/**
 * configuration_store.cpp
 *
 * Configuration and EEPROM storage
 *
 * IMPORTANT:  Whenever there are changes made to the variables stored in EEPROM
 * in the functions below, also increment the version number. This makes sure that
 * the default values are used whenever there is a change to the data, to prevent
 * wrong data being written to the variables.
 *
 * ALSO: Variables in the Store and Retrieve sections must be in the same order.
 *       If a feature is disabled, some data must still be written that, when read,
 *       either sets a Sane Default, or results in No Change to the existing value.
 *
 */

#define EEPROM_VERSION "V19"

/**
 * V19 EEPROM Layout:
 *
 *  ver
 *  M92 XYZE  axis_steps_per_unit (x4)
 *  M203 XYZE max_feedrate (x4)
 *  M201 XYZE max_acceleration_units_per_sq_second (x4)
 *  M204 P    acceleration
 *  M204 R    retract_acceleration
 *  M204 T    travel_acceleration
 *  M205 S    minimumfeedrate
 *  M205 T    mintravelfeedrate
 *  M205 B    minsegmenttime
 *  M205 X    max_xy_jerk
 *  M205 Z    max_z_jerk
 *  M205 E    max_e_jerk
 *  M206 XYZ  home_offset (x3)
 *
 * Mesh bed leveling:
 *  M420 S    active
 *            mesh_num_x (set in firmware)
 *            mesh_num_y (set in firmware)
 *  M421 XYZ  z_values[][]
 *  M851      zprobe_zoffset
 *
 * DELTA:
 *  M666 XYZ  endstop_adj (x3)
 *  M665 R    delta_radius
 *  M665 L    delta_diagonal_rod
 *  M665 S    delta_segments_per_second
 *
 * ULTIPANEL:
 *  M145 S0 H plaPreheatHotendTemp
 *  M145 S0 B plaPreheatHPBTemp
 *  M145 S0 F plaPreheatFanSpeed
 *  M145 S1 H absPreheatHotendTemp
 *  M145 S1 B absPreheatHPBTemp
 *  M145 S1 F absPreheatFanSpeed
 *
 * PIDTEMP:
 *  M301 E0 PIDC  Kp[0], Ki[0], Kd[0], Kc[0]
 *  M301 E1 PIDC  Kp[1], Ki[1], Kd[1], Kc[1]
 *  M301 E2 PIDC  Kp[2], Ki[2], Kd[2], Kc[2]
 *  M301 E3 PIDC  Kp[3], Ki[3], Kd[3], Kc[3]
 *
 * PIDTEMPBED:
 *  M304 PID  bedKp, bedKi, bedKd
 *
 * DOGLCD:
 *  M250 C    lcd_contrast
 *
 * SCARA:
 *  M365 XYZ  axis_scaling (x3)
 *
 * FWRETRACT:
 *  M209 S    autoretract_enabled
 *  M207 S    retract_length
 *  M207 W    retract_length_swap
 *  M207 F    retract_feedrate
 *  M207 Z    retract_zlift
 *  M208 S    retract_recover_length
 *  M208 W    retract_recover_length_swap
 *  M208 F    retract_recover_feedrate
 *
 *  M200 D    volumetric_enabled (D>0 makes this enabled)
 *
 *  M200 T D  filament_size (x4) (T0..3)
 *
 * Z_DUAL_ENDSTOPS:
 *  M666 Z    z_endstop_adj
 *
 */
#include "Marlin.h"
#include "language.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "configuration_store.h"

#ifdef MESH_BED_LEVELING
  #include "mesh_bed_leveling.h"
#endif

void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  uint8_t c;
  while(size--) {
    eeprom_write_byte((unsigned char*)pos, *value);
    c = eeprom_read_byte((unsigned char*)pos);
    if (c != *value) {
      SERIAL_ECHO_START;
      SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
    }
    pos++;
    value++;
  };
}
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  do {
    *value = eeprom_read_byte((unsigned char*)pos);
    pos++;
    value++;
  } while (--size);
}
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))

