Optimize LVGL with HAL TFT IO (SPI and FSMC) (#18974)

This commit is contained in:
Victor Oliveira 2020-08-13 20:31:59 -03:00 committed by GitHub
parent 3b9e0c3dde
commit ff5c8d3570
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
16 changed files with 181 additions and 775 deletions

View file

@ -22,7 +22,7 @@
#include "../../../inc/MarlinConfig.h"
#if HAS_FSMC_TFT
#if HAS_FSMC_TFT || ENABLED(TFT_LVGL_UI_FSMC)
#include "tft_fsmc.h"
#include <libmaple/fsmc.h>
@ -224,6 +224,7 @@ void TFT_FSMC::Abort() {
}
void TFT_FSMC::TransmitDMA(uint32_t MemoryIncrease, uint16_t *Data, uint16_t Count) {
#if defined(FSMC_DMA_DEV) && defined(FSMC_DMA_CHANNEL)
dma_setup_transfer(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, Data, DMA_SIZE_16BITS, &LCD->RAM, DMA_SIZE_16BITS, DMA_MEM_2_MEM | MemoryIncrease);
dma_set_num_transfers(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, Count);
dma_clear_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
@ -231,6 +232,7 @@ void TFT_FSMC::TransmitDMA(uint32_t MemoryIncrease, uint16_t *Data, uint16_t Cou
while ((dma_get_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL) & 0x0A) == 0) {};
dma_disable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
#endif
}
#endif // HAS_FSMC_TFT

View file

@ -61,4 +61,11 @@ class TFT_FSMC {
static void WriteSequence(uint16_t *Data, uint16_t Count) { TransmitDMA(DMA_PINC_MODE, Data, Count); }
static void WriteMultiple(uint16_t Color, uint16_t Count) { static uint16_t Data; Data = Color; TransmitDMA(DMA_CIRC_MODE, &Data, Count); }
static void WriteMultiple(uint16_t Color, uint32_t Count) {
static uint16_t Data; Data = Color;
while (Count > 0) {
TransmitDMA(DMA_CIRC_MODE, &Data, Count > 0xFFFF ? 0xFFFF : Count);
Count = Count > 0xFFFF ? Count - 0xFFFF : 0;
}
}
};

View file

@ -22,7 +22,7 @@
#include "../../../inc/MarlinConfig.h"
#if HAS_SPI_TFT
#if HAS_SPI_TFT || ENABLED(TFT_LVGL_UI_SPI)
#include "tft_spi.h"
@ -103,16 +103,21 @@ uint32_t TFT_SPI::ReadID(uint16_t Reg) {
#if !PIN_EXISTS(TFT_MISO)
return 0;
#else
uint16_t d = 0;
uint8_t d = 0;
uint32_t data = 0;
SPIx.setClockDivider(SPI_CLOCK_DIV16);
DataTransferBegin(DATASIZE_8BIT);
WriteReg(Reg);
SPI.read((uint8_t*)&d, 1); //dummy read
SPI.read((uint8_t*)&d, 1);
LOOP_L_N(i, 4) {
SPIx.read((uint8_t*)&d, 1);
data = (data << 8) | d;
}
DataTransferEnd();
SPIx.setClockDivider(SPI_CLOCK_MAX);
return d >> 7;
return data >> 7;
#endif
}

View file

@ -62,4 +62,11 @@ public:
static void WriteSequence(uint16_t *Data, uint16_t Count) { TransmitDMA(DMA_MINC_ENABLE, Data, Count); }
static void WriteMultiple(uint16_t Color, uint16_t Count) { static uint16_t Data; Data = Color; TransmitDMA(DMA_MINC_DISABLE, &Data, Count); }
static void WriteMultiple(uint16_t Color, uint32_t Count) {
static uint16_t Data; Data = Color;
while (Count > 0) {
TransmitDMA(DMA_MINC_DISABLE, &Data, Count > 0xFFFF ? 0xFFFF : Count);
Count = Count > 0xFFFF ? Count - 0xFFFF : 0;
}
}
};

View file

@ -252,7 +252,7 @@
#endif
// Full Touch Screen needs 'tft/xpt2046'
#if ENABLED(TOUCH_SCREEN)
#if EITHER(TOUCH_SCREEN, HAS_TFT_LVGL_UI)
#define HAS_TFT_XPT2046 1
#endif

