/**
* Marlin 3D Printer Firmware
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
/**
* temperature.cpp - temperature control
*/
#include "temperature.h"
#include "endstops.h"
#include "../Marlin.h"
#include "../lcd/ultralcd.h"
#include "planner.h"
#include "../core/language.h"
#include "../HAL/shared/Delay.h"
#define MAX6675_SEPARATE_SPI EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) && PIN_EXISTS(MAX6675_SCK, MAX6675_DO)
#if MAX6675_SEPARATE_SPI
#include "../libs/private_spi.h"
#endif
#if EITHER(BABYSTEPPING, PID_EXTRUSION_SCALING)
#include "stepper.h"
#endif
#if ENABLED(BABYSTEPPING)
#include "../feature/babystep.h"
#if ENABLED(BABYSTEP_ALWAYS_AVAILABLE)
#include "../gcode/gcode.h"
#endif
#endif
#include "printcounter.h"
#if ENABLED(FILAMENT_WIDTH_SENSOR)
#include "../feature/filwidth.h"
#endif
#if ENABLED(EMERGENCY_PARSER)
#include "../feature/emergency_parser.h"
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
#include "../feature/leds/printer_event_leds.h"
#endif
#if ENABLED(SINGLENOZZLE)
#include "tool_change.h"
#endif
#if HOTEND_USES_THERMISTOR
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
#else
static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE, (void*)HEATER_5_TEMPTABLE);
static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN, HEATER_5_TEMPTABLE_LEN);
#endif
#endif
Temperature thermalManager;
/**
* Macros to include the heater id in temp errors. The compiler's dead-code
* elimination should (hopefully) optimize out the unused strings.
*/
#if HAS_HEATED_BED
#define _BED_PSTR(M,E) (E) == -1 ? PSTR(M) :
#else
#define _BED_PSTR(M,E)
#endif
#if HAS_HEATED_CHAMBER
#define _CHAMBER_PSTR(M,E) (E) == -2 ? PSTR(M) :
#else
#define _CHAMBER_PSTR(M,E)
#endif
#define _E_PSTR(M,E,N) ((HOTENDS) >= (N) && (E) == (N)-1) ? PSTR(MSG_E##N " " M) :
#define TEMP_ERR_PSTR(M,E) _BED_PSTR(M##_BED,E) _CHAMBER_PSTR(M##_CHAMBER,E) _E_PSTR(M,E,2) _E_PSTR(M,E,3) _E_PSTR(M,E,4) _E_PSTR(M,E,5) _E_PSTR(M,E,6) PSTR(MSG_E1 " " M)
// public:
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
bool Temperature::adaptive_fan_slowing = true;
#endif
hotend_info_t Temperature::temp_hotend[HOTENDS]; // = { 0 }
#if ENABLED(AUTO_POWER_E_FANS)
uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 }
#endif
#if FAN_COUNT > 0
uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 }
#if ENABLED(EXTRA_FAN_SPEED)
uint8_t Temperature::old_fan_speed[FAN_COUNT], Temperature::new_fan_speed[FAN_COUNT];
void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp) {
switch (tmp_temp) {
case 1:
set_fan_speed(fan, old_fan_speed[fan]);
break;
case 2:
old_fan_speed[fan] = fan_speed[fan];
set_fan_speed(fan, new_fan_speed[fan]);
break;
default:
new_fan_speed[fan] = MIN(tmp_temp, 255U);
break;
}
}
#endif
#if ENABLED(PROBING_FANS_OFF)
bool Temperature::fans_paused; // = false;
#endif
#if ENABLED(ADAPTIVE_FAN_SLOWING)
uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128);
#endif
#if HAS_LCD_MENU
uint8_t Temperature::lcd_tmpfan_speed[
#if ENABLED(SINGLENOZZLE)
MAX(EXTRUDERS, FAN_COUNT)
#else
FAN_COUNT
#endif
]; // = { 0 }
#endif
void Temperature::set_fan_speed(uint8_t target, uint16_t speed) {
NOMORE(speed, 255U);
#if ENABLED(SINGLENOZZLE)
if (target != active_extruder) {
if (target < EXTRUDERS) singlenozzle_fan_speed[target] = speed;
return;
}
target = 0; // Always use fan index 0 with SINGLENOZZLE
#endif
if (target >= FAN_COUNT) return;
fan_speed[target] = speed;
#if HAS_LCD_MENU
lcd_tmpfan_speed[target] = speed;
#endif
}
#if ENABLED(PROBING_FANS_OFF)
void Temperature::set_fans_paused(const bool p) {
static uint8_t saved_fan_speed[FAN_COUNT]; // = { 0 }
if (p != fans_paused) {
fans_paused = p;
if (p)
FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; }