/**
 * Store Configuration Settings - M500
 */

#define DUMMY_PID_VALUE 3000.0f

#define EEPROM_OFFSET 100

#ifdef EEPROM_SETTINGS

void Config_StoreSettings()  {
  float dummy = 0.0f;
  char ver[4] = "000";
  int i = EEPROM_OFFSET;
  EEPROM_WRITE_VAR(i, ver); // invalidate data first
  EEPROM_WRITE_VAR(i, axis_steps_per_unit);
  EEPROM_WRITE_VAR(i, max_feedrate);
  EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
  EEPROM_WRITE_VAR(i, acceleration);
  EEPROM_WRITE_VAR(i, retract_acceleration);
  EEPROM_WRITE_VAR(i, travel_acceleration);
  EEPROM_WRITE_VAR(i, minimumfeedrate);
  EEPROM_WRITE_VAR(i, mintravelfeedrate);
  EEPROM_WRITE_VAR(i, minsegmenttime);
  EEPROM_WRITE_VAR(i, max_xy_jerk);
  EEPROM_WRITE_VAR(i, max_z_jerk);
  EEPROM_WRITE_VAR(i, max_e_jerk);
  EEPROM_WRITE_VAR(i, home_offset);

  uint8_t mesh_num_x = 3;
  uint8_t mesh_num_y = 3;
  #ifdef MESH_BED_LEVELING
    // Compile time test that sizeof(mbl.z_values) is as expected
    typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS*sizeof(dummy)) ? 1 : -1];
    mesh_num_x = MESH_NUM_X_POINTS;
    mesh_num_y = MESH_NUM_Y_POINTS;
    EEPROM_WRITE_VAR(i, mbl.active);
    EEPROM_WRITE_VAR(i, mesh_num_x);
    EEPROM_WRITE_VAR(i, mesh_num_y);
    EEPROM_WRITE_VAR(i, mbl.z_values);
  #else
    uint8_t dummy_uint8 = 0;
    EEPROM_WRITE_VAR(i, dummy_uint8);
    EEPROM_WRITE_VAR(i, mesh_num_x);
    EEPROM_WRITE_VAR(i, mesh_num_y);
    dummy = 0.0f;
    for (int q=0; q<mesh_num_x*mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
  #endif // MESH_BED_LEVELING

  #ifndef ENABLE_AUTO_BED_LEVELING
    float zprobe_zoffset = 0;
  #endif
  EEPROM_WRITE_VAR(i, zprobe_zoffset);

  #ifdef DELTA
    EEPROM_WRITE_VAR(i, endstop_adj);               // 3 floats
    EEPROM_WRITE_VAR(i, delta_radius);              // 1 float
    EEPROM_WRITE_VAR(i, delta_diagonal_rod);        // 1 float
    EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
  #elif defined(Z_DUAL_ENDSTOPS)
    EEPROM_WRITE_VAR(i, z_endstop_adj);            // 1 floats
    dummy = 0.0f;
    for (int q=5; q--;) EEPROM_WRITE_VAR(i, dummy);
  #else
    dummy = 0.0f;
    for (int q=6; q--;) EEPROM_WRITE_VAR(i, dummy);
  #endif

  #ifndef ULTIPANEL
    int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
        absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  #endif // !ULTIPANEL

  EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, absPreheatFanSpeed);

  for (int e = 0; e < 4; e++) {

    #ifdef PIDTEMP
      if (e < EXTRUDERS) {
        EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
        EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
        EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
        #ifdef PID_ADD_EXTRUSION_RATE
          EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
        #else
          dummy = 1.0f; // 1.0 = default kc
          EEPROM_WRITE_VAR(i, dummy);
        #endif
      }
      else
    #endif // !PIDTEMP
      {
        dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
        EEPROM_WRITE_VAR(i, dummy);
        dummy = 0.0f;
        for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
      }

  } // Extruders Loop

  #ifndef PIDTEMPBED
    float bedKp = DUMMY_PID_VALUE, bedKi = DUMMY_PID_VALUE, bedKd = DUMMY_PID_VALUE;
  #endif

  EEPROM_WRITE_VAR(i, bedKp);
  EEPROM_WRITE_VAR(i, bedKi);
  EEPROM_WRITE_VAR(i, bedKd);

  #ifndef HAS_LCD_CONTRAST
    int lcd_contrast = 32;
  #endif
  EEPROM_WRITE_VAR(i, lcd_contrast);

  #ifdef SCARA
    EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  #else
    dummy = 1.0f;
    EEPROM_WRITE_VAR(i, dummy);
  #endif

  #ifdef FWRETRACT
    EEPROM_WRITE_VAR(i, autoretract_enabled);
    EEPROM_WRITE_VAR(i, retract_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_feedrate);
    EEPROM_WRITE_VAR(i, retract_zlift);
    EEPROM_WRITE_VAR(i, retract_recover_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_recover_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  #endif // FWRETRACT

