This is a feature to protect your printer from burn up in flames if it
has a thermistor coming off place (this happened to a friend of mine
recently and motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature
than actual. The system will turn the heater on forever, burning up the
filament and anything
else around.
After the temperature reaches the target for the first time, this
feature will start measuring for how long the current temperature stays
below the target minus _HYSTERESIS (set_temperature -
THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to
be on the safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem
if your extruder heater takes 2 minutes to hit the target on heating.
This is a feature to protect your printer from burn up in flames if it
has a thermistor coming off place (this happened to a friend of mine
recently and motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature
than actual. The system will turn the heater on forever, burning up the
filament and anything
else around.
After the temperature reaches the target for the first time, this
feature will start measuring for how long the current temperature stays
below the target minus _HYSTERESIS (set_temperature -
THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to
be on the safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem
if your extruder heater takes 2 minutes to hit the target on heating.
Having the non-active feeder motors powered on all the time is not
necessary. A feature to deactivate the unused feeder motors has been
implemented. The feature is enabled on default but can be switched off
in the configuration.
Add digipot i2c control for MCP4451
Allow M907 to set i2c digipot currents in amps
Fix Makefile to allow Azteeg motherboards
Fix Makefile to allow Wire libraries only
Add beeper pin for Azteeg X3 Pro
I added #define for LCD_FEEDBACK_FREQUENCY_HZ and
LCD_FEEDBACK_FREQUENCY_DURATION_MS which is used to alter the default
buzzer sound.
When selecting Panelolu2 in configuration.h:
- it automatically sets the correct ENCODER_PULSES_PER_STEP and
ENCODER_STEPS_PER_MENU_ITEM.
- if LCD_USE_I2C_BUZZER is defined it will also set the default
LCD_FEEDBACK_FREQUENCY_HZ and LCD_FEEDBACK_FREQUENCY_DURATION_MS
When selecting the sanguinololu 1284p the following is true:
- its now enables LARGE_FLASH
- It enables the gcode M300 when the panelolu2 LCD_USE_I2C_BUZZER is
defined
Recommended for those who are using the Z Probe for Z Homing (as
Z-Endstop)
This feature has two changes:
1) Allow user to choose where the Z Probe will touch the bed when homing
all axis together (G28) by setting below defines:
Z_SAFE_HOMING_X_POINT
Z_SAFE_HOMING_Y_POINT
2) Prevents the user to perform Z Axis Homing when the Z Probe is
outsite bed.
- Added "Z_RAISE_BEFORE_HOMING" for raising Z the defined distance
before homing. This is useful to avoid Z-Probe collision when hotend is
near bed.
- Fixed the issue of Z not going bellow Z_PROBE_OFFSET when
"min_software_endstops" is true.
Now the Z_PROBE_OFFSET is not set in Z_MIN_POS, it is added after
homing.