else
FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i];
}
}
#endif // PROBING_FANS_OFF
#endif // FAN_COUNT > 0
#if WATCH_HOTENDS
heater_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } }
#endif
#if HEATER_IDLE_HANDLER
heater_idle_t Temperature::hotend_idle[HOTENDS]; // = { { 0 } }
#endif
#if HAS_HEATED_BED
bed_info_t Temperature::temp_bed; // = { 0 }
// Init min and max temp with extreme values to prevent false errors during startup
#ifdef BED_MINTEMP
int16_t Temperature::mintemp_raw_BED = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
int16_t Temperature::maxtemp_raw_BED = HEATER_BED_RAW_HI_TEMP;
#endif
#if WATCH_BED
heater_watch_t Temperature::watch_bed; // = { 0 }
#endif
#if DISABLED(PIDTEMPBED)
millis_t Temperature::next_bed_check_ms;
#endif
#if HEATER_IDLE_HANDLER
heater_idle_t Temperature::bed_idle; // = { 0 }
#endif
#endif // HAS_HEATED_BED
#if HAS_TEMP_CHAMBER
chamber_info_t Temperature::temp_chamber; // = { 0 }
#if HAS_HEATED_CHAMBER
#ifdef CHAMBER_MINTEMP
int16_t Temperature::mintemp_raw_CHAMBER = HEATER_CHAMBER_RAW_LO_TEMP;
#endif
#ifdef CHAMBER_MAXTEMP
int16_t Temperature::maxtemp_raw_CHAMBER = HEATER_CHAMBER_RAW_HI_TEMP;
#endif
#if WATCH_CHAMBER
heater_watch_t Temperature::watch_chamber = { 0 };
millis_t Temperature::next_chamber_check_ms;
#endif
#endif // HAS_HEATED_CHAMBER
#endif // HAS_TEMP_CHAMBER
// Initialized by settings.load()
#if ENABLED(PIDTEMP)
//hotend_pid_t Temperature::pid[HOTENDS];
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
bool Temperature::allow_cold_extrude = false;
int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
#endif
// private:
#if EARLY_WATCHDOG
bool Temperature::inited = false;
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
uint16_t Temperature::redundant_temperature_raw = 0;
float Temperature::redundant_temperature = 0.0;
#endif
volatile bool Temperature::temp_meas_ready = false;
#if ENABLED(PID_EXTRUSION_SCALING)
int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN];
lpq_ptr_t Temperature::lpq_ptr = 0;
#endif
#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) < (HEATER_##N##_RAW_HI_TEMP) ? 1 : -1)
// Init mintemp and maxtemp with extreme values to prevent false errors during startup
constexpr temp_range_t sensor_heater_0 { HEATER_0_RAW_LO_TEMP, HEATER_0_RAW_HI_TEMP, 0, 16383 },
sensor_heater_1 { HEATER_1_RAW_LO_TEMP, HEATER_1_RAW_HI_TEMP, 0, 16383 },
sensor_heater_2 { HEATER_2_RAW_LO_TEMP, HEATER_2_RAW_HI_TEMP, 0, 16383 },
sensor_heater_3 { HEATER_3_RAW_LO_TEMP, HEATER_3_RAW_HI_TEMP, 0, 16383 },
sensor_heater_4 { HEATER_4_RAW_LO_TEMP, HEATER_4_RAW_HI_TEMP, 0, 16383 },
sensor_heater_5 { HEATER_5_RAW_LO_TEMP, HEATER_5_RAW_HI_TEMP, 0, 16383 };
temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5);
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
#endif
#ifdef MILLISECONDS_PREHEAT_TIME
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
#endif
#if HAS_AUTO_FAN
millis_t Temperature::next_auto_fan_check_ms = 0;
#endif
#if ENABLED(FAN_SOFT_PWM)
uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
Temperature::soft_pwm_count_fan[FAN_COUNT];
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
#endif
#if ENABLED(PROBING_HEATERS_OFF)
bool Temperature::paused;
#endif
// public:
#if HAS_ADC_BUTTONS
uint32_t Temperature::current_ADCKey_raw = 0;
uint8_t Temperature::ADCKey_count = 0;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
int16_t Temperature::lpq_len; // Initialized in configuration_store
#endif
#if HAS_PID_HEATING
inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); }
/**
* PID Autotuning (M303)
*
* Alternately heat and cool the nozzle, observing its behavior to
* determine the best PID values to achieve a stable temperature.