  EEPROM_WRITE_VAR(i, volumetric_enabled);

  // Save filament sizes
  for (int q = 0; q < 4; q++) {
    if (q < EXTRUDERS) dummy = filament_size[q];
    EEPROM_WRITE_VAR(i, dummy);
  }

  char ver2[4] = EEPROM_VERSION;
  int j = EEPROM_OFFSET;
  EEPROM_WRITE_VAR(j, ver2); // validate data

  // Report storage size
  SERIAL_ECHO_START;
  SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
  SERIAL_ECHOLNPGM(" bytes)");
}

/**
 * Retrieve Configuration Settings - M501
 */

void Config_RetrieveSettings() {

  int i = EEPROM_OFFSET;
  char stored_ver[4];
  char ver[4] = EEPROM_VERSION;
  EEPROM_READ_VAR(i, stored_ver); //read stored version
  //  SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");

  if (strncmp(ver, stored_ver, 3) != 0) {
    Config_ResetDefault();
  }
  else {
    float dummy = 0;

    // version number match
    EEPROM_READ_VAR(i, axis_steps_per_unit);
    EEPROM_READ_VAR(i, max_feedrate);
    EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);

    // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
    reset_acceleration_rates();

    EEPROM_READ_VAR(i, acceleration);
    EEPROM_READ_VAR(i, retract_acceleration);
    EEPROM_READ_VAR(i, travel_acceleration);
    EEPROM_READ_VAR(i, minimumfeedrate);
    EEPROM_READ_VAR(i, mintravelfeedrate);
    EEPROM_READ_VAR(i, minsegmenttime);
    EEPROM_READ_VAR(i, max_xy_jerk);
    EEPROM_READ_VAR(i, max_z_jerk);
    EEPROM_READ_VAR(i, max_e_jerk);
    EEPROM_READ_VAR(i, home_offset);

    uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
    EEPROM_READ_VAR(i, dummy_uint8);
    EEPROM_READ_VAR(i, mesh_num_x);
    EEPROM_READ_VAR(i, mesh_num_y);
    #ifdef MESH_BED_LEVELING
      mbl.active = dummy_uint8;
      if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
        EEPROM_READ_VAR(i, mbl.z_values);
      } else {
        mbl.reset();
        for (int q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
      }
    #else
      for (int q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
    #endif // MESH_BED_LEVELING

    #ifndef ENABLE_AUTO_BED_LEVELING
      float zprobe_zoffset = 0;
    #endif
    EEPROM_READ_VAR(i, zprobe_zoffset);

    #ifdef DELTA
      EEPROM_READ_VAR(i, endstop_adj);                // 3 floats
      EEPROM_READ_VAR(i, delta_radius);               // 1 float
      EEPROM_READ_VAR(i, delta_diagonal_rod);         // 1 float
      EEPROM_READ_VAR(i, delta_segments_per_second);  // 1 float
    #elif defined(Z_DUAL_ENDSTOPS)
      EEPROM_READ_VAR(i, z_endstop_adj);
      dummy = 0.0f;
      for (int q=5; q--;) EEPROM_READ_VAR(i, dummy);
    #else
      dummy = 0.0f;
      for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
    #endif

    #ifndef ULTIPANEL
      int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
          absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
    #endif

    EEPROM_READ_VAR(i, plaPreheatHotendTemp);
    EEPROM_READ_VAR(i, plaPreheatHPBTemp);
    EEPROM_READ_VAR(i, plaPreheatFanSpeed);
    EEPROM_READ_VAR(i, absPreheatHotendTemp);
    EEPROM_READ_VAR(i, absPreheatHPBTemp);
    EEPROM_READ_VAR(i, absPreheatFanSpeed);

    #ifdef PIDTEMP
      for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
        EEPROM_READ_VAR(i, dummy); // Kp
        if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
          // do not need to scale PID values as the values in EEPROM are already scaled
          PID_PARAM(Kp, e) = dummy;
          EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
          EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
          #ifdef PID_ADD_EXTRUSION_RATE
            EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
          #else
            EEPROM_READ_VAR(i, dummy);
          #endif
        }
        else {
          for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
        }
      }
    #else // !PIDTEMP
      // 4 x 4 = 16 slots for PID parameters
      for (int q=16; q--;) EEPROM_READ_VAR(i, dummy);  // 4x Kp, Ki, Kd, Kc
    #endif // !PIDTEMP