View file

@ -54,112 +54,27 @@ TFT SPI_TFT;
// use SPI1 for the spi tft.
void TFT::spi_init(uint8_t spiRate) {
SPI_TFT_CS_H;
/**
* STM32F1 APB2 = 72MHz, APB1 = 36MHz, max SPI speed of this MCU if 18Mhz
* STM32F1 has 3 SPI ports, SPI1 in APB2, SPI2/SPI3 in APB1
* so the minimum prescale of SPI1 is DIV4, SPI2/SPI3 is DIV2
*/
uint8_t clock;
switch (spiRate) {
case SPI_FULL_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_HALF_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_QUARTER_SPEED: clock = SPI_CLOCK_DIV8; break;
case SPI_EIGHTH_SPEED: clock = SPI_CLOCK_DIV16; break;
case SPI_SPEED_5: clock = SPI_CLOCK_DIV32; break;
case SPI_SPEED_6: clock = SPI_CLOCK_DIV64; break;
default: clock = SPI_CLOCK_DIV2; // Default from the SPI library
}
SPI.setModule(1);
SPI.begin();
SPI.setClockDivider(clock);
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
}
uint8_t TFT::spi_Rec() {
uint8_t returnByte = SPI.transfer(ff);
return returnByte;
}
uint8_t TFT::spi_read_write_byte(uint8_t data) {
uint8_t returnByte = SPI.transfer(data);
return returnByte;
}
/**
* @brief Receive a number of bytes from the SPI port to a buffer
*
* @param buf Pointer to starting address of buffer to write to.
* @param nbyte Number of bytes to receive.
* @return Nothing
*
* @details Uses DMA
*/
void TFT::spi_Read(uint8_t* buf, uint16_t nbyte) {SPI.dmaTransfer(0, const_cast<uint8_t*>(buf), nbyte);}
/**
* @brief Send a single byte on SPI port
*
* @param b Byte to send
*
* @details
*/
void TFT::spi_Send(uint8_t b) {SPI.send(b);}
/**
* @brief Write token and then write from 512 byte buffer to SPI (for SD card)
*
* @param buf Pointer with buffer start address
* @return Nothing
*
* @details Use DMA
*/
void TFT::spi_SendBlock(uint8_t token, const uint8_t* buf) {
SPI.send(token);
SPI.dmaSend(const_cast<uint8_t*>(buf), 512);
tftio.Init();
}
void TFT::LCD_WR_REG(uint8_t cmd) {
SPI_TFT_CS_L;
SPI_TFT_DC_L;
spi_Send(cmd);
SPI_TFT_CS_H;
tftio.WriteReg(cmd);
}
void TFT::LCD_WR_DATA(uint8_t data) {
SPI_TFT_CS_L;
SPI_TFT_DC_H;
spi_Send(data);
SPI_TFT_CS_H;
}
void TFT::LCD_WriteRAM_Prepare() {LCD_WR_REG(0X2C);}
void TFT::SetCursor(uint16_t x, uint16_t y) {
LCD_WR_REG(0x2A);
LCD_WR_DATA(x >> 8);
LCD_WR_DATA(x);
LCD_WR_DATA(x >> 8);
LCD_WR_DATA(x);
LCD_WR_REG(0x2B);
LCD_WR_DATA(y >> 8);
LCD_WR_DATA(y);
LCD_WR_DATA(y >> 8);
LCD_WR_DATA(y);
void TFT::LCD_WR_DATA(uint8_t data) {
tftio.WriteData(data);
}
void TFT::SetPoint(uint16_t x, uint16_t y, uint16_t point) {
if ((x > 480) || (y > 320)) return;
SetCursor(x, y);
LCD_WriteRAM_Prepare();
LCD_WR_DATA((uint8_t)(point >> 8));
LCD_WR_DATA((uint8_t)point);
SetWindows(x, y, 1, 1);
tftio.WriteMultiple(point, (uint16_t)1);
}
void TFT::SetWindows(uint16_t x, uint16_t y, uint16_t with, uint16_t height) {
tftio.DataTransferBegin(DATASIZE_8BIT);
LCD_WR_REG(0x2A);
LCD_WR_DATA(x >> 8);
LCD_WR_DATA(x);
@ -171,6 +86,10 @@ void TFT::SetWindows(uint16_t x, uint16_t y, uint16_t with, uint16_t height) {
LCD_WR_DATA(y);
LCD_WR_DATA((y + height - 1) >> 8);
LCD_WR_DATA(y + height - 1);
LCD_WR_REG(0X2C);
tftio.DataTransferEnd();
}
void TFT::LCD_init() {
@ -180,6 +99,8 @@ void TFT::LCD_init() {
delay(150);
SPI_TFT_RST_H;
tftio.DataTransferBegin(DATASIZE_8BIT);
delay(120);
LCD_WR_REG(0x11);
delay(120);
@ -251,6 +172,8 @@ void TFT::LCD_init() {
delay(120); // Delay 120ms
LCD_WR_REG(0x29); // Display ON
tftio.DataTransferEnd();
LCD_clear(0x0000); //
LCD_Draw_Logo();
SPI_TFT_BLK_H;
@ -258,81 +181,18 @@ void TFT::LCD_init() {
}
void TFT::LCD_clear(uint16_t color) {
unsigned int i;
uint8_t tbuf[960];
SetCursor(0, 0);
SetWindows(0, 0, 480 - 1, 320 - 1);
LCD_WriteRAM_Prepare();
SPI_TFT_CS_L;
SPI_TFT_DC_H;
for (i = 0; i < 960;) {
tbuf[i] = color >> 8;
tbuf[i + 1] = color;
i += 2;
}
for (i = 0; i < 320; i++) {
// for (m=0;m<480;m++)
// {
// LCD_WR_DATA(color>>8);
// LCD_WR_DATA(color);
SPI.dmaSend(tbuf, 960, true);
// SPI_TFT_CS_H;
// }
}
SPI_TFT_CS_H;
SetWindows(0, 0, (LCD_FULL_PIXEL_WIDTH) - 1, (LCD_FULL_PIXEL_HEIGHT) - 1);
tftio.WriteMultiple(color, (uint32_t)(LCD_FULL_PIXEL_WIDTH) * (LCD_FULL_PIXEL_HEIGHT));
}
extern unsigned char bmp_public_buf[17 * 1024];
void TFT::LCD_Draw_Logo() {
uint16_t i,y_off = 0;
uint16_t *p_index;
uint16_t Color;
#if 1
for (y_off = 0; y_off < 320; y_off ++) {
Pic_Logo_Read((uint8_t *)"", (uint8_t *)bmp_public_buf, 960);
SPI_TFT.spi_init(SPI_FULL_SPEED);
SetWindows(0, y_off, 480, 1);
LCD_WriteRAM_Prepare(); /* Prepare to write GRAM */
for (i = 0; i < 960;) {
p_index = (uint16_t *)(&bmp_public_buf[i]);
Color = (*p_index >> 8);
*p_index = Color | ((*p_index & 0xFF) << 8);
i+=2;
SetWindows(0, 0, LCD_FULL_PIXEL_WIDTH, LCD_FULL_PIXEL_HEIGHT);
for (uint16_t i = 0; i < (LCD_FULL_PIXEL_HEIGHT); i ++) {
Pic_Logo_Read((uint8_t *)"", (uint8_t *)bmp_public_buf, (LCD_FULL_PIXEL_WIDTH) * 2);
tftio.WriteSequence((uint16_t *)bmp_public_buf, LCD_FULL_PIXEL_WIDTH);
}
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSend(bmp_public_buf,960,true);
SPI_TFT_CS_H;
}
#else
for (index = 0; index < 40; index ++) {
Pic_Logo_Read((uint8_t *)"", bmp_public_buf, 480*8*2);
i = 0;
SetCursor(0,0);
SetWindows(0, y_off * 8, 480, 8);
LCD_WriteRAM_Prepare(); /* Prepare to write GRAM */
for (i = 0; i < 480 * 8 * 2;) {
p_index = (uint16_t *)(&bmp_public_buf[i]);
Color = (*p_index >> 8);
*p_index = Color | ((*p_index & 0xFF) << 8);
i += 2;
}
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSend(bmp_public_buf,480*8*2,true);
SPI_TFT_CS_H;
y_off++;
}
#endif
SetWindows(0, 0, 479, 319);
}
#endif // HAS_TFT_LVGL_UI_SPI