* Needs sufficient heater power to make some overshoot at target
* temperature to succeed.
*/
void Temperature::PID_autotune(const float &target, const int8_t heater, const int8_t ncycles, const bool set_result/*=false*/) {
float current = 0.0;
int cycles = 0;
bool heating = true;
millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
long t_high = 0, t_low = 0;
long bias, d;
PID_t tune_pid = { 0, 0, 0 };
float max = 0, min = 10000;
#if HAS_PID_FOR_BOTH
#define GHV(B,H) (heater < 0 ? (B) : (H))
#define SHV(B,H) do{ if (heater < 0) temp_bed.soft_pwm_amount = B; else temp_hotend[heater].soft_pwm_amount = H; }while(0)
#define ONHEATINGSTART() (heater < 0 ? printerEventLEDs.onBedHeatingStart() : printerEventLEDs.onHotendHeatingStart())
#define ONHEATING(S,C,T) do{ if (heater < 0) printerEventLEDs.onBedHeating(S,C,T); else printerEventLEDs.onHotendHeating(S,C,T); }while(0)
#elif ENABLED(PIDTEMPBED)
#define GHV(B,H) B
#define SHV(B,H) (temp_bed.soft_pwm_amount = B)
#define ONHEATINGSTART() printerEventLEDs.onBedHeatingStart()
#define ONHEATING(S,C,T) printerEventLEDs.onBedHeating(S,C,T)
#else
#define GHV(B,H) H
#define SHV(B,H) (temp_hotend[heater].soft_pwm_amount = H)
#define ONHEATINGSTART() printerEventLEDs.onHotendHeatingStart()
#define ONHEATING(S,C,T) printerEventLEDs.onHotendHeating(S,C,T)
#endif
#if WATCH_BED || WATCH_HOTENDS
#define HAS_TP_BED BOTH(THERMAL_PROTECTION_BED, PIDTEMPBED)
#if HAS_TP_BED && BOTH(THERMAL_PROTECTION_HOTENDS, PIDTEMP)
#define GTV(B,H) (heater < 0 ? (B) : (H))
#elif HAS_TP_BED
#define GTV(B,H) (B)
#else
#define GTV(B,H) (H)
#endif
const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1);
millis_t temp_change_ms = next_temp_ms + watch_temp_period * 1000UL;
float next_watch_temp = 0.0;
bool heated = false;
#endif
#if HAS_AUTO_FAN
next_auto_fan_check_ms = next_temp_ms + 2500UL;
#endif
if (target > GHV(BED_MAXTEMP, temp_range[heater].maxtemp) - 15) {
SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH);
return;
}
SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_START);
disable_all_heaters();
SHV(bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1);
wait_for_heatup = true; // Can be interrupted with M108
#if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = GHV(temp_bed.current, temp_hotend[heater].current);
LEDColor color = ONHEATINGSTART();
#endif
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
adaptive_fan_slowing = false;
#endif
// PID Tuning loop
while (wait_for_heatup) {
const millis_t ms = millis();
