/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * parser.h - Parser for a GCode line, providing a parameter interface. * Codes like M149 control the way the GCode parser behaves, * so settings for these codes are located in this class. */ #include "../inc/MarlinConfig.h" //#define DEBUG_GCODE_PARSER #if ENABLED(DEBUG_GCODE_PARSER) #include "../libs/hex_print.h" #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) typedef enum : uint8_t { TEMPUNIT_C, TEMPUNIT_K, TEMPUNIT_F } TempUnit; #endif #if ENABLED(INCH_MODE_SUPPORT) typedef enum : uint8_t { LINEARUNIT_MM, LINEARUNIT_INCH } LinearUnit; #endif /** * GCode parser * * - Parse a single gcode line for its letter, code, subcode, and parameters * - FASTER_GCODE_PARSER: * - Flags existing params (1 bit each) * - Stores value offsets (1 byte each) * - Provide accessors for parameters: * - Parameter exists * - Parameter has value * - Parameter value in different units and types */ class GCodeParser { private: static char *value_ptr; // Set by seen, used to fetch the value #if ENABLED(FASTER_GCODE_PARSER) static uint32_t codebits; // Parameters pre-scanned static uint8_t param[26]; // For A-Z, offsets into command args #else static char *command_args; // Args start here, for slow scan #endif public: // Global states for GCode-level units features static bool volumetric_enabled; #if ENABLED(INCH_MODE_SUPPORT) static float linear_unit_factor, volumetric_unit_factor; #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) static TempUnit input_temp_units; #endif // Command line state static char *command_ptr, // The command, so it can be echoed *string_arg, // string of command line command_letter; // G, M, or T static uint16_t codenum; // 123 #if USE_GCODE_SUBCODES static uint8_t subcode; // .1 #endif #if ENABLED(GCODE_MOTION_MODES) static int16_t motion_mode_codenum; #if USE_GCODE_SUBCODES static uint8_t motion_mode_subcode; #endif FORCE_INLINE static void cancel_motion_mode() { motion_mode_codenum = -1; } #endif #if ENABLED(DEBUG_GCODE_PARSER) static void debug(); #endif // Reset is done before parsing static void reset(); #define LETTER_BIT(N) ((N) - 'A') FORCE_INLINE static bool valid_signless(const char * const p) { return NUMERIC(p[0]) || (p[0] == '.' && NUMERIC(p[1])); // .?[0-9] } FORCE_INLINE static bool valid_float(const char * const p) { return valid_signless(p) || ((p[0] == '-' || p[0] == '+') && valid_signless(&p[1])); // [-+]?.?[0-9] } FORCE_INLINE static bool valid_number(const char * const p) { // TODO: With MARLIN_DEV_MODE allow HEX values starting with "x" return valid_float(p); } #if ENABLED(FASTER_GCODE_PARSER) FORCE_INLINE static bool valid_int(const char * const p) { return NUMERIC(p[0]) || ((p[0] == '-' || p[0] == '+') && NUMERIC(p[1])); // [-+]?[0-9] } // Set the flag and pointer for a parameter static void set(const char c, char * const ptr) { const uint8_t ind = LETTER_BIT(c); if (ind >= COUNT(param)) return; // Only A-Z SBI32(codebits, ind); // parameter exists param[ind] = ptr ? ptr - command_ptr : 0; // parameter offset or 0 #if ENABLED(DEBUG_GCODE_PARSER) if (codenum == 800) { SERIAL_ECHOPGM("Set bit ", ind, " of codebits (", hex_address((void*)(codebits >> 16))); print_hex_word((uint16_t)(codebits & 0xFFFF)); SERIAL_ECHOLNPGM(") | param = ", param[ind]); } #endif } // Code seen bit was set. If not found, value_ptr is unchanged. // This allows "if (seen('A')||seen('B'))" to use the last-found value. static bool seen(const char c) { const uint8_t ind = LETTER_BIT(c); if (ind >= COUNT(param)) return false; // Only A-Z const bool b = TEST32(codebits, ind); if (b) { if (param[ind]) { char * const ptr = command_ptr + param[ind]; value_ptr = valid_number(ptr) ? ptr : nullptr; } else value_ptr = nullptr; } return b; } FORCE_INLINE static constexpr uint32_t letter_bits(const char * const str) { return (str[0] ? _BV32(LETTER_BIT(str[0])) | (str[1] ? _BV32(LETTER_BIT(str[1])) | (str[2] ? _BV32(LETTER_BIT(str[2])) | (str[3] ? _BV32(LETTER_BIT(str[3])) | (str[4] ? _BV32(LETTER_BIT(str[4])) | (str[5] ? _BV32(LETTER_BIT(str[5])) | (str[6] ? _BV32(LETTER_BIT(str[6])) | (str[7] ? _BV32(LETTER_BIT(str[7])) | (str[8] ? _BV32(LETTER_BIT(str[8])) | (str[9] ? _BV32(LETTER_BIT(str[9])) : 0) : 0) : 0) : 0) : 0) : 0) : 0) : 0) : 0) : 0); } // At least one of a list of code letters was seen #ifdef CPU_32_BIT FORCE_INLINE static bool seen(const char * const str) { return !!