/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once #include "../inc/MarlinConfig.h" #include "serial_hook.h" #if HAS_MEATPACK #include "../feature/meatpack.h" #endif // Commonly-used strings in serial output extern const char NUL_STR[], SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_E_STR[], SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[], SP_I_STR[], SP_J_STR[], SP_K_STR[], SP_I_LBL[], SP_J_LBL[], SP_K_LBL[], SP_P_STR[], SP_T_STR[], X_STR[], Y_STR[], Z_STR[], E_STR[], I_STR[], J_STR[], K_STR[], X_LBL[], Y_LBL[], Z_LBL[], E_LBL[], I_LBL[], J_LBL[], K_LBL[]; // // Debugging flags for use by M111 // enum MarlinDebugFlags : uint8_t { MARLIN_DEBUG_NONE = 0, MARLIN_DEBUG_ECHO = _BV(0), ///< Echo commands in order as they are processed MARLIN_DEBUG_INFO = _BV(1), ///< Print messages for code that has debug output MARLIN_DEBUG_ERRORS = _BV(2), ///< Not implemented MARLIN_DEBUG_DRYRUN = _BV(3), ///< Ignore temperature setting and E movement commands MARLIN_DEBUG_COMMUNICATION = _BV(4), ///< Not implemented #if ENABLED(DEBUG_LEVELING_FEATURE) MARLIN_DEBUG_LEVELING = _BV(5), ///< Print detailed output for homing and leveling MARLIN_DEBUG_MESH_ADJUST = _BV(6), ///< UBL bed leveling #else MARLIN_DEBUG_LEVELING = 0, MARLIN_DEBUG_MESH_ADJUST = 0, #endif MARLIN_DEBUG_ALL = 0xFF }; extern uint8_t marlin_debug_flags; #define DEBUGGING(F) (marlin_debug_flags & (MARLIN_DEBUG_## F)) // // Serial redirection // // Step 1: Find out what the first serial leaf is #if HAS_MULTI_SERIAL && defined(SERIAL_CATCHALL) #define _SERIAL_LEAF_1 MYSERIAL #else #define _SERIAL_LEAF_1 MYSERIAL1 #endif // Hook Meatpack if it's enabled on the first leaf #if ENABLED(MEATPACK_ON_SERIAL_PORT_1) typedef MeatpackSerial SerialLeafT1; extern SerialLeafT1 mpSerial1; #define SERIAL_LEAF_1 mpSerial1 #else #define SERIAL_LEAF_1 _SERIAL_LEAF_1 #endif // Step 2: For multiserial wrap all serial ports in a single // interface with the ability to output to multiple serial ports. #if HAS_MULTI_SERIAL #define _PORT_REDIRECT(n,p) REMEMBER(n,multiSerial.portMask,p) #define _PORT_RESTORE(n) RESTORE(n) #define SERIAL_ASSERT(P) if (multiSerial.portMask!=(P)) { debugger(); } // If we have a catchall, use that directly #ifdef SERIAL_CATCHALL #define _SERIAL_LEAF_2 SERIAL_CATCHALL #elif HAS_ETHERNET typedef ConditionalSerial SerialLeafT2; // We need to create an instance here extern SerialLeafT2 msSerial2; #define _SERIAL_LEAF_2 msSerial2 #else #define _SERIAL_LEAF_2 MYSERIAL2 // Don't create a useless instance here, directly use the existing instance #endif // Nothing complicated here #define _SERIAL_LEAF_3 MYSERIAL3 // Hook Meatpack if it's enabled on the second leaf #if ENABLED(MEATPACK_ON_SERIAL_PORT_2) typedef MeatpackSerial SerialLeafT2; extern SerialLeafT2 mpSerial2; #define SERIAL_LEAF_2 mpSerial2 #else #define SERIAL_LEAF_2 _SERIAL_LEAF_2 #endif // Hook Meatpack if it's enabled on the third leaf #if ENABLED(MEATPACK_ON_SERIAL_PORT_3) typedef MeatpackSerial SerialLeafT3; extern SerialLeafT3 mpSerial3; #define SERIAL_LEAF_3 mpSerial3 #else #define SERIAL_LEAF_3 _SERIAL_LEAF_3 #endif #define __S_MULTI(N) decltype(SERIAL_LEAF_##N), #define _S_MULTI(N) __S_MULTI(N) typedef MultiSerial< REPEAT_1(NUM_SERIAL, _S_MULTI) 0> SerialOutputT; #undef __S_MULTI #undef _S_MULTI extern SerialOutputT multiSerial; #define SERIAL_IMPL multiSerial #else #define _PORT_REDIRECT(n,p) NOOP #define _PORT_RESTORE(n) NOOP #define SERIAL_ASSERT(P) NOOP #define SERIAL_IMPL SERIAL_LEAF_1 #endif #define SERIAL_OUT(WHAT, V...) (void)SERIAL_IMPL.WHAT(V) #define PORT_REDIRECT(p) _PORT_REDIRECT(1,p) #define PORT_RESTORE() _PORT_RESTORE(1) #define SERIAL_PORTMASK(P) SerialMask::from(P) // // SERIAL_CHAR - Print one or more individual chars // inline void SERIAL_CHAR(char a) { SERIAL_IMPL.write(a); } template void SERIAL_CHAR(char a, Args ... args) { SERIAL_IMPL.write(a); SERIAL_CHAR(args ...); } /** * SERIAL_ECHO - Print a single string or value. * Any numeric parameter (including char) is printed as a base-10 number. * A string pointer or literal will be output as a string. * * NOTE: Use SERIAL_CHAR to print char as a single character. */ template void SERIAL_ECHO(T x) { SERIAL_IMPL.print(x); } // Wrapper for ECHO commands to interpret a char typedef struct SerialChar { char c; SerialChar(char n) : c(n) { } } serial_char_t; inline void SERIAL_ECHO(serial_char_t x) { SERIAL_IMPL.write(x.c); } #define AS_CHAR(C) serial_char_t(C) #define AS_DIGIT(C) AS_CHAR('0' + (C)) template void SERIAL_ECHOLN(T x) { SERIAL_IMPL.println(x); } // SERIAL_PRINT works like SERIAL_ECHO but also takes the numeric base template void SERIAL_PRINT(T x, U y) { SERIAL_IMPL.print(x, y); } template void SERIAL_PRINTLN(T x, PrintBase y) { SERIAL_IMPL.println(x, y); } // Flush the serial port inline void SERIAL_FLUSH() { SERIAL_IMPL.flush(); } inline void SERIAL_FLUSHTX() { SERIAL_IMPL.flushTX(); } // Serial echo and error prefixes #define SERIAL_ECHO_START() serial_echo_start() #define SERIAL_ERROR_START() serial_error_start() // Serial end-of-line #define SERIAL_EOL() SERIAL_CHAR('\n') // Print a single PROGMEM, PGM_P, or PSTR() string. void serial_print_P(PGM_P str); inline void serial_println_P(PGM_P str) { serial_print_P(str); SERIAL_EOL(); } // Print a single FSTR_P, F(), or FPSTR() string. inline void serial_print(FSTR_P const fstr) { serial_print_P(FTOP(fstr)); } inline void serial_println(FSTR_P const fstr) { serial_println_P(FTOP(fstr)); } // // SERIAL_ECHOPGM... macros are used to output string-value pairs. // // Print up to 20 pairs of values. Odd elements must be literal strings. #define __SEP_N(N,V...) _SEP_##N(V) #define _SEP_N(N,V...) __SEP_N(N,V) #define _SEP_N_REF() _SEP_N #define _SEP_1(s) serial_print(F(s)); #define _SEP_2(s,v) serial_echopair(F(s),v); #define _SEP_3(s,v,V...) _SEP_2(s,v); DEFER2(_SEP_N_REF)()(TWO_ARGS(V),V); #define SERIAL_ECHOPGM(V...) do{ EVAL(_SEP_N(TWO_ARGS(V),V)); }while(0) // Print up to 20 pairs of values followed by newline. Odd elements must be literal strings. #define __SELP_N(N,V...) _SELP_##N(V) #define _SELP_N(N,V...) __SELP_N(N,V) #define _SELP_N_REF() _SELP_N #define _SELP_1(s) serial_print(F(s "\n")); #define _SELP_2(s,v) serial_echolnpair(F(s),v); #define _SELP_3(s,v,V...) _SEP_2(s,v); DEFER2(_SELP_N_REF)()(TWO_ARGS(V),V); #define SERIAL_ECHOLNPGM(V...) do{ EVAL(_SELP_N(TWO_ARGS(V),V)); }while(0) // Print up to 20 pairs of values. Odd elements must be PSTR pointers. #define __SEP_N_P(N,V...) _SEP_##N##_P(V) #define _SEP_N_P(N,V...) __SEP_N_P(N,V) #define _SEP_N_P_REF() _SEP_N_P #define _SEP_1_P(p) serial_print_P(p); #define _SEP_2_P(p,v) serial_echopair_P(p,v); #define _SEP_3_P(p,v,V...) _SEP_2_P(p,v); DEFER2(_SEP_N_P_REF)()(TWO_ARGS(V),V); #define SERIAL_ECHOPGM_P(V...) do{ EVAL(_SEP_N_P(TWO_ARGS(V),V)); }while(0) // Print up to 20 pairs of values followed by newline. Odd elements must be PSTR pointers. #define __SELP_N_P(N,V...) _SELP_##N##_P(V) #define _SELP_N_P(N,V...) __SELP_N_P(N,V) #define _SELP_N_P_REF() _SELP_N_P #define _SELP_1_P(p) serial_println_P(p) #define _SELP_2_P(p,v) serial_echolnpair_P(p,v) #define _SELP_3_P(p,v,V...) { _SEP_2_P(p,v); DEFER2(_SELP_N_P_REF)()(TWO_ARGS(V),V); } #define SERIAL_ECHOLNPGM_P(V...) do{ EVAL(_SELP_N_P(TWO_ARGS(V),V)); }while(0) // Print up to 20 pairs of values. Odd elements must be FSTR_P, F(), or FPSTR(). #define __SEP_N_F(N,V...) _SEP_##N##_F(V) #define _SEP_N_F(N,V...) __SEP_N_F(N,V) #define _SEP_N_F_REF() _SEP_N_F #define _SEP_1_F(p) serial_print(p); #define _SEP_2_F(p,v) serial_echopair(p,v); #define _SEP_3_F(p,v,V...) _SEP_2_F(p,v); DEFER2(_SEP_N_F_REF)()(TWO_ARGS(V),V); #define SERIAL_ECHOF(V...) do{ EVAL(_SEP_N_F(TWO_ARGS(V),V)); }while(0) // Print up to 20 pairs of values followed by newline. Odd elements must be FSTR_P, F(), or FPSTR(). #define __SELP_N_F(N,V...) _SELP_##N##_F(V) #define _SELP_N_F(N,V...) __SELP_N_F(N,V) #define _SELP_N_F_REF() _SELP_N_F #define _SELP_1_F(p) serial_println(p) #define _SELP_2_F(p,v) serial_echolnpair(p,v) #define _SELP_3_F(p,v,V...) { _SEP_2_F(p,v); DEFER2(_SELP_N_F_REF)()(TWO_ARGS(V),V); } #define SERIAL_ECHOLNF(V...) do{ EVAL(_SELP_N_F(TWO_ARGS(V),V)); }while(0) #ifdef AllowDifferentTypeInList inline void SERIAL_ECHOLIST_IMPL() {} template void SERIAL_ECHOLIST_IMPL(T && t) { SERIAL_IMPL.print(t); } template void SERIAL_ECHOLIST_IMPL(T && t, Args && ... args) { SERIAL_IMPL.print(t); serial_print(F(", ")); SERIAL_ECHOLIST_IMPL(args...); } template void SERIAL_ECHOLIST(FSTR_P const str, Args && ... args) { SERIAL_IMPL.print(FTOP(str)); SERIAL_ECHOLIST_IMPL(args...); } #else // Optimization if the listed type are all the same (seems to be the case in the codebase so use that instead) template void SERIAL_ECHOLIST(FSTR_P const fstr, Args && ... args) { serial_print(fstr); typename Private::first_type_of::type values[] = { args... }; constexpr size_t argsSize = sizeof...