if (temp_meas_ready) { // temp sample ready
updateTemperaturesFromRawValues();
// Get the current temperature and constrain it
current = GHV(temp_bed.current, temp_hotend[heater].current);
NOLESS(max, current);
NOMORE(min, current);
#if ENABLED(PRINTER_EVENT_LEDS)
ONHEATING(start_temp, current, target);
#endif
#if HAS_AUTO_FAN
if (ELAPSED(ms, next_auto_fan_check_ms)) {
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500UL;
}
#endif
if (heating && current > target) {
if (ELAPSED(ms, t2 + 5000UL)) {
heating = false;
SHV((bias - d) >> 1, (bias - d) >> 1);
t1 = ms;
t_high = t1 - t2;
max = target;
}
}
if (!heating && current < target) {
if (ELAPSED(ms, t1 + 5000UL)) {
heating = true;
t2 = ms;
t_low = t2 - t1;
if (cycles > 0) {
const long max_pow = GHV(MAX_BED_POWER, PID_MAX);
bias += (d * (t_high - t_low)) / (t_low + t_high);
bias = constrain(bias, 20, max_pow - 20);
d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
SERIAL_ECHOPAIR(MSG_BIAS, bias, MSG_D, d, MSG_T_MIN, min, MSG_T_MAX, max);
if (cycles > 2) {
float Ku = (4.0f * d) / (float(M_PI) * (max - min) * 0.5f),
Tu = ((float)(t_low + t_high) * 0.001f);
tune_pid.Kp = 0.6f * Ku;
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
tune_pid.Kd = tune_pid.Kp * Tu * 0.125f;
SERIAL_ECHOPAIR(MSG_KU, Ku, MSG_TU, Tu);
SERIAL_ECHOLNPGM("\n" MSG_CLASSIC_PID);
SERIAL_ECHOLNPAIR(MSG_KP, tune_pid.Kp, MSG_KI, tune_pid.Ki, MSG_KD, tune_pid.Kd);
/**
tune_pid.Kp = 0.33*Ku;
tune_pid.Ki = tune_pid.Kp/Tu;
tune_pid.Kd = tune_pid.Kp*Tu/3;
SERIAL_ECHOLNPGM(" Some overshoot");
SERIAL_ECHOLNPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd, " No overshoot");
tune_pid.Kp = 0.2*Ku;
tune_pid.Ki = 2*tune_pid.Kp/Tu;
tune_pid.Kd = tune_pid.Kp*Tu/3;
SERIAL_ECHOPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd);
*/
}
}
SHV((bias + d) >> 1, (bias + d) >> 1);
cycles++;
min = target;
}
}
}
// Did the temperature overshoot very far?
#ifndef MAX_OVERSHOOT_PID_AUTOTUNE
#define MAX_OVERSHOOT_PID_AUTOTUNE 20
#endif
if (current > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH);
break;
}
// Report heater states every 2 seconds
if (ELAPSED(ms, next_temp_ms)) {
#if HAS_TEMP_SENSOR
print_heater_states(heater >= 0 ? heater : active_extruder);
SERIAL_EOL();
#endif
next_temp_ms = ms + 2000UL;
// Make sure heating is actually working
#if WATCH_BED || WATCH_HOTENDS
if (
#if WATCH_BED && WATCH_HOTENDS
true
#elif WATCH_HOTENDS
heater >= 0
#else
heater < 0
#endif
) {
if (!heated) { // If not yet reached target...
if (current > next_watch_temp) { // Over the watch temp?
