/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once //#define UBL_DEVEL_DEBUGGING #include "../../../module/motion.h" #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #include "../../../core/debug_out.h" #define UBL_VERSION "1.01" #define UBL_OK false #define UBL_ERR true enum MeshPointType : char { INVALID, REAL, SET_IN_BITMAP }; // External references struct mesh_index_pair; #define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1)) #define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1)) class unified_bed_leveling { private: static int g29_verbose_level, g29_phase_value, g29_repetition_cnt, g29_storage_slot, g29_map_type; static bool g29_c_flag; static float g29_card_thickness, g29_constant; static xy_pos_t g29_pos; static xy_bool_t xy_seen; #if HAS_BED_PROBE static int g29_grid_size; #endif #if IS_NEWPANEL static void move_z_with_encoder(const float &multiplier); static float measure_point_with_encoder(); static float measure_business_card_thickness(); static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0; static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0; #endif static bool g29_parameter_parsing() _O0; static void shift_mesh_height(); static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0; static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir); static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) { return smart_fill_one(pos.x, pos.y, dir.x, dir.y); } static void smart_fill_mesh(); #if ENABLED(UBL_DEVEL_DEBUGGING) static void g29_what_command(); static void g29_eeprom_dump(); static void g29_compare_current_mesh_to_stored_mesh(); #endif public: static void echo_name(); static void report_current_mesh(); static void report_state(); static void save_ubl_active_state_and_disable(); static void restore_ubl_active_state_and_leave(); static void display_map(const int) _O0; static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0; static mesh_index_pair find_furthest_invalid_mesh_point() _O0; static void reset(); static void invalidate(); static void set_all_mesh_points_to_value(const float value); static void adjust_mesh_to_mean(const bool cflag, const float value); static bool sanity_check(); static void G29() _O0; // O0 for no optimization static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560 static int8_t storage_slot; static bed_mesh_t z_values; static const float _mesh_index_to_xpos[GRID_MAX_POINTS_X], _mesh_index_to_ypos[GRID_MAX_POINTS_Y]; #if HAS_LCD_MENU static bool lcd_map_control; static void steppers_were_disabled(); #else static inline void steppers_were_disabled() {} #endif static volatile int16_t encoder_diff; // Volatile because buttons may changed it at interrupt time unified_bed_leveling(); FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } static int8_t cell_index_x(const float &x) { const int8_t cx = (x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST); return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX } // position. But with this defined this way, it is possible // to extrapolate off of this point even further out. Probably // that is OK because something else should be keeping that from // happening and should not be worried about at this level. static int8_t cell_index_y(const float &y) { const int8_t cy = (y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST); return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX } // position. But with this defined this way, it is possible // to extrapolate off of this point even further out. Probably // that is OK because something else should be keeping that from // happening and should not be worried about at this level. static inline xy_int8_t cell_indexes(const float &x, const float &y) { return { cell_index_x(x), cell_index_y(y) }; } static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); } static int8_t closest_x_index(const float &x) { const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST); return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; } static int8_t closest_y_index(const float &y) { const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST); return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; } static inline xy_int8_t closest_indexes(const xy_pos_t &xy) { return { closest_x_index(xy.x), closest_y_index(xy.y) }; } /** * z2 --| * z0 | | * | | + (z2-z1) * z1 | | | * ---+-------------+--------+-- --| * a1 a0 a2 * |<---delta_a---------->| * * calc_z0 is the basis for all the Mesh Based correction. It is used to * find the expected Z Height at a position between two known Z-Height locations. * * It is fairly expensive with its 4 floating point additions and 2 floating point * multiplications. */ FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); } /** * z_correction_for_x_on_horizontal_mesh_line is an optimization for * the case where the printer is making a vertical line that only crosses horizontal mesh lines. */ static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) { if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { if (DEBUGGING(LEVELING)) { if (WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("yi"); else DEBUG_ECHOPGM("x1_i"); DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0, ",x1_i=", x1_i, ",yi=", yi, ")"); } // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. return ( #ifdef UBL_Z_RAISE_WHEN_OFF_MESH UBL_Z_RAISE_WHEN_OFF_MESH #else NAN #endif ); } const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * RECIPROCAL(MESH_X_DIST), z1 = z_values[x1_i][yi]; return z1 + xratio * (z_values[_MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array // If it is, it is clamped to the last element of the // z_values[][] array and no correction is applied. } // // See comments above for z_correction_for_x_on_horizontal_mesh_line // static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) { if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { if (DEBUGGING(LEVELING)) { if (WITHIN(xi, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("y1_i"); else DEBUG_ECHOPGM("xi"); DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0, ", xi=", xi, ", y1_i=", y1_i, ")"); } // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN. return ( #ifdef UBL_Z_RAISE_WHEN_OFF_MESH UBL_Z_RAISE_WHEN_OFF_MESH #else NAN #endif ); } const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * RECIPROCAL(MESH_Y_DIST), z1 = z_values[xi][y1_i]; return z1 + yratio * (z_values[xi][_MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array // If it is, it is clamped to the last element of the // z_values[][] array and no correction is applied. } /** * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first * does a linear interpolation along both of the bounding X-Mesh-Lines to find the * Z-Height at both ends. Then it does a linear interpolation of these heights based * on the Y position within the cell. */ static float get_z_correction(const float &rx0, const float &ry0) { const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped /** * Check if the requested location is off the mesh. If so, and * UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned. */ #ifdef UBL_Z_RAISE_WHEN_OFF_MESH if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y)) return UBL_Z_RAISE_WHEN_OFF_MESH; #endif const float z1 = calc_z0(rx0, mesh_index_to_xpos(cx), z_values[cx][cy], mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]); const float z2 = calc_z0(rx0, mesh_index_to_xpos(cx), z_values[cx][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1], mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]); float z0 = calc_z0(ry0, mesh_index_to_ypos(cy), z1, mesh_index_to_ypos(cy + 1), z2); if (DEBUGGING(MESH_ADJUST)) { DEBUG_ECHOPAIR(" raw get_z_correction(", rx0); DEBUG_CHAR(','); DEBUG_ECHO(ry0); DEBUG_ECHOPAIR_F(") = ", z0, 6); DEBUG_ECHOLNPAIR_F(" >>>---> ", z0, 6); } if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN z0 = 0.0; // in ubl.z_values[][] and propagate through the // calculations. If our correction is NAN, we throw it out // because part of the Mesh is undefined and we don't have the // information we need to complete the height correction. if (DEBUGGING(MESH_ADJUST)) { DEBUG_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0); DEBUG_CHAR(','); DEBUG_ECHO(ry0); DEBUG_CHAR(')'); DEBUG_EOL(); } } return z0; } static inline float get_z_correction(const xy_pos_t &pos) { return get_z_correction(pos.x, pos.y); } static inline float mesh_index_to_xpos(const uint8_t i) { return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST); } static inline float mesh_index_to_ypos(const uint8_t i) { return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST); } #if UBL_SEGMENTED static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s); #else static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e); #endif static inline bool mesh_is_valid() { GRID_LOOP(x, y) if (isnan(z_values[x][y])) return false; return true; } }; // class unified_bed_leveling extern unified_bed_leveling ubl; #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I) #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J) #define Z_VALUES_ARR ubl.z_values // Prevent debugging propagating to other files #include "../../../core/debug_out.h"