View file

@ -21,13 +21,13 @@
*/
#pragma once
#include <stdint.h>
#include "../../inc/MarlinConfigPre.h"
#define SPI_TFT_CS_H OUT_WRITE(SPI_TFT_CS_PIN, HIGH)
#define SPI_TFT_CS_L OUT_WRITE(SPI_TFT_CS_PIN, LOW)
#define SPI_TFT_DC_H OUT_WRITE(SPI_TFT_DC_PIN, HIGH)
#define SPI_TFT_DC_L OUT_WRITE(SPI_TFT_DC_PIN, LOW)
#if ENABLED(TFT_LVGL_UI_SPI)
#include HAL_PATH(../../HAL, tft/tft_spi.h)
#elif ENABLED(TFT_LVGL_UI_FSMC)
#include HAL_PATH(../../HAL, tft/tft_fsmc.h)
#endif
#define SPI_TFT_RST_H OUT_WRITE(SPI_TFT_RST_PIN, HIGH)
#define SPI_TFT_RST_L OUT_WRITE(SPI_TFT_RST_PIN, LOW)
@ -37,20 +37,14 @@
class TFT {
public:
TFT_IO tftio;
void spi_init(uint8_t spiRate);
uint8_t spi_Rec();
uint8_t spi_read_write_byte(uint8_t data);
void spi_Read(uint8_t* buf, uint16_t nbyte);
void spi_Send(uint8_t b);
void spi_SendBlock(uint8_t token, const uint8_t* buf);
void LCD_WR_REG(uint8_t cmd);
void LCD_WR_DATA(uint8_t data);
void SetCursor(uint16_t x, uint16_t y);
void SetPoint(uint16_t x, uint16_t y, uint16_t point);
void SetWindows(uint16_t x, uint16_t y, uint16_t with, uint16_t height);
void LCD_init();
void LCD_clear(uint16_t color);
void LCD_WriteRAM_Prepare();
void LCD_Draw_Logo();
};

View file

@ -51,6 +51,8 @@
#endif
#include "../../../../gcode/gcode.h"
#include "pic_manager.h"
static lv_obj_t * scr;
extern uint8_t sel_id;
extern uint8_t once_flag;

View file

@ -500,14 +500,9 @@ char *creat_title_text() {
}
}
//SERIAL_ECHOLNPAIR("gPicturePreviewStart: ", gPicturePreviewStart, " PREVIEW_LITTLE_PIC_SIZE: ", PREVIEW_LITTLE_PIC_SIZE);
card.setIndex((gPicturePreviewStart + To_pre_view) + size * row + 8);
#if ENABLED(TFT_LVGL_UI_SPI)
SPI_TFT.spi_init(SPI_FULL_SPEED);
//SPI_TFT.SetCursor(0,0);
SPI_TFT.SetWindows(xpos_pixel, ypos_pixel + row, 200, 1);
SPI_TFT.LCD_WriteRAM_Prepare();
#else
ili9320_SetWindows(xpos_pixel, ypos_pixel + row, 200, 1);
LCD_WriteRAM_Prepare();
@ -525,19 +520,11 @@ char *creat_title_text() {
if (j >= 400) break;
}
#if ENABLED(TFT_LVGL_UI_SPI)
uint16_t Color, SpiColor;
SpiColor = (LV_COLOR_BACKGROUND.full >> 8) | ((LV_COLOR_BACKGROUND.full & 0xFF) << 8);
for (i = 0; i < 400;) {
for (i = 0; i < 400; i += 2) {
p_index = (uint16_t *)(&bmp_public_buf[i]);
Color = (*p_index >> 8);
*p_index = Color | ((*p_index & 0xFF) << 8);
i += 2;
if (*p_index == 0x0000) *p_index = SpiColor;
if (*p_index == 0x0000) *p_index = LV_COLOR_BACKGROUND.full;
}
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSend(bmp_public_buf, 400, true);
SPI_TFT_CS_H;
SPI_TFT.tftio.WriteSequence((uint16_t*)bmp_public_buf, 200);
#else
for (i = 0; i < 400;) {
p_index = (uint16_t *)(&bmp_public_buf[i]);
@ -627,10 +614,7 @@ char *creat_title_text() {
card.setIndex((PREVIEW_LITTLE_PIC_SIZE + To_pre_view) + size * row + 8);
#if ENABLED(TFT_LVGL_UI_SPI)
SPI_TFT.spi_init(SPI_FULL_SPEED);
//SPI_TFT.SetCursor(0,0);
SPI_TFT.SetWindows(xpos_pixel, ypos_pixel + row, 200, 1);
SPI_TFT.LCD_WriteRAM_Prepare();
#else
ili9320_SetWindows(xpos_pixel, ypos_pixel + row, 200, 1);
LCD_WriteRAM_Prepare();
@ -750,9 +734,6 @@ char *creat_title_text() {
void Draw_default_preview(int xpos_pixel, int ypos_pixel, uint8_t sel) {
int index;
int y_off = 0;
int _y;
uint16_t *p_index;
int i;
for (index = 0; index < 10; index++) { // 200*200
#if HAS_BAK_VIEW_IN_FLASH
@ -761,58 +742,24 @@ char *creat_title_text() {
}
else {
default_view_Read(bmp_public_buf, DEFAULT_VIEW_MAX_SIZE / 10); // 20k
#if ENABLED(TFT_LVGL_UI_SPI)
uint16_t Color;
for (i = 0; i < (DEFAULT_VIEW_MAX_SIZE / 10);) {
p_index = (uint16_t *)(&bmp_public_buf[i]);
Color = (*p_index >> 8);
*p_index = Color | ((*p_index & 0xff) << 8);
i += 2;
}
#endif
}
#else
default_view_Read(bmp_public_buf, DEFAULT_VIEW_MAX_SIZE / 10); // 20k
#if ENABLED(TFT_LVGL_UI_SPI)
for (i = 0; i < (DEFAULT_VIEW_MAX_SIZE / 10);) {
p_index = (uint16_t *)(&bmp_public_buf[i]);
Color = (*p_index >> 8);
*p_index = Color | ((*p_index & 0xff) << 8);
i += 2;
}
#endif
#endif
i = 0;
#if ENABLED(TFT_LVGL_UI_SPI)
//SPI_TFT.spi_init(SPI_FULL_SPEED);
//SPI_TFT.SetWindows(xpos_pixel, y_off * 20+ypos_pixel, 200,20); //200*200
//SPI_TFT.LCD_WriteRAM_Prepare();
int j = 0;
for (_y = y_off * 20; _y < (y_off + 1) * 20; _y++) {
SPI_TFT.spi_init(SPI_FULL_SPEED);
SPI_TFT.SetWindows(xpos_pixel, y_off * 20 + ypos_pixel + j, 200, 1); // 200*200
SPI_TFT.LCD_WriteRAM_Prepare();
j++;
//memcpy(public_buf,&bmp_public_buf[i],400);
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSend(&bmp_public_buf[i], 400, true);
SPI_TFT_CS_H;
i += 400;
if (i >= 8000) break;
}
SPI_TFT.SetWindows(xpos_pixel, y_off * 20 + ypos_pixel, 200, 20); // 200*200
SPI_TFT.tftio.WriteSequence((uint16_t*)(bmp_public_buf), DEFAULT_VIEW_MAX_SIZE / 20);
#else
int x_off = 0;
uint16_t temp_p;
int i = 0;
uint16_t *p_index;
ili9320_SetWindows(xpos_pixel, y_off * 20 + ypos_pixel, 200, 20); // 200*200
LCD_WriteRAM_Prepare();
for (_y = y_off * 20; _y < (y_off + 1) * 20; _y++) {
for (int _y = y_off * 20; _y < (y_off + 1) * 20; _y++) {
for (x_off = 0; x_off < 200; x_off++) {
if (sel == 1) {
temp_p = (uint16_t)(bmp_public_buf[i] | bmp_public_buf[i + 1] << 8);