next_watch_temp = current + watch_temp_increase; // - set the next temp to watch for
temp_change_ms = ms + watch_temp_period * 1000UL; // - move the expiration timer up
if (current > watch_temp_target) heated = true; // - Flag if target temperature reached
}
else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
_temp_error(heater, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, heater));
}
else if (current < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
_temp_error(heater, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater));
}
#endif
} // every 2 seconds
// Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
#ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
#define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
#endif
if (((ms - t1) + (ms - t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
SERIAL_ECHOLNPGM(MSG_PID_TIMEOUT);
break;
}
if (cycles > ncycles && cycles > 2) {
SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_FINISHED);
#if HAS_PID_FOR_BOTH
const char * const estring = GHV(PSTR("bed"), PSTR(""));
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
#elif ENABLED(PIDTEMP)
say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
#else
say_default_(); SERIAL_ECHOLNPAIR("bedKp ", tune_pid.Kp);
say_default_(); SERIAL_ECHOLNPAIR("bedKi ", tune_pid.Ki);
say_default_(); SERIAL_ECHOLNPAIR("bedKd ", tune_pid.Kd);
#endif
#define _SET_BED_PID() do { \
temp_bed.pid.Kp = tune_pid.Kp; \
temp_bed.pid.Ki = scalePID_i(tune_pid.Ki); \
temp_bed.pid.Kd = scalePID_d(tune_pid.Kd); \
}while(0)
#define _SET_EXTRUDER_PID() do { \
PID_PARAM(Kp, heater) = tune_pid.Kp; \
PID_PARAM(Ki, heater) = scalePID_i(tune_pid.Ki); \
PID_PARAM(Kd, heater) = scalePID_d(tune_pid.Kd); \
updatePID(); }while(0)
// Use the result? (As with "M303 U1")
if (set_result) {
#if HAS_PID_FOR_BOTH
if (heater < 0) _SET_BED_PID(); else _SET_EXTRUDER_PID();
#elif ENABLED(PIDTEMP)
_SET_EXTRUDER_PID();
#else
_SET_BED_PID();
#endif
}
#if ENABLED(PRINTER_EVENT_LEDS)
printerEventLEDs.onPidTuningDone(color);
#endif
goto EXIT_M303;
}
ui.update();
}
disable_all_heaters();
#if ENABLED(PRINTER_EVENT_LEDS)
printerEventLEDs.onPidTuningDone(color);
#endif
EXIT_M303:
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
adaptive_fan_slowing = true;
#endif
return;
}
#endif // HAS_PID_HEATING
/**
* Class and Instance Methods
*/
Temperature::Temperature() { }
int16_t Temperature::getHeaterPower(const int8_t heater) {
return (
#if HAS_HEATED_CHAMBER
#if HAS_HEATED_BED
heater == -2
#else
heater < 0
#endif
? temp_chamber.soft_pwm_amount :
#endif
#if HAS_HEATED_BED
#if HAS_HEATED_CHAMBER
heater == -1
#else
heater < 0
#endif
? temp_bed.soft_pwm_amount :
#endif
temp_hotend[heater].soft_pwm_amount
);
}
#if HAS_AUTO_FAN
#define AUTO_1_IS_0 (E1_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
#define AUTO_2_IS_0 (E2_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
#define AUTO_2_IS_1 (E2_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
#define AUTO_3_IS_0 (E3_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
#define AUTO_3_IS_1 (E3_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
#define AUTO_3_IS_2 (E3_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
#define AUTO_4_IS_0 (E4_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
