/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#pragma once
#include "../inc/MarlinConfig.h"
#include "serial_hook.h"
#if HAS_MEATPACK
#include "../feature/meatpack.h"
#endif
// Commonly-used strings in serial output
extern const char NUL_STR[],
SP_X_STR[], SP_Y_STR[], SP_Z_STR[],
SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_E_STR[],
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[],
SP_I_STR[], SP_J_STR[], SP_K_STR[],
SP_I_LBL[], SP_J_LBL[], SP_K_LBL[],
SP_P_STR[], SP_T_STR[],
X_STR[], Y_STR[], Z_STR[], E_STR[],
I_STR[], J_STR[], K_STR[],
X_LBL[], Y_LBL[], Z_LBL[], E_LBL[],
I_LBL[], J_LBL[], K_LBL[];
//
// Debugging flags for use by M111
//
enum MarlinDebugFlags : uint8_t {
MARLIN_DEBUG_NONE = 0,
MARLIN_DEBUG_ECHO = _BV(0), ///< Echo commands in order as they are processed
MARLIN_DEBUG_INFO = _BV(1), ///< Print messages for code that has debug output
MARLIN_DEBUG_ERRORS = _BV(2), ///< Not implemented
MARLIN_DEBUG_DRYRUN = _BV(3), ///< Ignore temperature setting and E movement commands
MARLIN_DEBUG_COMMUNICATION = _BV(4), ///< Not implemented
#if ENABLED(DEBUG_LEVELING_FEATURE)
MARLIN_DEBUG_LEVELING = _BV(5), ///< Print detailed output for homing and leveling
MARLIN_DEBUG_MESH_ADJUST = _BV(6), ///< UBL bed leveling
#else
MARLIN_DEBUG_LEVELING = 0,
MARLIN_DEBUG_MESH_ADJUST = 0,
#endif
MARLIN_DEBUG_ALL = 0xFF
};
extern uint8_t marlin_debug_flags;
#define DEBUGGING(F) (marlin_debug_flags & (MARLIN_DEBUG_## F))
//
// Serial redirection
//
// Step 1: Find out what the first serial leaf is
#if HAS_MULTI_SERIAL && defined(SERIAL_CATCHALL)
#define _SERIAL_LEAF_1 MYSERIAL
#else
#define _SERIAL_LEAF_1 MYSERIAL1
#endif
// Hook Meatpack if it's enabled on the first leaf
#if ENABLED(MEATPACK_ON_SERIAL_PORT_1)
typedef MeatpackSerial SerialLeafT1;
extern SerialLeafT1 mpSerial1;
#define SERIAL_LEAF_1 mpSerial1
#else
#define SERIAL_LEAF_1 _SERIAL_LEAF_1
#endif
// Step 2: For multiserial wrap all serial ports in a single
// interface with the ability to output to multiple serial ports.
#if HAS_MULTI_SERIAL
#define _PORT_REDIRECT(n,p) REMEMBER(n,multiSerial.portMask,p)
#define _PORT_RESTORE(n) RESTORE(n)
#define SERIAL_ASSERT(P) if (multiSerial.portMask!=(P)) { debugger(); }
// If we have a catchall, use that directly
#ifdef SERIAL_CATCHALL
#define _SERIAL_LEAF_2 SERIAL_CATCHALL
#elif HAS_ETHERNET
typedef ConditionalSerial SerialLeafT2; // We need to create an instance here
extern SerialLeafT2 msSerial2;
#define _SERIAL_LEAF_2 msSerial2
#else
#define _SERIAL_LEAF_2 MYSERIAL2 // Don't create a useless instance here, directly use the existing instance
#endif
// Nothing complicated here
#define _SERIAL_LEAF_3 MYSERIAL3
// Hook Meatpack if it's enabled on the second leaf
#if ENABLED(MEATPACK_ON_SERIAL_PORT_2)
typedef MeatpackSerial SerialLeafT2;
extern SerialLeafT2 mpSerial2;
#define SERIAL_LEAF_2 mpSerial2
#else
#define SERIAL_LEAF_2 _SERIAL_LEAF_2
#endif
// Hook Meatpack if it's enabled on the third leaf
#if ENABLED(MEATPACK_ON_SERIAL_PORT_3)
typedef MeatpackSerial SerialLeafT3;