    #ifndef PIDTEMPBED
      float bedKp, bedKi, bedKd;
    #endif

    EEPROM_READ_VAR(i, dummy); // bedKp
    if (dummy != DUMMY_PID_VALUE) {
      bedKp = dummy;
      EEPROM_READ_VAR(i, bedKi);
      EEPROM_READ_VAR(i, bedKd);
    }
    else {
      for (int q=2; q--;) EEPROM_READ_VAR(i, dummy); // bedKi, bedKd
    }

    #ifndef HAS_LCD_CONTRAST
      int lcd_contrast;
    #endif
    EEPROM_READ_VAR(i, lcd_contrast);

    #ifdef SCARA
      EEPROM_READ_VAR(i, axis_scaling);  // 3 floats
    #else
      EEPROM_READ_VAR(i, dummy);
    #endif

    #ifdef FWRETRACT
      EEPROM_READ_VAR(i, autoretract_enabled);
      EEPROM_READ_VAR(i, retract_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_feedrate);
      EEPROM_READ_VAR(i, retract_zlift);
      EEPROM_READ_VAR(i, retract_recover_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_recover_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_recover_feedrate);
    #endif // FWRETRACT

    EEPROM_READ_VAR(i, volumetric_enabled);

    for (int q = 0; q < 4; q++) {
      EEPROM_READ_VAR(i, dummy);
      if (q < EXTRUDERS) filament_size[q] = dummy;
    }

    calculate_volumetric_multipliers();
    // Call updatePID (similar to when we have processed M301)
    updatePID();

    // Report settings retrieved and length
    SERIAL_ECHO_START;
    SERIAL_ECHO(ver);
    SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
    SERIAL_ECHOLNPGM(" bytes)");
  }

  #ifdef EEPROM_CHITCHAT
    Config_PrintSettings();
  #endif
}

#endif // EEPROM_SETTINGS

/**
 * Reset Configuration Settings - M502
 */

void Config_ResetDefault() {
  float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  float tmp2[] = DEFAULT_MAX_FEEDRATE;
  long tmp3[] = DEFAULT_MAX_ACCELERATION;
  for (uint16_t i = 0; i < NUM_AXIS; i++) {
    axis_steps_per_unit[i] = tmp1[i];
    max_feedrate[i] = tmp2[i];
    max_acceleration_units_per_sq_second[i] = tmp3[i];
    #ifdef SCARA
      if (i < sizeof(axis_scaling) / sizeof(*axis_scaling))
        axis_scaling[i] = 1;
    #endif
  }

  // steps per sq second need to be updated to agree with the units per sq second
  reset_acceleration_rates();

  acceleration = DEFAULT_ACCELERATION;
  retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
  minsegmenttime = DEFAULT_MINSEGMENTTIME;
  mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
  max_xy_jerk = DEFAULT_XYJERK;
  max_z_jerk = DEFAULT_ZJERK;
  max_e_jerk = DEFAULT_EJERK;
  home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;

  #ifdef MESH_BED_LEVELING
    mbl.active = 0;
  #endif

  #ifdef ENABLE_AUTO_BED_LEVELING
    zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  #endif

  #ifdef DELTA
    endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
    delta_radius =  DELTA_RADIUS;
    delta_diagonal_rod =  DELTA_DIAGONAL_ROD;
    delta_segments_per_second =  DELTA_SEGMENTS_PER_SECOND;
    recalc_delta_settings(delta_radius, delta_diagonal_rod);
  #elif defined(Z_DUAL_ENDSTOPS)
    z_endstop_adj = 0;
  #endif

  #ifdef ULTIPANEL
    plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
    plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
    plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
    absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
    absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
    absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  #endif

  #ifdef HAS_LCD_CONTRAST
    lcd_contrast = DEFAULT_LCD_CONTRAST;
  #endif

  #ifdef PIDTEMP
    #ifdef PID_PARAMS_PER_EXTRUDER
      for (int e = 0; e < EXTRUDERS; e++)
    #else
      int e = 0; // only need to write once
    #endif
    {
      PID_PARAM(Kp, e) = DEFAULT_Kp;
      PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
      PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
      #ifdef PID_ADD_EXTRUSION_RATE
        PID_PARAM(Kc, e) = DEFAULT_Kc;
      #endif
    }
    // call updatePID (similar to when we have processed M301)
    updatePID();
  #endif // PIDTEMP