#define AUTO_4_IS_1 (E4_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
#define AUTO_4_IS_2 (E4_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
#define AUTO_4_IS_3 (E4_AUTO_FAN_PIN == E3_AUTO_FAN_PIN)
#define AUTO_5_IS_0 (E5_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
#define AUTO_5_IS_1 (E5_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
#define AUTO_5_IS_2 (E5_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
#define AUTO_5_IS_3 (E5_AUTO_FAN_PIN == E3_AUTO_FAN_PIN)
#define AUTO_5_IS_4 (E5_AUTO_FAN_PIN == E4_AUTO_FAN_PIN)
#define AUTO_CHAMBER_IS_0 (CHAMBER_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
#define AUTO_CHAMBER_IS_1 (CHAMBER_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
#define AUTO_CHAMBER_IS_2 (CHAMBER_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
#define AUTO_CHAMBER_IS_3 (CHAMBER_AUTO_FAN_PIN == E3_AUTO_FAN_PIN)
#define AUTO_CHAMBER_IS_4 (CHAMBER_AUTO_FAN_PIN == E4_AUTO_FAN_PIN)
#define AUTO_CHAMBER_IS_5 (CHAMBER_AUTO_FAN_PIN == E5_AUTO_FAN_PIN)
void Temperature::checkExtruderAutoFans() {
static const uint8_t fanBit[] PROGMEM = {
0,
AUTO_1_IS_0 ? 0 : 1,
AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4,
AUTO_5_IS_0 ? 0 : AUTO_5_IS_1 ? 1 : AUTO_5_IS_2 ? 2 : AUTO_5_IS_3 ? 3 : AUTO_5_IS_4 ? 4 : 5
#if HAS_TEMP_CHAMBER
, AUTO_CHAMBER_IS_0 ? 0 : AUTO_CHAMBER_IS_1 ? 1 : AUTO_CHAMBER_IS_2 ? 2 : AUTO_CHAMBER_IS_3 ? 3 : AUTO_CHAMBER_IS_4 ? 4 : AUTO_CHAMBER_IS_5 ? 5 : 6
#endif
};
uint8_t fanState = 0;
HOTEND_LOOP()
if (temp_hotend[e].current > EXTRUDER_AUTO_FAN_TEMPERATURE)
SBI(fanState, pgm_read_byte(&fanBit[e]));
#if HAS_TEMP_CHAMBER
if (temp_chamber.current > EXTRUDER_AUTO_FAN_TEMPERATURE)
SBI(fanState, pgm_read_byte(&fanBit[6]));
#endif
#define _UPDATE_AUTO_FAN(P,D,A) do{ \
if (PWM_PIN(P##_AUTO_FAN_PIN) && EXTRUDER_AUTO_FAN_SPEED < 255) \
analogWrite(P##_AUTO_FAN_PIN, A); \
else \
WRITE(P##_AUTO_FAN_PIN, D); \
}while(0)
uint8_t fanDone = 0;
for (uint8_t f = 0; f < COUNT(fanBit); f++) {
const uint8_t bit = pgm_read_byte(&fanBit[f]);
if (TEST(fanDone, bit)) continue;
const bool fan_on = TEST(fanState, bit);
const uint8_t speed = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0;
#if ENABLED(AUTO_POWER_E_FANS)
autofan_speed[f] = speed;
#endif
switch (f) {
#if HAS_AUTO_FAN_0
case 0: _UPDATE_AUTO_FAN(E0, fan_on, speed); break;
#endif
#if HAS_AUTO_FAN_1
case 1: _UPDATE_AUTO_FAN(E1, fan_on, speed); break;
#endif
#if HAS_AUTO_FAN_2
case 2: _UPDATE_AUTO_FAN(E2, fan_on, speed); break;
#endif
#if HAS_AUTO_FAN_3
case 3: _UPDATE_AUTO_FAN(E3, fan_on, speed); break;
#endif
#if HAS_AUTO_FAN_4
case 4: _UPDATE_AUTO_FAN(E4, fan_on, speed); break;
#endif
#if HAS_AUTO_FAN_5
case 5: _UPDATE_AUTO_FAN(E5, fan_on, speed); break;
#endif
#if HAS_AUTO_CHAMBER_FAN
case 6: _UPDATE_AUTO_FAN(CHAMBER, fan_on, speed); break;
#endif
}
SBI(fanDone, bit);
UNUSED(fan_on); UNUSED(speed);
}
}
#endif // HAS_AUTO_FAN
//
// Temperature Error Handlers
//
void Temperature::_temp_error(const int8_t heater, PGM_P const serial_msg, PGM_P const lcd_msg) {
static bool killed = false;
if (IsRunning()) {
SERIAL_ERROR_START();
serialprintPGM(serial_msg);
SERIAL_ECHOPGM(MSG_STOPPED_HEATER);
if (heater >= 0) SERIAL_ECHO((int)heater);
#if HAS_HEATED_CHAMBER
else if (heater == -2) SERIAL_ECHOPGM(MSG_HEATER_CHAMBER);
#endif
else SERIAL_ECHOPGM(MSG_HEATER_BED);