extern SerialLeafT3 mpSerial3;
#define SERIAL_LEAF_3 mpSerial3
#else
#define SERIAL_LEAF_3 _SERIAL_LEAF_3
#endif
#define __S_MULTI(N) decltype(SERIAL_LEAF_##N),
#define _S_MULTI(N) __S_MULTI(N)
typedef MultiSerial< REPEAT_1(NUM_SERIAL, _S_MULTI) 0> SerialOutputT;
#undef __S_MULTI
#undef _S_MULTI
extern SerialOutputT multiSerial;
#define SERIAL_IMPL multiSerial
#else
#define _PORT_REDIRECT(n,p) NOOP
#define _PORT_RESTORE(n) NOOP
#define SERIAL_ASSERT(P) NOOP
#define SERIAL_IMPL SERIAL_LEAF_1
#endif
#define SERIAL_OUT(WHAT, V...) (void)SERIAL_IMPL.WHAT(V)
#define PORT_REDIRECT(p) _PORT_REDIRECT(1,p)
#define PORT_RESTORE() _PORT_RESTORE(1)
#define SERIAL_PORTMASK(P) SerialMask::from(P)
//
// SERIAL_CHAR - Print one or more individual chars
//
inline void SERIAL_CHAR(char a) { SERIAL_IMPL.write(a); }
template
void SERIAL_CHAR(char a, Args ... args) { SERIAL_IMPL.write(a); SERIAL_CHAR(args ...); }
/**
* SERIAL_ECHO - Print a single string or value.
* Any numeric parameter (including char) is printed as a base-10 number.
* A string pointer or literal will be output as a string.
*
* NOTE: Use SERIAL_CHAR to print char as a single character.
*/
template
void SERIAL_ECHO(T x) { SERIAL_IMPL.print(x); }
// Wrapper for ECHO commands to interpret a char
typedef struct SerialChar { char c; SerialChar(char n) : c(n) { } } serial_char_t;
inline void SERIAL_ECHO(serial_char_t x) { SERIAL_IMPL.write(x.c); }
#define AS_CHAR(C) serial_char_t(C)
#define AS_DIGIT(C) AS_CHAR('0' + (C))
template
void SERIAL_ECHOLN(T x) { SERIAL_IMPL.println(x); }
// SERIAL_PRINT works like SERIAL_ECHO but also takes the numeric base
template
void SERIAL_PRINT(T x, U y) { SERIAL_IMPL.print(x, y); }
template
void SERIAL_PRINTLN(T x, PrintBase y) { SERIAL_IMPL.println(x, y); }
// Flush the serial port
inline void SERIAL_FLUSH() { SERIAL_IMPL.flush(); }
inline void SERIAL_FLUSHTX() { SERIAL_IMPL.flushTX(); }
// Serial echo and error prefixes
#define SERIAL_ECHO_START() serial_echo_start()
#define SERIAL_ERROR_START() serial_error_start()
// Serial end-of-line
#define SERIAL_EOL() SERIAL_CHAR('\n')
// Print a single PROGMEM, PGM_P, or PSTR() string.
void serial_print_P(PGM_P str);
inline void serial_println_P(PGM_P str) { serial_print_P(str); SERIAL_EOL(); }
// Print a single FSTR_P, F(), or FPSTR() string.
inline void serial_print(FSTR_P const fstr) { serial_print_P(FTOP(fstr)); }
inline void serial_println(FSTR_P const fstr) { serial_println_P(FTOP(fstr)); }
//
// SERIAL_ECHOPGM... macros are used to output string-value pairs.
//
// Print up to 20 pairs of values. Odd elements must be literal strings.
#define __SEP_N(N,V...) _SEP_##N(V)
#define _SEP_N(N,V...) __SEP_N(N,V)
#define _SEP_N_REF() _SEP_N
#define _SEP_1(s) serial_print(F(s));
#define _SEP_2(s,v) serial_echopair(F(s),v);
#define _SEP_3(s,v,V...) _SEP_2(s,v); DEFER2(_SEP_N_REF)()(TWO_ARGS(V),V);
#define SERIAL_ECHOPGM(V...) do{ EVAL(_SEP_N(TWO_ARGS(V),V)); }while(0)
// Print up to 20 pairs of values followed by newline. Odd elements must be literal strings.