  #ifdef PIDTEMPBED
    bedKp = DEFAULT_bedKp;
    bedKi = scalePID_i(DEFAULT_bedKi);
    bedKd = scalePID_d(DEFAULT_bedKd);
  #endif

  #ifdef FWRETRACT
    autoretract_enabled = false;
    retract_length = RETRACT_LENGTH;
    #if EXTRUDERS > 1
      retract_length_swap = RETRACT_LENGTH_SWAP;
    #endif
    retract_feedrate = RETRACT_FEEDRATE;
    retract_zlift = RETRACT_ZLIFT;
    retract_recover_length = RETRACT_RECOVER_LENGTH;
    #if EXTRUDERS > 1
      retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
    #endif
    retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  #endif

  volumetric_enabled = false;
  filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
  #if EXTRUDERS > 1
    filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
    #if EXTRUDERS > 2
      filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
      #if EXTRUDERS > 3
        filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA;
      #endif
    #endif
  #endif
  calculate_volumetric_multipliers();

  SERIAL_ECHO_START;
  SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}

#ifndef DISABLE_M503

/**
 * Print Configuration Settings - M503
 */

#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)

void Config_PrintSettings(bool forReplay) {
  // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown

  CONFIG_ECHO_START;

  if (!forReplay) {
    SERIAL_ECHOLNPGM("Steps per unit:");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M92 X", axis_steps_per_unit[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
  SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
  SERIAL_EOL;

  CONFIG_ECHO_START;

  #ifdef SCARA
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Scaling factors:");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M365 X", axis_scaling[X_AXIS]);
    SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
    SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
    SERIAL_EOL;
    CONFIG_ECHO_START;
  #endif // SCARA

  if (!forReplay) {
    SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M203 X", max_feedrate[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
  SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
  SERIAL_EOL;

  CONFIG_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M201 X", max_acceleration_units_per_sq_second[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS]);
  SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
  SERIAL_EOL;
  CONFIG_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M204 P", acceleration);
  SERIAL_ECHOPAIR(" R", retract_acceleration);
  SERIAL_ECHOPAIR(" T", travel_acceleration);
  SERIAL_EOL;

  CONFIG_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M205 S", minimumfeedrate);
  SERIAL_ECHOPAIR(" T", mintravelfeedrate);
  SERIAL_ECHOPAIR(" B", minsegmenttime);
  SERIAL_ECHOPAIR(" X", max_xy_jerk);
  SERIAL_ECHOPAIR(" Z", max_z_jerk);
  SERIAL_ECHOPAIR(" E", max_e_jerk);
  SERIAL_EOL;

  CONFIG_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Home offset (mm):");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M206 X", home_offset[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  SERIAL_EOL;

  #ifdef MESH_BED_LEVELING
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Mesh bed leveling:");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M420 S", (unsigned long)mbl.active);
    SERIAL_ECHOPAIR(" X", (unsigned long)MESH_NUM_X_POINTS);
    SERIAL_ECHOPAIR(" Y", (unsigned long)MESH_NUM_Y_POINTS);
    SERIAL_EOL;
    for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
      for (int x=0; x<MESH_NUM_X_POINTS; x++) {
        CONFIG_ECHO_START;
        SERIAL_ECHOPAIR("  M421 X", mbl.get_x(x));
        SERIAL_ECHOPAIR(" Y", mbl.get_y(y));
        SERIAL_ECHOPAIR(" Z", mbl.z_values[y][x]);
        SERIAL_EOL;
      }
    }
  #endif

  #ifdef DELTA
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M666 X", endstop_adj[X_AXIS]);
    SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
    SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
    SERIAL_EOL;
    CONFIG_ECHO_START;
    SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
    CONFIG_ECHO_START;
    SERIAL_ECHOPAIR("  M665 L", delta_diagonal_rod);
    SERIAL_ECHOPAIR(" R", delta_radius);
    SERIAL_ECHOPAIR(" S", delta_segments_per_second);
    SERIAL_EOL;
  #elif defined(Z_DUAL_ENDSTOPS)
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M666 Z", z_endstop_adj);
    SERIAL_EOL;  
  #endif // DELTA

