/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once #include "serial_base.h" // A mask containing a bitmap of the serial port to act upon // This is written to ensure a serial index is never used as a serial mask class SerialMask { uint8_t mask; // This constructor is private to ensure you can't convert an index to a mask // The compiler will stop here if you are mixing index and mask in your code. // If you need to, you'll have to use the explicit static "from" method here SerialMask(const serial_index_t); public: inline constexpr bool enabled(const SerialMask PortMask) const { return mask & PortMask.mask; } inline constexpr SerialMask combine(const SerialMask other) const { return SerialMask(mask | other.mask); } inline constexpr SerialMask operator<< (const int offset) const { return SerialMask(mask << offset); } static inline SerialMask from(const serial_index_t index) { if (index.valid()) return SerialMask(_BV(index.index)); return SerialMask(0); // A invalid index mean no output } constexpr SerialMask(const uint8_t mask) : mask(mask) {} constexpr SerialMask(const SerialMask & other) : mask(other.mask) {} // Can't use = default here since not all framework support this static constexpr uint8_t All = 0xFF; }; // The most basic serial class: it dispatch to the base serial class with no hook whatsoever. This will compile to nothing but the base serial class template struct BaseSerial : public SerialBase< BaseSerial >, public SerialT { typedef SerialBase< BaseSerial > BaseClassT; // It's required to implement a write method here to help compiler disambiguate what method to call using SerialT::write; using SerialT::flush; void msgDone() {} // We don't care about indices here, since if one can call us, it's the right index anyway int available(serial_index_t) { return (int)SerialT::available(); } int read(serial_index_t) { return (int)SerialT::read(); } bool connected() { return CALL_IF_EXISTS(bool, static_cast(this), connected);; } void flushTX() { CALL_IF_EXISTS(void, static_cast(this), flushTX); } SerialFeature features(serial_index_t index) const { return CALL_IF_EXISTS(SerialFeature, static_cast(this), features, index); } // We have 2 implementation of the same method in both base class, let's say which one we want using SerialT::available; using SerialT::read; using SerialT::begin; using SerialT::end; using BaseClassT::print; using BaseClassT::println; BaseSerial(const bool e) : BaseClassT(e) {} // Forward constructor template BaseSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...) {} }; // A serial with a condition checked at runtime for its output // A bit less efficient than static dispatching but since it's only used for ethernet's serial output right now, it's ok. template struct ConditionalSerial : public SerialBase< ConditionalSerial > { typedef SerialBase< ConditionalSerial > BaseClassT; bool & condition; SerialT & out; NO_INLINE size_t write(uint8_t c) { if (condition) return out.write(c); return 0; } void flush() { if (condition) out.flush(); } void begin(long br) { out.begin(br); } void end() { out.end(); } void msgDone() {} bool connected() { return CALL_IF_EXISTS(bool, &out, connected); } void flushTX() { CALL_IF_EXISTS(void, &out, flushTX); } int available(serial_index_t) { return (int)out.available(); } int read(serial_index_t) { return (int)out.read(); } int available() { return (int)out.available(); } int read() { return (int)out.read(); } SerialFeature features(serial_index_t index) const { return CALL_IF_EXISTS(SerialFeature, &out, features, index); } ConditionalSerial(bool & conditionVariable, SerialT & out, const bool e) : BaseClassT(e), condition(conditionVariable), out(out) {} }; // A simple foward class that taking a reference to an existing serial instance (likely created in their respective framework) template struct ForwardSerial : public SerialBase< ForwardSerial > { typedef SerialBase< ForwardSerial > BaseClassT; SerialT & out; NO_INLINE size_t write(uint8_t c) { return out.write(c); } void flush() { out.flush(); } void begin(long br) { out.begin(br); } void end() { out.end(); } void msgDone() {} // Existing instances implement Arduino's operator bool, so use that if it's available bool connected() { return Private::HasMember_connected::value ? CALL_IF_EXISTS(bool, &out, connected) : (bool)out; } void flushTX() { CALL_IF_EXISTS(void, &out, flushTX); } int available(serial_index_t) { return (int)out.available(); } int read(serial_index_t) { return (int)out.read(); } int available() { return (int)out.available(); } int read() { return (int)out.read(); } SerialFeature features(serial_index_t index) const { return CALL_IF_EXISTS(SerialFeature, &out, features, index); } ForwardSerial(const bool e, SerialT & out) : BaseClassT(e), out(out) {} }; // A class that's can be hooked and unhooked at runtime, useful to capturing the output of the serial interface template struct RuntimeSerial : public SerialBase< RuntimeSerial >, public SerialT { typedef SerialBase< RuntimeSerial > BaseClassT; typedef void (*WriteHook)(void * userPointer, uint8_t c); typedef void (*EndOfMessageHook)(void * userPointer); WriteHook writeHook; EndOfMessageHook eofHook; void * userPointer; NO_INLINE size_t write(uint8_t c) { if (writeHook) writeHook(userPointer, c); return SerialT::write(c); } NO_INLINE void msgDone() { if (eofHook) eofHook(userPointer); } int available(serial_index_t) { return (int)SerialT::available(); } int read(serial_index_t) { return (int)SerialT::read(); } using SerialT::available; using SerialT::read; using SerialT::flush; using SerialT::begin; using SerialT::end; using BaseClassT::print; using BaseClassT::println; // Underlying implementation might use Arduino's bool operator bool connected() { return Private::HasMember_connected::value ? CALL_IF_EXISTS(bool, static_cast(this), connected) : static_cast(this)->operator bool(); } void flushTX() { CALL_IF_EXISTS(void, static_cast(this), flushTX); } // Append Hookable for this class SerialFeature features(serial_index_t index) const { return SerialFeature::Hookable | CALL_IF_EXISTS(SerialFeature, static_cast(this), features, index); } void setHook(WriteHook writeHook = 0, EndOfMessageHook eofHook = 0, void * userPointer = 0) { // Order is important here as serial code can be called inside interrupts // When setting a hook, the user pointer must be set first so if writeHook is called as soon as it's set, it'll be valid if (userPointer) this->userPointer = userPointer; this->writeHook = writeHook; this->eofHook = eofHook; // Order is important here because of asynchronous access here // When unsetting a hook, the user pointer must be unset last so that any pending writeHook is still using the old pointer if (!userPointer) this->userPointer = 0; } RuntimeSerial(const bool e) : BaseClassT(e), writeHook(0), eofHook(0), userPointer(0) {} // Forward constructor template RuntimeSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...), writeHook(0), eofHook(0), userPointer(0) {} }; // A class that duplicates its output conditionally to 2 serial interfaces template struct MultiSerial : public SerialBase< MultiSerial > { typedef SerialBase< MultiSerial > BaseClassT; SerialMask portMask; Serial0T & serial0; Serial1T & serial1; static constexpr uint8_t Usage = ((1 << step) - 1); // A bit mask containing as many bits as step static constexpr uint8_t FirstOutput = (Usage << offset); static constexpr uint8_t SecondOutput = (Usage << (offset + step)); static constexpr uint8_t Both = FirstOutput | SecondOutput; NO_INLINE size_t write(uint8_t c) { size_t ret = 0; if (portMask.enabled(FirstOutput)) ret = serial0.write(c); if (portMask.enabled(SecondOutput)) ret = serial1.write(c) | ret; return ret; } NO_INLINE void msgDone() { if (portMask.enabled(FirstOutput)) serial0.msgDone(); if (portMask.enabled(SecondOutput)) serial1.msgDone(); } int available(serial_index_t index) { if (index.within(0 + offset, step + offset - 1)) return serial0.available(index); else if (index.within(step + offset, 2 * step + offset - 1)) return serial1.available(index); return false; } int read(serial_index_t index) { if (index.within(0 + offset, step + offset - 1)) return serial0.read(index); else if (index.within(step + offset, 2 * step + offset - 1)) return serial1.read(index); return -1; } void begin(const long br) { if (portMask.enabled(FirstOutput)) serial0.begin(br); if (portMask.enabled(SecondOutput)) serial1.begin(br); } void end() { if (portMask.enabled(FirstOutput)) serial0.end(); if (portMask.enabled(SecondOutput)) serial1.end(); } bool connected() { bool ret = true; if (portMask.enabled(FirstOutput)) ret = CALL_IF_EXISTS(bool, &serial0, connected); if (portMask.enabled(SecondOutput)) ret = ret && CALL_IF_EXISTS(bool, &serial1, connected); return ret; } using BaseClassT::available; using BaseClassT::read; // Redirect flush NO_INLINE void flush() { if (portMask.enabled(FirstOutput)) serial0.flush(); if (portMask.enabled(SecondOutput)) serial1.flush(); } NO_INLINE void flushTX() { if (portMask.enabled(FirstOutput)) CALL_IF_EXISTS(void, &serial0, flushTX); if (portMask.enabled(SecondOutput)) CALL_IF_EXISTS(void, &serial1, flushTX); } // Forward feature queries SerialFeature features(serial_index_t index) const { if (index.within(0 + offset, step + offset - 1)) return serial0.features(index); else if (index.within(step + offset, 2 * step + offset - 1)) return serial1.features(index); return SerialFeature::None; } MultiSerial(Serial0T & serial0, Serial1T & serial1, const SerialMask mask = Both, const bool e = false) : BaseClassT(e), portMask(mask), serial0(serial0), serial1(serial1) {} }; // Build the actual serial object depending on current configuration #define Serial1Class TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, BaseSerial) #define ForwardSerial1Class TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, ForwardSerial) #ifdef HAS_MULTI_SERIAL #define Serial2Class ConditionalSerial #endif