#define __SELP_N(N,V...) _SELP_##N(V)
#define _SELP_N(N,V...) __SELP_N(N,V)
#define _SELP_N_REF() _SELP_N
#define _SELP_1(s) serial_print(F(s "\n"));
#define _SELP_2(s,v) serial_echolnpair(F(s),v);
#define _SELP_3(s,v,V...) _SEP_2(s,v); DEFER2(_SELP_N_REF)()(TWO_ARGS(V),V);
#define SERIAL_ECHOLNPGM(V...) do{ EVAL(_SELP_N(TWO_ARGS(V),V)); }while(0)
// Print up to 20 pairs of values. Odd elements must be PSTR pointers.
#define __SEP_N_P(N,V...) _SEP_##N##_P(V)
#define _SEP_N_P(N,V...) __SEP_N_P(N,V)
#define _SEP_N_P_REF() _SEP_N_P
#define _SEP_1_P(p) serial_print_P(p);
#define _SEP_2_P(p,v) serial_echopair_P(p,v);
#define _SEP_3_P(p,v,V...) _SEP_2_P(p,v); DEFER2(_SEP_N_P_REF)()(TWO_ARGS(V),V);
#define SERIAL_ECHOPGM_P(V...) do{ EVAL(_SEP_N_P(TWO_ARGS(V),V)); }while(0)
// Print up to 20 pairs of values followed by newline. Odd elements must be PSTR pointers.
#define __SELP_N_P(N,V...) _SELP_##N##_P(V)
#define _SELP_N_P(N,V...) __SELP_N_P(N,V)
#define _SELP_N_P_REF() _SELP_N_P
#define _SELP_1_P(p) serial_println_P(p)
#define _SELP_2_P(p,v) serial_echolnpair_P(p,v)
#define _SELP_3_P(p,v,V...) { _SEP_2_P(p,v); DEFER2(_SELP_N_P_REF)()(TWO_ARGS(V),V); }
#define SERIAL_ECHOLNPGM_P(V...) do{ EVAL(_SELP_N_P(TWO_ARGS(V),V)); }while(0)
// Print up to 20 pairs of values. Odd elements must be FSTR_P, F(), or FPSTR().
#define __SEP_N_F(N,V...) _SEP_##N##_F(V)
#define _SEP_N_F(N,V...) __SEP_N_F(N,V)
#define _SEP_N_F_REF() _SEP_N_F
#define _SEP_1_F(p) serial_print(p);
#define _SEP_2_F(p,v) serial_echopair(p,v);
#define _SEP_3_F(p,v,V...) _SEP_2_F(p,v); DEFER2(_SEP_N_F_REF)()(TWO_ARGS(V),V);
#define SERIAL_ECHOF(V...) do{ EVAL(_SEP_N_F(TWO_ARGS(V),V)); }while(0)
// Print up to 20 pairs of values followed by newline. Odd elements must be FSTR_P, F(), or FPSTR().
#define __SELP_N_F(N,V...) _SELP_##N##_F(V)
#define _SELP_N_F(N,V...) __SELP_N_F(N,V)
#define _SELP_N_F_REF() _SELP_N_F
#define _SELP_1_F(p) serial_println(p)
#define _SELP_2_F(p,v) serial_echolnpair(p,v)
#define _SELP_3_F(p,v,V...) { _SEP_2_F(p,v); DEFER2(_SELP_N_F_REF)()(TWO_ARGS(V),V); }
#define SERIAL_ECHOLNF(V...) do{ EVAL(_SELP_N_F(TWO_ARGS(V),V)); }while(0)
#ifdef AllowDifferentTypeInList
inline void SERIAL_ECHOLIST_IMPL() {}
template
void SERIAL_ECHOLIST_IMPL(T && t) { SERIAL_IMPL.print(t); }
template
void SERIAL_ECHOLIST_IMPL(T && t, Args && ... args) {
SERIAL_IMPL.print(t);
serial_print(F(", "));
SERIAL_ECHOLIST_IMPL(args...);
}
template
void SERIAL_ECHOLIST(FSTR_P const str, Args && ... args) {
SERIAL_IMPL.print(FTOP(str));
SERIAL_ECHOLIST_IMPL(args...);
}
#else // Optimization if the listed type are all the same (seems to be the case in the codebase so use that instead)
template
void SERIAL_ECHOLIST(FSTR_P const fstr, Args && ... args) {
serial_print(fstr);
typename Private::first_type_of::type values[] = { args... };
constexpr size_t argsSize = sizeof...(args);
for (size_t i = 0; i < argsSize; i++) {
if (i) serial_print(F(", "));
SERIAL_IMPL.print(values[i]);
}
}
#endif
// SERIAL_ECHO_F prints a floating point value with optional precision
inline void SERIAL_ECHO_F(EnsureDouble x, int digit=2) { SERIAL_IMPL.print(x, digit); }