SERIAL_EOL();
}
#if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
if (!killed) {
Running = false;
killed = true;
kill(lcd_msg);
}
else
disable_all_heaters(); // paranoia
#endif
}
void Temperature::max_temp_error(const int8_t heater) {
_temp_error(heater, PSTR(MSG_T_MAXTEMP), TEMP_ERR_PSTR(MSG_ERR_MAXTEMP, heater));
}
void Temperature::min_temp_error(const int8_t heater) {
_temp_error(heater, PSTR(MSG_T_MINTEMP), TEMP_ERR_PSTR(MSG_ERR_MINTEMP, heater));
}
float Temperature::get_pid_output(const int8_t e) {
#if HOTENDS == 1
#define _HOTEND_TEST true
#else
#define _HOTEND_TEST (e == active_extruder)
#endif
E_UNUSED();
float pid_output;
#if ENABLED(PIDTEMP)
#if DISABLED(PID_OPENLOOP)
static hotend_pid_t work_pid[HOTENDS];
static float temp_iState[HOTENDS] = { 0 },
temp_dState[HOTENDS] = { 0 };
static bool pid_reset[HOTENDS] = { false };
float pid_error = temp_hotend[HOTEND_INDEX].target - temp_hotend[HOTEND_INDEX].current;
work_pid[HOTEND_INDEX].Kd = PID_K2 * PID_PARAM(Kd, HOTEND_INDEX) * (temp_hotend[HOTEND_INDEX].current - temp_dState[HOTEND_INDEX]) + float(PID_K1) * work_pid[HOTEND_INDEX].Kd;
temp_dState[HOTEND_INDEX] = temp_hotend[HOTEND_INDEX].current;
if (temp_hotend[HOTEND_INDEX].target == 0
|| pid_error < -(PID_FUNCTIONAL_RANGE)
#if HEATER_IDLE_HANDLER
|| hotend_idle[HOTEND_INDEX].timed_out
#endif
) {
pid_output = 0;
pid_reset[HOTEND_INDEX] = true;
}
else if (pid_error > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[HOTEND_INDEX] = true;
}
else {
if (pid_reset[HOTEND_INDEX]) {
temp_iState[HOTEND_INDEX] = 0.0;
pid_reset[HOTEND_INDEX] = false;
}
temp_iState[HOTEND_INDEX] += pid_error;
work_pid[HOTEND_INDEX].Kp = PID_PARAM(Kp, HOTEND_INDEX) * pid_error;
work_pid[HOTEND_INDEX].Ki = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
pid_output = work_pid[HOTEND_INDEX].Kp + work_pid[HOTEND_INDEX].Ki - work_pid[HOTEND_INDEX].Kd;
#if ENABLED(PID_EXTRUSION_SCALING)
work_pid[HOTEND_INDEX].Kc = 0;
if (_HOTEND_TEST) {
const long e_position = stepper.position(E_AXIS);
if (e_position > last_e_position) {
lpq[lpq_ptr] = e_position - last_e_position;
last_e_position = e_position;
}
else
lpq[lpq_ptr] = 0;
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
work_pid[HOTEND_INDEX].Kc = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
pid_output += work_pid[HOTEND_INDEX].Kc;
}
#endif // PID_EXTRUSION_SCALING
if (pid_output > PID_MAX) {
if (pid_error > 0) temp_iState[HOTEND_INDEX] -= pid_error; // conditional un-integration
pid_output = PID_MAX;
}
else if (pid_output < 0) {
if (pid_error < 0) temp_iState[HOTEND_INDEX] -= pid_error; // conditional un-integration
pid_output = 0;
}
}
#else // PID_OPENLOOP
const float pid_output = constrain(temp_hotend[HOTEND_INDEX].target, 0, PID_MAX);
#endif // PID_OPENLOOP
#if ENABLED(PID_DEBUG)
SERIAL_ECHO_START();
SERIAL_ECHOPAIR(
MSG_PID_DEBUG, HOTEND_INDEX,
MSG_PID_DEBUG_INPUT, temp_hotend[HOTEND_INDEX].current,
MSG_PID_DEBUG_OUTPUT, pid_output
);
#if DISABLED(PID_OPENLOOP)
SERIAL_ECHOPAIR(
MSG_PID_DEBUG_PTERM, work_pid[HOTEND_INDEX].Kp,
MSG_PID_DEBUG_ITERM, work_pid[HOTEND_INDEX].Ki,
MSG_PID_DEBUG_DTERM, work_pid[HOTEND_INDEX].Kd
#if ENABLED(PID_EXTRUSION_SCALING)
, MSG_PID_DEBUG_CTERM, work_pid[HOTEND_INDEX].Kc
#endif
);
#endif
SERIAL_EOL();
#endif // PID_DEBUG
#else /* PID off */
#if HEATER_IDLE_HANDLER
