/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2 * Copyright (c) 2009 Michael Margolis. All right reserved. */ /** * A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method. * The servos are pulsed in the background using the value most recently written using the write() method * * Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached. * Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four. * * The methods are: * * Servo - Class for manipulating servo motors connected to Arduino pins. * * attach(pin) - Attach a servo motor to an i/o pin. * attach(pin, min, max) - Attach to a pin, setting min and max values in microseconds * Default min is 544, max is 2400 * * write() - Set the servo angle in degrees. (Invalid angles —over MIN_PULSE_WIDTH— are treated as µs.) * writeMicroseconds() - Set the servo pulse width in microseconds. * move(pin, angle) - Sequence of attach(pin), write(angle), delay(SERVO_DELAY). * With DEACTIVATE_SERVOS_AFTER_MOVE it detaches after SERVO_DELAY. * read() - Get the last-written servo pulse width as an angle between 0 and 180. * readMicroseconds() - Get the last-written servo pulse width in microseconds. * attached() - Return true if a servo is attached. * detach() - Stop an attached servo from pulsing its i/o pin. * */ #include "../inc/MarlinConfig.h" #if HAS_SERVOS && !(IS_32BIT_TEENSY || defined(TARGET_LPC1768) || defined(STM32F4)) //#include #include "servo.h" #include "servo_private.h" ServoInfo_t servo_info[MAX_SERVOS]; // static array of servo info structures uint8_t ServoCount = 0; // the total number of attached servos #define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo #define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo /************ static functions common to all instances ***********************/ static boolean isTimerActive(timer16_Sequence_t timer) { // returns true if any servo is active on this timer for (uint8_t channel = 0; channel < SERVOS_PER_TIMER; channel++) { if (SERVO(timer, channel).Pin.isActive) return true; } return false; } /****************** end of static functions ******************************/ Servo::Servo() { if (ServoCount < MAX_SERVOS) { this->servoIndex = ServoCount++; // assign a servo index to this instance servo_info[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009 } else this->servoIndex = INVALID_SERVO; // too many servos } int8_t Servo::attach(const int pin) { return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); } int8_t Servo::attach(const int pin, const int min, const int max) { if (this->servoIndex >= MAX_SERVOS) return -1; if (pin > 0) servo_info[this->servoIndex].Pin.nbr = pin; pinMode(servo_info[this->servoIndex].Pin.nbr, OUTPUT); // set servo pin to output // todo min/max check: ABS(min - MIN_PULSE_WIDTH) /4 < 128 this->min = (MIN_PULSE_WIDTH - min) / 4; //resolution of min/max is 4 uS this->max = (MAX_PULSE_WIDTH - max) / 4; // initialize the timer if it has not already been initialized timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); if (!isTimerActive(timer)) initISR(timer); servo_info[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive return this->servoIndex; } void Servo::detach() { servo_info[this->servoIndex].Pin.isActive = false; timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); if (!isTimerActive(timer)) finISR(timer); } void Servo::write(int value) { if (value < MIN_PULSE_WIDTH) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds) value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX()); } this->writeMicroseconds(value); } void Servo::writeMicroseconds(int value) { // calculate and store the values for the given channel byte channel = this->servoIndex; if (channel < MAX_SERVOS) { // ensure channel is valid // ensure pulse width is valid value = constrain(value, SERVO_MIN(), SERVO_MAX()) - (TRIM_DURATION); value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009 CRITICAL_SECTION_START; servo_info[channel].ticks = value; CRITICAL_SECTION_END; } } // return the value as degrees int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); } int Servo::readMicroseconds() { return (this->servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[this->servoIndex].ticks) + TRIM_DURATION; } bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; } void Servo::move(const int value) { constexpr uint16_t servo_delay[] = SERVO_DELAY; static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); if (this->attach(0) >= 0) { this->write(value); safe_delay(servo_delay[this->servoIndex]); #if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE) this->detach(); #endif } } #endif // HAS_SERVOS