#define SERIAL_ECHOPAIR_F_P(P,V...) do{ serial_print_P(P); SERIAL_ECHO_F(V); }while(0)
#define SERIAL_ECHOLNPAIR_F_P(P,V...) do{ SERIAL_ECHOPAIR_F_P(P,V); SERIAL_EOL(); }while(0)
#define SERIAL_ECHOPAIR_F_F(S,V...) do{ serial_print(S); SERIAL_ECHO_F(V); }while(0)
#define SERIAL_ECHOLNPAIR_F_F(S,V...) do{ SERIAL_ECHOPAIR_F_F(S,V); SERIAL_EOL(); }while(0)
#define SERIAL_ECHOPAIR_F(S,V...) SERIAL_ECHOPAIR_F_F(F(S),V)
#define SERIAL_ECHOLNPAIR_F(V...) do{ SERIAL_ECHOPAIR_F(V); SERIAL_EOL(); }while(0)
#define SERIAL_ECHO_MSG(V...) do{ SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(V); }while(0)
#define SERIAL_ERROR_MSG(V...) do{ SERIAL_ERROR_START(); SERIAL_ECHOLNPGM(V); }while(0)
#define SERIAL_ECHO_SP(C) serial_spaces(C)
#define SERIAL_ECHO_TERNARY(TF, PRE, ON, OFF, POST) serial_ternary(TF, F(PRE), F(ON), F(OFF), F(POST))
#if SERIAL_FLOAT_PRECISION
#define SERIAL_DECIMAL(V) SERIAL_PRINT(V, SERIAL_FLOAT_PRECISION)
#else
#define SERIAL_DECIMAL(V) SERIAL_ECHO(V)
#endif
//
// Functions for serial printing from PROGMEM. (Saves loads of SRAM.)
//
inline void serial_echopair_P(PGM_P const pstr, serial_char_t v) { serial_print_P(pstr); SERIAL_CHAR(v.c); }
inline void serial_echopair_P(PGM_P const pstr, float v) { serial_print_P(pstr); SERIAL_DECIMAL(v); }
inline void serial_echopair_P(PGM_P const pstr, double v) { serial_print_P(pstr); SERIAL_DECIMAL(v); }
//inline void serial_echopair_P(PGM_P const pstr, const char *v) { serial_print_P(pstr); SERIAL_ECHO(v); }
inline void serial_echopair_P(PGM_P const pstr, FSTR_P v) { serial_print_P(pstr); SERIAL_ECHOF(v); }
// Default implementation for types without a specialization. Handles integers.
template
inline void serial_echopair_P(PGM_P const pstr, T v) { serial_print_P(pstr); SERIAL_ECHO(v); }
// Add a newline.
template
inline void serial_echolnpair_P(PGM_P const pstr, T v) { serial_echopair_P(pstr, v); SERIAL_EOL(); }
// Catch-all for __FlashStringHelper *
template
inline void serial_echopair(FSTR_P const fstr, T v) { serial_echopair_P(FTOP(fstr), v); }
// Add a newline to the serial output
template
inline void serial_echolnpair(FSTR_P const fstr, T v) { serial_echolnpair_P(FTOP(fstr), v); }
void serial_echo_start();
void serial_error_start();
void serial_ternary(const bool onoff, FSTR_P const pre, FSTR_P const on, FSTR_P const off, FSTR_P const post=nullptr);
void serialprint_onoff(const bool onoff);
void serialprintln_onoff(const bool onoff);
void serialprint_truefalse(const bool tf);
void serial_spaces(uint8_t count);
void serial_offset(const_float_t v, const uint8_t sp=0); // For v==0 draw space (sp==1) or plus (sp==2)
void print_bin(const uint16_t val);
void print_pos(LINEAR_AXIS_ARGS(const_float_t), FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr);
inline void print_pos(const xyz_pos_t &xyz, FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr) {
print_pos(LINEAR_AXIS_ELEM(xyz), prefix, suffix);
}
#define SERIAL_POS(SUFFIX,VAR) do { print_pos(VAR, F(" " STRINGIFY(VAR) "="), F(" : " SUFFIX "\n")); }while(0)
#define SERIAL_XYZ(PREFIX,V...) do { print_pos(V, F(PREFIX)); }while(0)