View file

@ -590,8 +590,6 @@ void disp_char_1624(uint16_t x, uint16_t y, uint8_t c, uint16_t charColor, uint1
}
void disp_string(uint16_t x, uint16_t y, const char * string, uint16_t charColor, uint16_t bkColor) {
// Select TFT SPI so it can receive data
TERN_(TFT_LVGL_UI_SPI, SPI_TFT.spi_init(SPI_FULL_SPEED));
while (*string != '\0') {
disp_char_1624(x, y, *string, charColor, bkColor);
string++;

View file

@ -22,249 +22,39 @@
#include "../../../../inc/MarlinConfig.h"
#if HAS_TFT_LVGL_UI
#if ENABLED(TFT_LVGL_UI_FSMC)
#if defined(ARDUINO_ARCH_STM32F1) && PIN_EXISTS(FSMC_CS) // FSMC on 100/144 pins SoCs
#include <libmaple/fsmc.h>
#include <libmaple/gpio.h>
#include <libmaple/dma.h>
#include <boards.h>
/* Timing configuration */
#define FSMC_ADDRESS_SETUP_TIME 15// AddressSetupTime
#define FSMC_DATA_SETUP_TIME 15// DataSetupTime
#include HAL_PATH(../../HAL, tft/tft_fsmc.h)
TFT_IO tftio;
void LCD_IO_Init(uint8_t cs, uint8_t rs);
void LCD_IO_WriteData(uint16_t RegValue);
void LCD_IO_WriteReg(uint16_t Reg);
uint16_t LCD_IO_ReadData(uint16_t RegValue);
uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize);
uint16_t ILI9488_ReadRAM();
#ifdef LCD_USE_DMA_FSMC
void LCD_IO_WriteMultiple(uint16_t data, uint32_t count);
void LCD_IO_WriteSequence(uint16_t *data, uint16_t length);
#endif
/**
* FSMC LCD IO
*/
#define __ASM __asm
#define __STATIC_INLINE static inline
__attribute__((always_inline)) __STATIC_INLINE void __DSB() {__ASM volatile ("dsb 0xF" ::: "memory");}
#define FSMC_CS_NE1 PD7
#if ENABLED(STM32_XL_DENSITY)
#define FSMC_CS_NE2 PG9
#define FSMC_CS_NE3 PG10
#define FSMC_CS_NE4 PG12
#define FSMC_RS_A0 PF0
#define FSMC_RS_A1 PF1
#define FSMC_RS_A2 PF2
#define FSMC_RS_A3 PF3
#define FSMC_RS_A4 PF4
#define FSMC_RS_A5 PF5
#define FSMC_RS_A6 PF12
#define FSMC_RS_A7 PF13
#define FSMC_RS_A8 PF14
#define FSMC_RS_A9 PF15
#define FSMC_RS_A10 PG0
#define FSMC_RS_A11 PG1
#define FSMC_RS_A12 PG2
#define FSMC_RS_A13 PG3
#define FSMC_RS_A14 PG4
#define FSMC_RS_A15 PG5
#endif
#define FSMC_RS_A16 PD11
#define FSMC_RS_A17 PD12
#define FSMC_RS_A18 PD13
#define FSMC_RS_A19 PE3
#define FSMC_RS_A20 PE4
#define FSMC_RS_A21 PE5
#define FSMC_RS_A22 PE6
#define FSMC_RS_A23 PE2
#if ENABLED(STM32_XL_DENSITY)
#define FSMC_RS_A24 PG13
#define FSMC_RS_A25 PG14
#endif
static uint8_t fsmcInit = 0;
typedef struct {
__IO uint16_t REG;
__IO uint16_t RAM;
} LCD_CONTROLLER_TypeDef;
LCD_CONTROLLER_TypeDef *LCD;
void LCD_IO_Init(uint8_t cs, uint8_t rs) {
uint32_t controllerAddress;
struct fsmc_nor_psram_reg_map* fsmcPsramRegion;
if (fsmcInit) return;
fsmcInit = 1;
switch (cs) {
case FSMC_CS_NE1: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION1; fsmcPsramRegion = FSMC_NOR_PSRAM1_BASE; break;
#if ENABLED(STM32_XL_DENSITY)
case FSMC_CS_NE2: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION2; fsmcPsramRegion = FSMC_NOR_PSRAM2_BASE; break;
case FSMC_CS_NE3: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION3; fsmcPsramRegion = FSMC_NOR_PSRAM3_BASE; break;
case FSMC_CS_NE4: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION4; fsmcPsramRegion = FSMC_NOR_PSRAM4_BASE; break;
#endif
default: return;
}
#define _ORADDR(N) controllerAddress |= (_BV32(N) - 2)
switch (rs) {
#if ENABLED(STM32_XL_DENSITY)
case FSMC_RS_A0: _ORADDR( 1); break;
case FSMC_RS_A1: _ORADDR( 2); break;
case FSMC_RS_A2: _ORADDR( 3); break;
case FSMC_RS_A3: _ORADDR( 4); break;
case FSMC_RS_A4: _ORADDR( 5); break;
case FSMC_RS_A5: _ORADDR( 6); break;
case FSMC_RS_A6: _ORADDR( 7); break;
case FSMC_RS_A7: _ORADDR( 8); break;
case FSMC_RS_A8: _ORADDR( 9); break;
case FSMC_RS_A9: _ORADDR(10); break;
case FSMC_RS_A10: _ORADDR(11); break;
case FSMC_RS_A11: _ORADDR(12); break;
case FSMC_RS_A12: _ORADDR(13); break;
case FSMC_RS_A13: _ORADDR(14); break;
case FSMC_RS_A14: _ORADDR(15); break;
case FSMC_RS_A15: _ORADDR(16); break;
#endif
case FSMC_RS_A16: _ORADDR(17); break;
case FSMC_RS_A17: _ORADDR(18); break;
case FSMC_RS_A18: _ORADDR(19); break;
case FSMC_RS_A19: _ORADDR(20); break;
case FSMC_RS_A20: _ORADDR(21); break;
case FSMC_RS_A21: _ORADDR(22); break;
case FSMC_RS_A22: _ORADDR(23); break;
case FSMC_RS_A23: _ORADDR(24); break;
#if ENABLED(STM32_XL_DENSITY)
case FSMC_RS_A24: _ORADDR(25); break;