(codebits & letter_bits(str)); } #else FORCE_INLINE static bool seen(const char * const str) { const uint32_t letrbits = letter_bits(str); const uint8_t * const cb = (uint8_t*)&codebits; const uint8_t * const lb = (uint8_t*)&letrbits; return (cb[0] & lb[0]) || (cb[1] & lb[1]) || (cb[2] & lb[2]) || (cb[3] & lb[3]); } #endif static bool seen_any() { return !!codebits; } FORCE_INLINE static bool seen_test(const char c) { return TEST32(codebits, LETTER_BIT(c)); } #else // !FASTER_GCODE_PARSER #if ENABLED(GCODE_CASE_INSENSITIVE) FORCE_INLINE static char* strgchr(char *p, char g) { auto uppercase = [](char c) { return c + (WITHIN(c, 'a', 'z') ? 'A' - 'a' : 0); }; const char d = uppercase(g); for (char cc; (cc = uppercase(*p)); p++) if (cc == d) return p; return nullptr; } #else #define strgchr strchr #endif // Code is found in the string. If not found, value_ptr is unchanged. // This allows "if (seen('A')||seen('B'))" to use the last-found value. static bool seen(const char c) { char *p = strgchr(command_args, c); const bool b = !!p; if (b) value_ptr = valid_number(&p[1]) ? &p[1] : nullptr; return b; } static bool seen_any() { return *command_args == '\0'; } FORCE_INLINE static bool seen_test(const char c) { return (bool)strgchr(command_args, c); } // At least one of a list of code letters was seen static bool seen(const char * const str) { for (uint8_t i = 0; const char c = str[i]; i++) if (seen_test(c)) return true; return false; } #endif // !FASTER_GCODE_PARSER // Seen any axis parameter static bool seen_axis() { return seen(LOGICAL_AXES_STRING); } #if ENABLED(GCODE_QUOTED_STRINGS) static char* unescape_string(char* &src); #else FORCE_INLINE static char* unescape_string(char* &src) { return src; } #endif // Populate all fields by parsing a single line of GCode // This uses 54 bytes of SRAM to speed up seen/value static void parse(char * p); #if ENABLED(CNC_COORDINATE_SYSTEMS) // Parse the next parameter as a new command static bool chain(); #endif // Test whether the parsed command matches the input static bool is_command(const char ltr, const uint16_t num) { return command_letter == ltr && codenum == num; } // The code value pointer was set FORCE_INLINE static bool has_value() { return !!value_ptr; } // Seen a parameter with a value static bool seenval(const char c) { return seen(c) && has_value(); } // The value as a string static char* value_string() { return value_ptr; } // Float removes 'E' to prevent scientific notation interpretation static float value_float() { if (value_ptr) { char *e = value_ptr; for (;;) { const char c = *e; if (c == '\0' || c == ' ') break; if (c == 'E' || c == 'e') { *e = '\0'; const float ret = strtof(value_ptr, nullptr); *e = c; return ret; } ++e; } return strtof(value_ptr, nullptr); } return 0; } // Code value as a long or ulong static int32_t value_long() { return value_ptr ? strtol(value_ptr, nullptr, 10) : 0L; } static uint32_t value_ulong() { return value_ptr ? strtoul(value_ptr, nullptr, 10) : 0UL; } // Code value for use as time static millis_t value_millis() { return value_ulong(); } static millis_t value_millis_from_seconds() { return (millis_t)SEC_TO_MS(value_float()); } // Reduce to fewer bits static int16_t value_int() { return (int16_t)value_long(); } static uint16_t value_ushort() { return (uint16_t)value_long(); } static uint8_t value_byte() { return (uint8_t)constrain(value_long(), 0, 255); } // Bool is true with no value or non-zero static bool value_bool() { return !has_value() || !!value_byte(); } // Units modes: Inches, Fahrenheit, Kelvin #if ENABLED(INCH_MODE_SUPPORT) static float mm_to_linear_unit(const_float_t mm) { return mm / linear_unit_factor; } static float mm_to_volumetric_unit(const_float_t mm) { return mm / (volumetric_enabled ? volumetric_unit_factor : linear_unit_factor); } // Init linear units by constructor GCodeParser() { set_input_linear_units(LINEARUNIT_MM); } static void set_input_linear_units(const LinearUnit units) { switch (units) { default: case LINEARUNIT_MM: linear_unit_factor = 1.0f; break; case LINEARUNIT_INCH: linear_unit_factor = 25.4f; break; } volumetric_unit_factor = POW(linear_unit_factor, 3); } static float axis_unit_factor(const AxisEnum axis) { return ( #if HAS_EXTRUDERS axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor #else linear_unit_factor #endif ); } static float linear_value_to_mm(const_float_t v) { return v * linear_unit_factor; } static float axis_value_to_mm(const AxisEnum axis, const float v) { return v * axis_unit_factor(axis); } static float per_axis_value(const AxisEnum axis, const float v) { return v / axis_unit_factor(axis); } #else static float mm_to_linear_unit(const_float_t mm) { return mm; } static float mm_to_volumetric_unit(const_float_t mm) { return mm; } static float linear_value_to_mm(const_float_t v) { return v; } static float axis_value_to_mm(const AxisEnum, const float v) { return v; } static float per_axis_value(const AxisEnum, const float v) { return v; } #endif static bool using_inch_units() { return mm_to_linear_unit(1.0f) != 1.0f; } #define IN_TO_MM(I) ((I) * 25.4f) #define MM_TO_IN(M) ((M) / 25.4f) #define LINEAR_UNIT(V) parser.mm_to_linear_unit(V) #define VOLUMETRIC_UNIT(V) parser.mm_to_volumetric_unit(V) static float value_linear_units() { return linear_value_to_mm(value_float()); } static float value_axis_units(const AxisEnum axis) { return axis_value_to_mm(axis, value_float()); } static float value_per_axis_units(const AxisEnum axis) { return per_axis_value(axis, value_float()); } #if ENABLED(TEMPERATURE_UNITS_SUPPORT) static void set_input_temp_units(const TempUnit units) { input_temp_units = units; } static char temp_units_code() { return input_temp_units == TEMPUNIT_K ? 'K' : input_temp_units == TEMPUNIT_F ? 'F' : 'C'; } static FSTR_P temp_units_name() { return input_temp_units == TEMPUNIT_K ? F("Kelvin") : input_temp_units == TEMPUNIT_F ? F("Fahrenheit") : F("Celsius"); } #if HAS_LCD_MENU && DISABLED(DISABLE_M503) static float to_temp_units(celsius_t c) { switch (input_temp_units) { default: case TEMPUNIT_C: return c; case TEMPUNIT_K: return c + 273.15f; case TEMPUNIT_F: return c * 0.5555555556f + 32; } } #endif // HAS_LCD_MENU && !DISABLE_M503 static celsius_t value_celsius() { float f = value_float(); switch (input_temp_units) { default: case TEMPUNIT_C: break; case TEMPUNIT_K: f -= 273.15f; case TEMPUNIT_F: f = (f - 32) * 0.5555555556f; } return LROUND(f); } static celsius_t value_celsius_diff() { float f = value_float(); switch (input_temp_units) { default: case TEMPUNIT_C: case TEMPUNIT_K: break; case TEMPUNIT_F: f *= 0.5555555556f; } return LROUND(f); } #else // !TEMPERATURE_UNITS_SUPPORT static float to_temp_units(int16_t c) { return (float)c; } static celsius_t value_celsius() { return value_int(); } static celsius_t value_celsius_diff() { return value_int(); } #endif // !TEMPERATURE_UNITS_SUPPORT static feedRate_t value_feedrate() { return MMM_TO_MMS(value_linear_units()); } void unknown_command_warning(); // Provide simple value accessors with default option static char* stringval(const char c, char * const dval=nullptr) { return seenval(c) ? value_string() : dval; } static float floatval(const char c, const float dval=0.0) { return seenval(c) ? value_float() : dval; } static bool boolval(const char c, const bool dval=false) { return seenval(c) ? value_bool() : (seen(c) ? true : dval); } static uint8_t byteval(const char c, const uint8_t dval=0) { return seenval(c) ? value_byte() : dval; } static int16_t intval(const char c, const int16_t dval=0) { return seenval(c) ? value_int() : dval; } static uint16_t ushortval(const char c, const uint16_t dval=0) { return seenval(c) ? value_ushort() : dval; } static int32_t longval(const char c, const int32_t dval=0) { return seenval(c) ? value_long() : dval; } static uint32_t ulongval(const char c, const uint32_t dval=0) { return seenval(c) ? value_ulong() : dval; } static float linearval(const char c, const float dval=0) { return seenval(c) ? value_linear_units() : dval; } static float axisunitsval(const char c, const AxisEnum a, const float dval=0) { return seenval(c) ? value_axis_units(a) : dval; } static celsius_t celsiusval(const char c, const celsius_t dval=0) { return seenval(c) ? value_celsius() : dval; } static feedRate_t feedrateval(const char c, const feedRate_t dval=0) { return seenval(c) ? value_feedrate() : dval; } #if ENABLED(MARLIN_DEV_MODE) static uint8_t* hex_adr_val(const char c, uint8_t * const dval=nullptr) { if (!seen(c) || *value_ptr != 'x') return dval; uint8_t *out = nullptr; for (char *vp = value_ptr + 1; HEXCHR(*vp) >= 0; vp++) out = (uint8_t*)((uintptr_t(out) << 8) | HEXCHR(*vp)); return out; } static uint16_t hex_val(const char c, uint16_t const dval=0) { if (!seen(c) || *value_ptr != 'x') return dval; uint16_t out = 0; for (char *vp = value_ptr + 1; HEXCHR(*vp) >= 0; vp++) out = ((out) << 8) | HEXCHR(*vp); return out; } #endif }; extern GCodeParser parser;