
|
||||||
digipot_init(); //Initialize Digipot Motor Current
|
digipot_init(); //Initialize Digipot Motor Current
|
||||||
microstep_init(); //Initialize Microstepping Pins
|
microstep_init(); //Initialize Microstepping Pins
|
||||||
|
|
||||||
//Initialize Dir Pins
|
//Initialize Dir Pins
|
||||||
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
|
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
|
||||||
SET_OUTPUT(X_DIR_PIN);
|
SET_OUTPUT(X_DIR_PIN);
|
||||||
#endif
|
#endif
|
||||||
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
|
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
|
||||||
SET_OUTPUT(X2_DIR_PIN);
|
|
||||||
#endif
|
|
||||||
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
|
|
||||||
SET_OUTPUT(Y_DIR_PIN);
|
SET_OUTPUT(Y_DIR_PIN);
|
||||||
|
|
||||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
|
|
||||||
SET_OUTPUT(Y2_DIR_PIN);
|
|
||||||
#endif
|
|
||||||
#endif
|
#endif
|
||||||
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
|
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
|
||||||
SET_OUTPUT(Z_DIR_PIN);
|
SET_OUTPUT(Z_DIR_PIN);
|
||||||
|
|
||||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
|
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
|
||||||
SET_OUTPUT(Z2_DIR_PIN);
|
SET_OUTPUT(Z2_DIR_PIN);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
|
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
|
||||||
SET_OUTPUT(E0_DIR_PIN);
|
SET_OUTPUT(E0_DIR_PIN);
|
||||||
#endif
|
#endif
|
||||||
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
|
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
|
||||||
|
@ -803,23 +711,14 @@ void st_init()
|
||||||
SET_OUTPUT(X_ENABLE_PIN);
|
SET_OUTPUT(X_ENABLE_PIN);
|
||||||
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
|
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
|
||||||
#endif
|
#endif
|
||||||
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
|
||||||
SET_OUTPUT(X2_ENABLE_PIN);
|
|
||||||
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
|
|
||||||
#endif
|
|
||||||
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
|
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
|
||||||
SET_OUTPUT(Y_ENABLE_PIN);
|
SET_OUTPUT(Y_ENABLE_PIN);
|
||||||
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
|
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
|
||||||
|
|
||||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
|
|
||||||
SET_OUTPUT(Y2_ENABLE_PIN);
|
|
||||||
if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
|
|
||||||
#endif
|
|
||||||
#endif
|
#endif
|
||||||
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
|
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
|
||||||
SET_OUTPUT(Z_ENABLE_PIN);
|
SET_OUTPUT(Z_ENABLE_PIN);
|
||||||
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
|
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
|
||||||
|
|
||||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
|
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
|
||||||
SET_OUTPUT(Z2_ENABLE_PIN);
|
SET_OUTPUT(Z2_ENABLE_PIN);
|
||||||
if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
|
if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
|
||||||
|
@ -839,71 +738,62 @@ void st_init()
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
//endstops and pullups
|
//endstops and pullups
|
||||||
|
|
||||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||||
SET_INPUT(X_MIN_PIN);
|
SET_INPUT(X_MIN_PIN);
|
||||||
#ifdef ENDSTOPPULLUP_XMIN
|
#ifdef ENDSTOPPULLUP_XMIN
|
||||||
WRITE(X_MIN_PIN,HIGH);
|