case FSMC_RS_A25: _ORADDR(26); break;
#endif
default: return;
}
rcc_clk_enable(RCC_FSMC);
gpio_set_mode(GPIOD, 14, GPIO_AF_OUTPUT_PP); // FSMC_D00
gpio_set_mode(GPIOD, 15, GPIO_AF_OUTPUT_PP); // FSMC_D01
gpio_set_mode(GPIOD, 0, GPIO_AF_OUTPUT_PP);// FSMC_D02
gpio_set_mode(GPIOD, 1, GPIO_AF_OUTPUT_PP);// FSMC_D03
gpio_set_mode(GPIOE, 7, GPIO_AF_OUTPUT_PP);// FSMC_D04
gpio_set_mode(GPIOE, 8, GPIO_AF_OUTPUT_PP);// FSMC_D05
gpio_set_mode(GPIOE, 9, GPIO_AF_OUTPUT_PP);// FSMC_D06
gpio_set_mode(GPIOE, 10, GPIO_AF_OUTPUT_PP); // FSMC_D07
gpio_set_mode(GPIOE, 11, GPIO_AF_OUTPUT_PP); // FSMC_D08
gpio_set_mode(GPIOE, 12, GPIO_AF_OUTPUT_PP); // FSMC_D09
gpio_set_mode(GPIOE, 13, GPIO_AF_OUTPUT_PP); // FSMC_D10
gpio_set_mode(GPIOE, 14, GPIO_AF_OUTPUT_PP); // FSMC_D11
gpio_set_mode(GPIOE, 15, GPIO_AF_OUTPUT_PP); // FSMC_D12
gpio_set_mode(GPIOD, 8, GPIO_AF_OUTPUT_PP);// FSMC_D13
gpio_set_mode(GPIOD, 9, GPIO_AF_OUTPUT_PP);// FSMC_D14
gpio_set_mode(GPIOD, 10, GPIO_AF_OUTPUT_PP); // FSMC_D15
gpio_set_mode(GPIOD, 4, GPIO_AF_OUTPUT_PP);// FSMC_NOE
gpio_set_mode(GPIOD, 5, GPIO_AF_OUTPUT_PP);// FSMC_NWE
gpio_set_mode(PIN_MAP[cs].gpio_device, PIN_MAP[cs].gpio_bit, GPIO_AF_OUTPUT_PP); //FSMC_CS_NEx
gpio_set_mode(PIN_MAP[rs].gpio_device, PIN_MAP[rs].gpio_bit, GPIO_AF_OUTPUT_PP); //FSMC_RS_Ax
fsmcPsramRegion->BCR = FSMC_BCR_WREN | FSMC_BCR_MTYP_SRAM | FSMC_BCR_MWID_16BITS | FSMC_BCR_MBKEN;
fsmcPsramRegion->BTR = (FSMC_DATA_SETUP_TIME << 8) | FSMC_ADDRESS_SETUP_TIME;
afio_remap(AFIO_REMAP_FSMC_NADV);
LCD = (LCD_CONTROLLER_TypeDef*)controllerAddress;
tftio.Init();
}
void LCD_IO_WriteData(uint16_t RegValue) {
LCD->RAM = RegValue;
__DSB();
tftio.WriteData(RegValue);
}
void LCD_IO_WriteReg(uint16_t Reg) {
LCD->REG = Reg;
__DSB();
}
uint16_t LCD_IO_ReadData(uint16_t RegValue) {
LCD->REG = RegValue;
__DSB();
return LCD->RAM;
}
uint16_t ILI9488_ReadRAM() {
uint16_t data;
data = LCD->RAM;
return data;
}
uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize) {
volatile uint32_t data;
LCD->REG = RegValue;
__DSB();
data = LCD->RAM; // dummy read
data = LCD->RAM & 0x00FF;
while (--ReadSize) {
data <<= 8;
data |= (LCD->RAM & 0x00FF);
}
return uint32_t(data);
tftio.WriteReg(Reg);
}
#ifdef LCD_USE_DMA_FSMC
void LCD_IO_WriteMultiple(uint16_t color, uint32_t count) {
while (count > 0) {
dma_setup_transfer(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, &color, DMA_SIZE_16BITS, &LCD->RAM, DMA_SIZE_16BITS, DMA_MEM_2_MEM);
dma_set_num_transfers(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, count > 65535 ? 65535 : count);
dma_clear_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
dma_enable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
while ((dma_get_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL) & 0x0A) == 0) {}
dma_disable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
count = count > 65535 ? count - 65535 : 0;
}
tftio.WriteMultiple(color, count);
}
void LCD_IO_WriteSequence(uint16_t *data, uint16_t length) {
dma_setup_transfer(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, data, DMA_SIZE_16BITS, &LCD->RAM, DMA_SIZE_16BITS, DMA_MEM_2_MEM | DMA_PINC_MODE);
dma_set_num_transfers(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, length);
dma_clear_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
dma_enable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
while ((dma_get_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL) & 0x0A) == 0) {}
dma_disable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
tftio.WriteSequence(data, length);
}
void LCD_IO_WriteSequence_Async(uint16_t *data, uint16_t length) {
dma_setup_transfer(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, data, DMA_SIZE_16BITS, &LCD->RAM, DMA_SIZE_16BITS, DMA_MEM_2_MEM | DMA_PINC_MODE);
dma_set_num_transfers(FSMC_DMA_DEV, FSMC_DMA_CHANNEL, length);
dma_clear_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
dma_enable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
}
void LCD_IO_WaitSequence_Async() {
while ((dma_get_isr_bits(FSMC_DMA_DEV, FSMC_DMA_CHANNEL) & 0x0A) == 0) {}
dma_disable(FSMC_DMA_DEV, FSMC_DMA_CHANNEL);
}
#endif // LCD_USE_DMA_FSMC
#endif // ARDUINO_ARCH_STM32F1 && FSMC_CS_PIN
#endif // HAS_TFT_LVGL_UI