  #ifdef ULTIPANEL
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Material heatup parameters:");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M145 M0 H", (unsigned long)plaPreheatHotendTemp);
    SERIAL_ECHOPAIR(" B", (unsigned long)plaPreheatHPBTemp);
    SERIAL_ECHOPAIR(" F", (unsigned long)plaPreheatFanSpeed);
    SERIAL_EOL;
    CONFIG_ECHO_START;
    SERIAL_ECHOPAIR("  M145 M1 H", (unsigned long)absPreheatHotendTemp);
    SERIAL_ECHOPAIR(" B", (unsigned long)absPreheatHPBTemp);
    SERIAL_ECHOPAIR(" F", (unsigned long)absPreheatFanSpeed);
    SERIAL_EOL;
  #endif // ULTIPANEL

  #if defined(PIDTEMP) || defined(PIDTEMPBED)

    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("PID settings:");
    }
    #ifdef PIDTEMP
      #if EXTRUDERS > 1
        if (forReplay) {
          for (uint8_t i = 0; i < EXTRUDERS; i++) {
            CONFIG_ECHO_START;
            SERIAL_ECHOPAIR("  M301 E", (unsigned long)i);
            SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, i));
            SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, i)));
            SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, i)));
            #ifdef PID_ADD_EXTRUSION_RATE
              SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, i));
            #endif      
            SERIAL_EOL;
          }
        }
        else
      #endif // EXTRUDERS > 1
      // !forReplay || EXTRUDERS == 1
      {
        CONFIG_ECHO_START;
        SERIAL_ECHOPAIR("  M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
        SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
        SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
        #ifdef PID_ADD_EXTRUSION_RATE
          SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
        #endif      
        SERIAL_EOL;
      }
    #endif // PIDTEMP

    #ifdef PIDTEMPBED
      CONFIG_ECHO_START;
      SERIAL_ECHOPAIR("  M304 P", bedKp);
      SERIAL_ECHOPAIR(" I", unscalePID_i(bedKi));
      SERIAL_ECHOPAIR(" D", unscalePID_d(bedKd));
      SERIAL_EOL;
    #endif

  #endif // PIDTEMP || PIDTEMPBED

  #ifdef HAS_LCD_CONTRAST
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("LCD Contrast:");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M250 C", (unsigned long)lcd_contrast);
    SERIAL_EOL;
  #endif

  #ifdef FWRETRACT

    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M207 S", retract_length);
    #if EXTRUDERS > 1
      SERIAL_ECHOPAIR(" W", retract_length_swap);
    #endif
    SERIAL_ECHOPAIR(" F", retract_feedrate*60);
    SERIAL_ECHOPAIR(" Z", retract_zlift);
    SERIAL_EOL;
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M208 S", retract_recover_length);
    #if EXTRUDERS > 1
      SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
    #endif
    SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
    SERIAL_EOL;
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
    SERIAL_EOL;

  #endif // FWRETRACT

  if (volumetric_enabled) {
    if (!forReplay) {
      CONFIG_ECHO_START;
      SERIAL_ECHOLNPGM("Filament settings:");
    }

    CONFIG_ECHO_START;
    SERIAL_ECHOPAIR("  M200 D", filament_size[0]);
    SERIAL_EOL;

    #if EXTRUDERS > 1
      CONFIG_ECHO_START;
      SERIAL_ECHOPAIR("  M200 T1 D", filament_size[1]);
      SERIAL_EOL;
      #if EXTRUDERS > 2
        CONFIG_ECHO_START;
        SERIAL_ECHOPAIR("  M200 T2 D", filament_size[2]);
        SERIAL_EOL;
        #if EXTRUDERS > 3
          CONFIG_ECHO_START;
          SERIAL_ECHOPAIR("  M200 T3 D", filament_size[3]);
          SERIAL_EOL;
        #endif
      #endif
    #endif

  } else {
    if (!forReplay) {
      CONFIG_ECHO_START;
      SERIAL_ECHOLNPGM("Filament settings: Disabled");
    }
  }

  #ifdef ENABLE_AUTO_BED_LEVELING
    #ifdef CUSTOM_M_CODES
      if (!forReplay) {
        CONFIG_ECHO_START;
        SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
      }
      CONFIG_ECHO_START;
      SERIAL_ECHOPAIR("  M", (unsigned long)CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
      SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
    #else
      if (!forReplay) {
        CONFIG_ECHO_START;
        SERIAL_ECHOPAIR("Z-Probe Offset (mm):", -zprobe_zoffset);
      }
    #endif
    SERIAL_EOL;
  #endif
}

#endif // !DISABLE_M503