(args); for (size_t i = 0; i < argsSize; i++) { if (i) serial_print(F(", ")); SERIAL_IMPL.print(values[i]); } } #endif // SERIAL_ECHO_F prints a floating point value with optional precision inline void SERIAL_ECHO_F(EnsureDouble x, int digit=2) { SERIAL_IMPL.print(x, digit); } #define SERIAL_ECHOPAIR_F_P(P,V...) do{ serial_print_P(P); SERIAL_ECHO_F(V); }while(0) #define SERIAL_ECHOLNPAIR_F_P(P,V...) do{ SERIAL_ECHOPAIR_F_P(P,V); SERIAL_EOL(); }while(0) #define SERIAL_ECHOPAIR_F_F(S,V...) do{ serial_print(S); SERIAL_ECHO_F(V); }while(0) #define SERIAL_ECHOLNPAIR_F_F(S,V...) do{ SERIAL_ECHOPAIR_F_F(S,V); SERIAL_EOL(); }while(0) #define SERIAL_ECHOPAIR_F(S,V...) SERIAL_ECHOPAIR_F_F(F(S),V) #define SERIAL_ECHOLNPAIR_F(V...) do{ SERIAL_ECHOPAIR_F(V); SERIAL_EOL(); }while(0) #define SERIAL_ECHO_MSG(V...) do{ SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(V); }while(0) #define SERIAL_ERROR_MSG(V...) do{ SERIAL_ERROR_START(); SERIAL_ECHOLNPGM(V); }while(0) #define SERIAL_ECHO_SP(C) serial_spaces(C) #define SERIAL_ECHO_TERNARY(TF, PRE, ON, OFF, POST) serial_ternary(TF, F(PRE), F(ON), F(OFF), F(POST)) #if SERIAL_FLOAT_PRECISION #define SERIAL_DECIMAL(V) SERIAL_PRINT(V, SERIAL_FLOAT_PRECISION) #else #define SERIAL_DECIMAL(V) SERIAL_ECHO(V) #endif // // Functions for serial printing from PROGMEM. (Saves loads of SRAM.) // inline void serial_echopair_P(PGM_P const pstr, serial_char_t v) { serial_print_P(pstr); SERIAL_CHAR(v.c); } inline void serial_echopair_P(PGM_P const pstr, float v) { serial_print_P(pstr); SERIAL_DECIMAL(v); } inline void serial_echopair_P(PGM_P const pstr, double v) { serial_print_P(pstr); SERIAL_DECIMAL(v); } //inline void serial_echopair_P(PGM_P const pstr, const char *v) { serial_print_P(pstr); SERIAL_ECHO(v); } inline void serial_echopair_P(PGM_P const pstr, FSTR_P v) { serial_print_P(pstr); SERIAL_ECHOF(v); } // Default implementation for types without a specialization. Handles integers. template inline void serial_echopair_P(PGM_P const pstr, T v) { serial_print_P(pstr); SERIAL_ECHO(v); } // Add a newline. template inline void serial_echolnpair_P(PGM_P const pstr, T v) { serial_echopair_P(pstr, v); SERIAL_EOL(); } // Catch-all for __FlashStringHelper * template inline void serial_echopair(FSTR_P const fstr, T v) { serial_echopair_P(FTOP(fstr), v); } // Add a newline to the serial output template inline void serial_echolnpair(FSTR_P const fstr, T v) { serial_echolnpair_P(FTOP(fstr), v); } void serial_echo_start(); void serial_error_start(); void serial_ternary(const bool onoff, FSTR_P const pre, FSTR_P const on, FSTR_P const off, FSTR_P const post=nullptr); void serialprint_onoff(const bool onoff); void serialprintln_onoff(const bool onoff); void serialprint_truefalse(const bool tf); void serial_spaces(uint8_t count); void serial_offset(const_float_t v, const uint8_t sp=0); // For v==0 draw space (sp==1) or plus (sp==2) void print_bin(const uint16_t val); void print_pos(LINEAR_AXIS_ARGS(const_float_t), FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr); inline void print_pos(const xyz_pos_t &xyz, FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr) { print_pos(LINEAR_AXIS_ELEM(xyz), prefix, suffix); } #define SERIAL_POS(SUFFIX,VAR) do { print_pos(VAR, F(" " STRINGIFY(VAR) "="), F(" : " SUFFIX "\n")); }while(0) #define SERIAL_XYZ(PREFIX,V...) do { print_pos(V, F(PREFIX)); }while(0)