View file

@ -42,9 +42,8 @@
#include "../../../../inc/MarlinConfig.h"
#if HAS_TOUCH_XPT2046
#include "../../../touch/xpt2046.h"
#endif
#include HAL_PATH(../../HAL, tft/xpt2046.h)
XPT2046 touch;
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../../../../feature/powerloss.h"
@ -121,13 +120,13 @@ void tft_set_cursor(uint16_t x, uint16_t y) {
void LCD_WriteRAM_Prepare(void) {
#if 0
if ((DeviceCode == 0x9325) || (DeviceCode == 0x9328) || (DeviceCode == 0x8989)) {
switch (DeviceCode) {
case 0x9325: case 0x9328: case 0x8989: {
ClrCs
LCD->LCD_REG = R34;
SetCs
}
else {
LCD_WrtReg(0x002C);
} break;
default: LCD_WrtReg(0x002C);
}
#else
LCD_IO_WriteReg(0x002C);
@ -197,8 +196,8 @@ void ili9320_SetWindows(uint16_t StartX, uint16_t StartY, uint16_t width, uint16
LCD_WriteReg(0x0053, yEnd);*/
LCD_WriteReg(0x0050, StartY); // Specify the start/end positions of the window address in the horizontal direction by an address unit
LCD_WriteReg(0x0051, yEnd); // Specify the start positions of the window address in the vertical direction by an address unit
LCD_WriteReg(0x0052, 320 - xEnd);
LCD_WriteReg(0x0053, 320 - StartX - 1); // Specify the end positions of the window address in the vertical direction by an address unit
LCD_WriteReg(0x0052, (LCD_FULL_PIXEL_HEIGHT) - xEnd);
LCD_WriteReg(0x0053, (LCD_FULL_PIXEL_HEIGHT) - StartX - 1); // Specify the end positions of the window address in the vertical direction by an address unit
}
else {
@ -268,28 +267,10 @@ void LCD_Clear(uint16_t Color) {
}
}
extern uint16_t ILI9488_ReadRAM();
#include HAL_PATH(../../HAL, tft/tft_fsmc.h)
extern TFT_IO tftio;
void init_tft() {
uint16_t i;
//************* Start Initial Sequence **********//
//start lcd pins and dma
#if PIN_EXISTS(LCD_BACKLIGHT)
OUT_WRITE(LCD_BACKLIGHT_PIN, DISABLED(DELAYED_BACKLIGHT_INIT)); // Illuminate after reset or right away
#endif
#if PIN_EXISTS(LCD_RESET)
// Perform a clean hardware reset with needed delays
OUT_WRITE(LCD_RESET_PIN, LOW);
_delay_ms(5);
WRITE(LCD_RESET_PIN, HIGH);
_delay_ms(5);
#endif
#if PIN_EXISTS(LCD_BACKLIGHT) && ENABLED(DELAYED_BACKLIGHT_INIT)
WRITE(LCD_BACKLIGHT_PIN, HIGH);
#endif
TERN_(HAS_LCD_CONTRAST, refresh_contrast());
@ -303,12 +284,9 @@ void init_tft() {
_delay_ms(5);
LCD_IO_WriteReg(0x00D3);
DeviceCode = ILI9488_ReadRAM(); //dummy read
DeviceCode = ILI9488_ReadRAM();
DeviceCode = ILI9488_ReadRAM();
DeviceCode <<= 8;
DeviceCode |= ILI9488_ReadRAM();
DeviceCode = tftio.GetID() & 0xFFFF;
// Chitu and others
if (DeviceCode == 0x8066) DeviceCode = 0x9488;
if (DeviceCode == 0x9488) {
LCD_IO_WriteReg(0x00E0);
@ -436,7 +414,7 @@ void tft_lvgl_init() {
//spi_flash_read_test();
TERN_(HAS_TOUCH_XPT2046, touch.init());
touch.Init();
lv_init();
@ -492,35 +470,14 @@ void tft_lvgl_init() {
void my_disp_flush(lv_disp_drv_t * disp, const lv_area_t * area, lv_color_t * color_p) {
#if ENABLED(TFT_LVGL_UI_SPI)
uint16_t i, width, height;
uint16_t clr_temp;
uint8_t tbuf[(LCD_FULL_PIXEL_WIDTH) * 2];
SPI_TFT.spi_init(SPI_FULL_SPEED);
width = area->x2 - area->x1 + 1;
height = area->y2 - area->y1 + 1;
for (int j = 0; j < height; j++) {
SPI_TFT.SetCursor(0, 0);
SPI_TFT.SetWindows((uint16_t)area->x1, (uint16_t)area->y1 + j, width, 1);
SPI_TFT.LCD_WriteRAM_Prepare();
for (i = 0; i < width * 2;) {
clr_temp = (uint16_t)(((uint16_t)color_p->ch.red << 11)
| ((uint16_t)color_p->ch.green << 5)
| ((uint16_t)color_p->ch.blue));
tbuf[i] = clr_temp >> 8;
tbuf[i + 1] = clr_temp;
i += 2;
color_p++;
SPI_TFT.SetWindows((uint16_t)area->x1, (uint16_t)area->y1, width, height);
for (i = 0; i < height; i++) {
SPI_TFT.tftio.WriteSequence((uint16_t*)(color_p + width * i), width);
}
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSend(tbuf, width * 2, true);
SPI_TFT_CS_H;
}
lv_disp_flush_ready(disp); /* Indicate you are ready with the flushing*/
W25QXX.init(SPI_QUARTER_SPEED);
@ -556,174 +513,23 @@ unsigned int getTickDiff(unsigned int curTick, unsigned int lastTick) {
return TICK_CYCLE * (lastTick <= curTick ? (curTick - lastTick) : (0xFFFFFFFF - lastTick + curTick));
}
#if ENABLED(TFT_LVGL_UI_SPI)
static bool get_point(int16_t *x, int16_t *y) {
bool is_touched = touch.getRawPoint(x, y);
#ifndef USE_XPT2046
#define USE_XPT2046 1
#define XPT2046_XY_SWAP 1
#define XPT2046_X_INV 1
#define XPT2046_Y_INV 0
#endif
#if USE_XPT2046
#define XPT2046_HOR_RES 480
#define XPT2046_VER_RES 320
#define XPT2046_X_MIN 201
#define XPT2046_Y_MIN 164
#define XPT2046_X_MAX 3919
#define XPT2046_Y_MAX 3776
#define XPT2046_AVG 4
#define XPT2046_INV 1
#endif
#else
#ifndef USE_XPT2046
#define USE_XPT2046 1
#ifndef XPT2046_XY_SWAP
#define XPT2046_XY_SWAP 1
#endif
#ifndef XPT2046_X_INV
#define XPT2046_X_INV 0
#endif
#ifndef XPT2046_Y_INV
#define XPT2046_Y_INV 1
#endif
#endif
#if USE_XPT2046
#ifndef XPT2046_HOR_RES