WRITE(X_MIN_PIN,HIGH);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
||||||
SET_INPUT(Y_MIN_PIN);
|
SET_INPUT(Y_MIN_PIN);
|
||||||
#ifdef ENDSTOPPULLUP_YMIN
|
#ifdef ENDSTOPPULLUP_YMIN
|
||||||
WRITE(Y_MIN_PIN,HIGH);
|
WRITE(Y_MIN_PIN,HIGH);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
||||||
SET_INPUT(Z_MIN_PIN);
|
SET_INPUT(Z_MIN_PIN);
|
||||||
#ifdef ENDSTOPPULLUP_ZMIN
|
#ifdef ENDSTOPPULLUP_ZMIN
|
||||||
WRITE(Z_MIN_PIN,HIGH);
|
WRITE(Z_MIN_PIN,HIGH);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||||
SET_INPUT(X_MAX_PIN);
|
SET_INPUT(X_MAX_PIN);
|
||||||
#ifdef ENDSTOPPULLUP_XMAX
|
#ifdef ENDSTOPPULLUP_XMAX
|
||||||
WRITE(X_MAX_PIN,HIGH);
|
WRITE(X_MAX_PIN,HIGH);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
||||||
SET_INPUT(Y_MAX_PIN);
|
SET_INPUT(Y_MAX_PIN);
|
||||||
#ifdef ENDSTOPPULLUP_YMAX
|
#ifdef ENDSTOPPULLUP_YMAX
|
||||||
WRITE(Y_MAX_PIN,HIGH);
|
WRITE(Y_MAX_PIN,HIGH);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
||||||
SET_INPUT(Z_MAX_PIN);
|
SET_INPUT(Z_MAX_PIN);
|
||||||
#ifdef ENDSTOPPULLUP_ZMAX
|
#ifdef ENDSTOPPULLUP_ZMAX
|
||||||
WRITE(Z_MAX_PIN,HIGH);
|
WRITE(Z_MAX_PIN,HIGH);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
//Initialize Step Pins
|
//Initialize Step Pins
|
||||||
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
|
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
|
||||||
SET_OUTPUT(X_STEP_PIN);
|
SET_OUTPUT(X_STEP_PIN);
|
||||||
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
|
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
|
||||||
disable_x();
|
disable_x();
|
||||||
#endif
|
#endif
|
||||||
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
|
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
|
||||||
SET_OUTPUT(X2_STEP_PIN);
|
|
||||||
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
|
|
||||||
disable_x();
|
|
||||||
#endif
|
|
||||||
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
|
|
||||||
SET_OUTPUT(Y_STEP_PIN);
|
SET_OUTPUT(Y_STEP_PIN);
|
||||||
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
|
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
|
||||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
|
|
||||||
SET_OUTPUT(Y2_STEP_PIN);
|
|
||||||
WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
|
|
||||||
#endif
|
|
||||||
disable_y();
|
disable_y();
|
||||||
#endif
|
#endif
|
||||||
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
|
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
|
||||||
SET_OUTPUT(Z_STEP_PIN);
|
SET_OUTPUT(Z_STEP_PIN);
|
||||||
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
|
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
|
||||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
|
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
|
||||||
|
@ -911,33 +801,33 @@ void st_init()
|
||||||
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
|
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
|
||||||
#endif
|
#endif
|
||||||
disable_z();
|
disable_z();
|
||||||
#endif
|
#endif
|
||||||
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
|
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
|
||||||
SET_OUTPUT(E0_STEP_PIN);
|
SET_OUTPUT(E0_STEP_PIN);
|
||||||
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
|
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
|
||||||
disable_e0();
|
disable_e0();
|
||||||
#endif
|
#endif
|
||||||
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
|
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
|
||||||
SET_OUTPUT(E1_STEP_PIN);
|
SET_OUTPUT(E1_STEP_PIN);
|
||||||
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