#define XPT2046_HOR_RES 480
#endif
#ifndef XPT2046_VER_RES
#define XPT2046_VER_RES 320
#endif
#ifndef XPT2046_X_MIN
#define XPT2046_X_MIN 201
#endif
#ifndef XPT2046_Y_MIN
#define XPT2046_Y_MIN 164
#endif
#ifndef XPT2046_X_MAX
#define XPT2046_X_MAX 3919
#endif
#ifndef XPT2046_Y_MAX
#define XPT2046_Y_MAX 3776
#endif
#ifndef XPT2046_AVG
#define XPT2046_AVG 4
#endif
#ifndef XPT2046_INV
#define XPT2046_INV 0
#endif
#endif
#endif
static void xpt2046_corr(uint16_t *x, uint16_t *y) {
#if XPT2046_XY_SWAP
int16_t swap_tmp;
swap_tmp = *x;
*x = *y;
*y = swap_tmp;
#endif
if ((*x) > XPT2046_X_MIN) (*x) -= XPT2046_X_MIN; else (*x) = 0;
if ((*y) > XPT2046_Y_MIN) (*y) -= XPT2046_Y_MIN; else (*y) = 0;
(*x) = uint32_t(uint32_t(*x) * XPT2046_HOR_RES) / (XPT2046_X_MAX - XPT2046_X_MIN);
(*y) = uint32_t(uint32_t(*y) * XPT2046_VER_RES) / (XPT2046_Y_MAX - XPT2046_Y_MIN);
#if XPT2046_X_INV
(*x) = XPT2046_HOR_RES - (*x);
#endif
#if XPT2046_Y_INV
(*y) = XPT2046_VER_RES - (*y);
#endif
if (is_touched) {
*x = int16_t((int32_t(*x) * XPT2046_X_CALIBRATION) >> 16) + XPT2046_X_OFFSET;
*y = int16_t((int32_t(*y) * XPT2046_Y_CALIBRATION) >> 16) + XPT2046_Y_OFFSET;
}
#define times 4
#define CHX 0x90
#define CHY 0xD0
int SPI2_ReadWrite2Bytes(void) {
#define SPI_READ_WRITE_BYTE(B) TERN(TFT_LVGL_UI_SPI, SPI_TFT.spi_read_write_byte, W25QXX.spi_flash_read_write_byte)(B)
const uint16_t t1 = SPI_READ_WRITE_BYTE(0xFF),
t2 = SPI_READ_WRITE_BYTE(0xFF);
return (((t1 << 8) | t2) >> 3) & 0x0FFF;
}
uint16_t x_addata[times], y_addata[times];
void XPT2046_Rd_Addata(uint16_t *X_Addata, uint16_t *Y_Addata) {
uint16_t i, j, k;
TERN(TFT_LVGL_UI_SPI, SPI_TFT.spi_init, W25QXX.init)(SPI_SPEED_6);
for (i = 0; i < times; i++) {
#if ENABLED(TFT_LVGL_UI_SPI)
OUT_WRITE(TOUCH_CS_PIN, LOW);
SPI_TFT.spi_read_write_byte(CHX);
y_addata[i] = SPI2_ReadWrite2Bytes();
WRITE(TOUCH_CS_PIN, HIGH);
OUT_WRITE(TOUCH_CS_PIN, LOW);
SPI_TFT.spi_read_write_byte(CHY);
x_addata[i] = SPI2_ReadWrite2Bytes();
WRITE(TOUCH_CS_PIN, HIGH);
#else // #if HAS_TOUCH_XPT2046
OUT_WRITE(TOUCH_CS_PIN, LOW);
W25QXX.spi_flash_read_write_byte(CHX);
y_addata[i] = SPI2_ReadWrite2Bytes();
WRITE(TOUCH_CS_PIN, HIGH);
OUT_WRITE(TOUCH_CS_PIN, LOW);
W25QXX.spi_flash_read_write_byte(CHY);
x_addata[i] = SPI2_ReadWrite2Bytes();
WRITE(TOUCH_CS_PIN, HIGH);
#if ENABLED(GRAPHICAL_TFT_ROTATE_180)
x = (LCD_FULL_PIXEL_WIDTH) - x;
y = (LCD_FULL_PIXEL_HEIGHT) - y;
#endif
}
TERN(TFT_LVGL_UI_SPI,,W25QXX.init(SPI_QUARTER_SPEED));
for (i = 0; i < times; i++)
for (j = i + 1; j < times; j++)
if (x_addata[j] > x_addata[i]) {
k = x_addata[j];
x_addata[j] = x_addata[i];
x_addata[i] = k;
}
if (x_addata[times / 2 - 1] - x_addata[times / 2] > 50) {
*X_Addata = *Y_Addata = 0;
return;
return is_touched;
}
*X_Addata = (x_addata[times / 2 - 1] + x_addata[times / 2]) / 2;
for (i = 0; i < times; i++)
for (j = i + 1; j < times; j++)
if (y_addata[j] > y_addata[i]) {
k = y_addata[j];
y_addata[j] = y_addata[i];
y_addata[i] = k;
}
if (y_addata[times / 2 - 1] - y_addata[times / 2] > 50) {
*X_Addata = *Y_Addata = 0;
return;
}
*Y_Addata = (y_addata[times / 2 - 1] + y_addata[times / 2]) / 2;
}
#define ADC_VALID_OFFSET 10
uint8_t TOUCH_PressValid(uint16_t _usX, uint16_t _usY) {
if ( (_usX <= ADC_VALID_OFFSET)
|| (_usY <= ADC_VALID_OFFSET)
|| (_usX >= 4095 - ADC_VALID_OFFSET)
|| (_usY >= 4095 - ADC_VALID_OFFSET)
) return 0;
return 1;
}
static lv_coord_t last_x = 0, last_y = 0;
static int16_t last_x = 0, last_y = 0;
bool my_touchpad_read(lv_indev_drv_t * indev_driver, lv_indev_data_t * data) {
uint32_t tmpTime, diffTime = 0;
@ -735,34 +541,24 @@ bool my_touchpad_read(lv_indev_drv_t * indev_driver, lv_indev_data_t * data) {
//touchpad_get_xy(&last_x, &last_y);
/*Save the pressed coordinates and the state*/
if (diffTime > 10) {
//use marlin touch code if enabled
#if HAS_TOUCH_XPT2046
touch.getTouchPoint(reinterpret_cast<uint16_t&>(last_x), reinterpret_cast<uint16_t&>(last_y));
#else
XPT2046_Rd_Addata((uint16_t *)&last_x, (uint16_t *)&last_y);
#endif
if (TOUCH_PressValid(last_x, last_y)) {
if (get_point(&last_x, &last_y)) {
data->state = LV_INDEV_STATE_PR;
/* Set the coordinates (if released use the last pressed coordinates) */
// Set the coordinates (if released use the last-pressed coordinates)
// SERIAL_ECHOLNPAIR("antes X: ", last_x, ", y: ", last_y);
xpt2046_corr((uint16_t *)&last_x, (uint16_t *)&last_y);
// SERIAL_ECHOLNPAIR("X: ", last_x, ", y: ", last_y);
data->point.x = last_x;
data->point.y = last_y;
last_x = 0;
last_y = 0;
last_x = last_y = 0;
}
else {
else
data->state = LV_INDEV_STATE_REL;
}
touch_time1 = tmpTime;
}
return false; /*Return `false` because we are not buffering and no more data to read*/
return false; // Return `false` since no data is buffering or left to read
}
#endif // HAS_TFT_LVGL_UI