|
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
|
||||||
disable_e1();
|
disable_e1();
|
||||||
#endif
|
#endif
|
||||||
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
|
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
|
||||||
SET_OUTPUT(E2_STEP_PIN);
|
SET_OUTPUT(E2_STEP_PIN);
|
||||||
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
|
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
|
||||||
disable_e2();
|
disable_e2();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// waveform generation = 0100 = CTC
|
// waveform generation = 0100 = CTC
|
||||||
TCCR1B &= ~(1<<WGM13);
|
TCCR1B &= ~(1<<WGM13);
|
||||||
TCCR1B |= (1<<WGM12);
|
TCCR1B |= (1<<WGM12);
|
||||||
TCCR1A &= ~(1<<WGM11);
|
TCCR1A &= ~(1<<WGM11);
|
||||||
TCCR1A &= ~(1<<WGM10);
|
TCCR1A &= ~(1<<WGM10);
|
||||||
|
|
||||||
// output mode = 00 (disconnected)
|
// output mode = 00 (disconnected)
|
||||||
TCCR1A &= ~(3<<COM1A0);
|
TCCR1A &= ~(3<<COM1A0);
|
||||||
TCCR1A &= ~(3<<COM1B0);
|
TCCR1A &= ~(3<<COM1B0);
|
||||||
|
|
||||||
// Set the timer pre-scaler
|
// Set the timer pre-scaler
|
||||||
// Generally we use a divider of 8, resulting in a 2MHz timer
|
// Generally we use a divider of 8, resulting in a 2MHz timer
|
||||||
// frequency on a 16MHz MCU. If you are going to change this, be
|
// frequency on a 16MHz MCU. If you are going to change this, be
|
||||||
|
@ -947,19 +837,19 @@ void st_init()
|
||||||
|
|
||||||
OCR1A = 0x4000;
|
OCR1A = 0x4000;
|
||||||
TCNT1 = 0;
|
TCNT1 = 0;
|
||||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||||
|
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
#if defined(TCCR0A) && defined(WGM01)
|
#if defined(TCCR0A) && defined(WGM01)
|
||||||
TCCR0A &= ~(1<<WGM01);
|
TCCR0A &= ~(1<<WGM01);
|
||||||
TCCR0A &= ~(1<<WGM00);
|
TCCR0A &= ~(1<<WGM00);
|
||||||
#endif
|
#endif
|
||||||
e_steps[0] = 0;
|
e_steps[0] = 0;
|
||||||
e_steps[1] = 0;
|
e_steps[1] = 0;
|
||||||
e_steps[2] = 0;
|
e_steps[2] = 0;
|
||||||
TIMSK0 |= (1<<OCIE0A);
|
TIMSK0 |= (1<<OCIE0A);
|
||||||
#endif //ADVANCE
|
#endif //ADVANCE
|
||||||
|
|
||||||
enable_endstops(true); // Start with endstops active. After homing they can be disabled
|
enable_endstops(true); // Start with endstops active. After homing they can be disabled
|
||||||
sei();
|
sei();
|
||||||
}
|
}
|
||||||
|
@ -1003,13 +893,13 @@ long st_get_position(uint8_t axis)
|
||||||
|
|
||||||
void finishAndDisableSteppers()
|
void finishAndDisableSteppers()
|
||||||
{
|
{
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
disable_x();
|
disable_x();
|
||||||
disable_y();
|
disable_y();
|
||||||
disable_z();
|
disable_z();
|
||||||
disable_e0();
|
disable_e0();
|
||||||
disable_e1();
|
disable_e1();
|
||||||
disable_e2();
|
disable_e2();
|
||||||
}
|
}
|
||||||
|
|
||||||
void quickStop()
|
void quickStop()
|
||||||
|
@ -1036,10 +926,10 @@ void digipot_init() //Initialize Digipot Motor Current
|
||||||
{
|
{
|
||||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||||
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
|
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
|
||||||
|
|
||||||
SPI.begin();
|
SPI.begin();
|
||||||
pinMode(DIGIPOTSS_PIN, OUTPUT);
|
pinMode(DIGIPOTSS_PIN, OUTPUT);
|
||||||
for(int i=0;i<=4;i++)
|
for(int i=0;i<=4;i++)
|
||||||
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
|
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
|
||||||
digipot_current(i,digipot_motor_current[i]);
|
digipot_current(i,digipot_motor_current[i]);
|
||||||
#endif
|
#endif
|
||||||
|
|
Loading…
Reference in a new issue