View file

@ -164,7 +164,6 @@
#define HAS_LANG_SELECT_SCREEN 1
#define HAS_BAK_VIEW_IN_FLASH 0
#define HAS_LOGO_IN_FLASH 0
#define HAS_TOUCH_XPT2046 1
#define TOUCH_CS_PIN PB7 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK
@ -183,6 +182,8 @@
#define LCD_RESET_PIN PF11
#define LCD_BACKLIGHT_PIN PD13
#define TFT_RESET_PIN PF11
#define TFT_BACKLIGHT_PIN PD13
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
@ -197,24 +198,10 @@
#define LCD_PIXEL_OFFSET_X 48
#define LCD_PIXEL_OFFSET_Y 48
#define XPT2046_X_CALIBRATION -12316
#define XPT2046_Y_CALIBRATION 8981
#define XPT2046_X_OFFSET 340
#define XPT2046_Y_OFFSET -20
#define USE_XPT2046 1
#define XPT2046_XY_SWAP 0
#define XPT2046_X_INV 1
#define XPT2046_Y_INV 0
#define XPT2046_HOR_RES 480
#define XPT2046_VER_RES 320
#define XPT2046_X_MIN 140
#define XPT2046_Y_MIN 200
#define XPT2046_X_MAX 1900
#define XPT2046_Y_MAX 1900
#define XPT2046_AVG 4
#define XPT2046_INV 0
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
#elif ENABLED(TFT_480x320)
#define TFT_RESET_PIN PF11

View file

@ -198,7 +198,6 @@
#define HAS_LANG_SELECT_SCREEN 0
#define HAS_BAK_VIEW_IN_FLASH 0
#define HAS_LOGO_IN_FLASH 0
#define HAS_TOUCH_XPT2046 1
#define TOUCH_CS_PIN PB7 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK
@ -217,6 +216,8 @@
#define LCD_RESET_PIN PF11
#define LCD_BACKLIGHT_PIN PD13
#define TFT_RESET_PIN PF11
#define TFT_BACKLIGHT_PIN PD13
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
@ -231,24 +232,10 @@
#define LCD_PIXEL_OFFSET_X 48
#define LCD_PIXEL_OFFSET_Y 48
#define XPT2046_X_CALIBRATION -12316
#define XPT2046_Y_CALIBRATION 8981
#define XPT2046_X_OFFSET 340
#define XPT2046_Y_OFFSET -20
#define USE_XPT2046 1
#define XPT2046_XY_SWAP 0
#define XPT2046_X_INV 1
#define XPT2046_Y_INV 0
#define XPT2046_HOR_RES 480
#define XPT2046_VER_RES 320
#define XPT2046_X_MIN 140
#define XPT2046_Y_MIN 200
#define XPT2046_X_MAX 1900
#define XPT2046_Y_MAX 1900
#define XPT2046_AVG 4
#define XPT2046_INV 0
#define XPT2046_X_CALIBRATION -17181
#define XPT2046_Y_CALIBRATION 11434
#define XPT2046_X_OFFSET 501
#define XPT2046_Y_OFFSET -9
#endif
// SPI1(PA7)=LCD & SPI3(PB5)=STUFF, are not available

View file

@ -177,6 +177,17 @@
#define LCD_BACKLIGHT_PIN PD13
#define XPT2046_X_CALIBRATION 17880
#define XPT2046_Y_CALIBRATION -12234
#define XPT2046_X_OFFSET -45
#define XPT2046_Y_OFFSET 349
#define LCD_USE_DMA_FSMC // Use DMA transfers to send data to the TFT
#define FSMC_CS_PIN PD7
#define FSMC_RS_PIN PD11
#define FSMC_DMA_DEV DMA2
#define FSMC_DMA_CHANNEL DMA_CH5
#elif ENABLED(FSMC_GRAPHICAL_TFT)
#define DOGLCD_MOSI -1 // prevent redefine Conditionals_post.h

View file

@ -261,17 +261,30 @@
#define BTN_EN2 PE11
#define BTN_ENC PE13
#elif ENABLED(TFT_LITTLE_VGL_UI)
#define TFT_CS_PIN PD11
#define TFT_SCK_PIN PA5
#define TFT_MISO_PIN PA6
#define TFT_MOSI_PIN PA7
#define TFT_DC_PIN PD10
#define TFT_RST_PIN PC6
#define TFT_A0_PIN TFT_DC_PIN
#define FSMC_CS_PIN PD7 // NE4
#define FSMC_RS_PIN PD11 // A0
#define TFT_RESET_PIN PC6
#define TFT_BACKLIGHT_PIN PD13
#define TOUCH_CS_PIN PA7 // SPI2_NSS
#define TOUCH_SCK_PIN PB13 // SPI2_SCK
#define TOUCH_MISO_PIN PB14 // SPI2_MISO
#define TOUCH_MOSI_PIN PB15 // SPI2_MOSI
#define XPT2046_X_CALIBRATION -17253
#define XPT2046_Y_CALIBRATION 11579
#define XPT2046_X_OFFSET 514
#define XPT2046_Y_OFFSET -24
#define TOUCH_BUTTONS_HW_SPI
#define TOUCH_BUTTONS_HW_SPI_DEVICE 1
#define LCD_BACKLIGHT_PIN PD13
#ifndef LCD_FULL_PIXEL_WIDTH
#define LCD_FULL_PIXEL_WIDTH 480
#endif
#ifndef LCD_FULL_PIXEL_HEIGHT
#define LCD_FULL_PIXEL_HEIGHT 320
#endif
#endif