#define _TIMED_OUT_TEST hotend_idle[HOTEND_INDEX].timed_out
#else
#define _TIMED_OUT_TEST false
#endif
pid_output = (!_TIMED_OUT_TEST && temp_hotend[HOTEND_INDEX].current < temp_hotend[HOTEND_INDEX].target) ? BANG_MAX : 0;
#undef _TIMED_OUT_TEST
#endif
return pid_output;
}
#if ENABLED(PIDTEMPBED)
float Temperature::get_pid_output_bed() {
#if DISABLED(PID_OPENLOOP)
static PID_t work_pid = { 0 };
static float temp_iState = 0, temp_dState = 0;
float pid_error = temp_bed.target - temp_bed.current;
temp_iState += pid_error;
work_pid.Kp = temp_bed.pid.Kp * pid_error;
work_pid.Ki = temp_bed.pid.Ki * temp_iState;
work_pid.Kd = PID_K2 * temp_bed.pid.Kd * (temp_bed.current - temp_dState) + PID_K1 * work_pid.Kd;
temp_dState = temp_bed.current;
float pid_output = work_pid.Kp + work_pid.Ki - work_pid.Kd;
if (pid_output > MAX_BED_POWER) {
if (pid_error > 0) temp_iState -= pid_error; // conditional un-integration
pid_output = MAX_BED_POWER;
}
else if (pid_output < 0) {
if (pid_error < 0) temp_iState -= pid_error; // conditional un-integration
pid_output = 0;
}
#else // PID_OPENLOOP
const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER);
#endif // PID_OPENLOOP
#if ENABLED(PID_BED_DEBUG)
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR(
" PID_BED_DEBUG : Input ", temp_bed.current, " Output ", pid_output,
#if DISABLED(PID_OPENLOOP)
MSG_PID_DEBUG_PTERM, work_pid.Kp,
MSG_PID_DEBUG_ITERM, work_pid.Ki,
MSG_PID_DEBUG_DTERM, work_pid.Kd,
#endif
);
#endif
return pid_output;
}
#endif // PIDTEMPBED
/**
* Manage heating activities for extruder hot-ends and a heated bed
* - Acquire updated temperature readings
* - Also resets the watchdog timer
* - Invoke thermal runaway protection
* - Manage extruder auto-fan
* - Apply filament width to the extrusion rate (may move)
* - Update the heated bed PID output value
*/
void Temperature::manage_heater() {
#if EARLY_WATCHDOG
// If thermal manager is still not running, make sure to at least reset the watchdog!
if (!inited) {
watchdog_reset();
return;
}
#endif
#if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
static bool last_pause_state;
#endif
#if ENABLED(EMERGENCY_PARSER)
if (emergency_parser.killed_by_M112) kill();
#endif
if (!temp_meas_ready) return;
updateTemperaturesFromRawValues(); // also resets the watchdog
#if ENABLED(HEATER_0_USES_MAX6675)
if (temp_hotend[0].current > MIN(HEATER_0_MAXTEMP, HEATER_0_MAX6675_TMAX - 1.0)) max_temp_error(0);
if (temp_hotend[0].current < MAX(HEATER_0_MINTEMP, HEATER_0_MAX6675_TMIN + .01)) min_temp_error(0);
#endif
#if ENABLED(HEATER_1_USES_MAX6675)
if (temp_hotend[1].current > MIN(HEATER_1_MAXTEMP, HEATER_1_MAX6675_TMAX - 1.0)) max_temp_error(1);
if (temp_hotend[1].current < MAX(HEATER_1_MINTEMP, HEATER_1_MAX6675_TMIN + .01)) min_temp_error(1);
#endif
#define HAS_THERMAL_PROTECTION (ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED || ENABLED(THERMAL_PROTECTION_CHAMBER))
#if HAS_THERMAL_PROTECTION || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN || HEATER_IDLE_HANDLER
millis_t ms = millis();
#endif
#if HAS_THERMAL_PROTECTION
#ifndef THERMAL_PROTECTION_GRACE_PERIOD
#define THERMAL_PROTECTION_GRACE_PERIOD 0 // No grace period needed on well-behaved boards
#endif
#if THERMAL_PROTECTION_GRACE_PERIOD > 0
static millis_t grace_period = ms + THERMAL_PROTECTION_GRACE_PERIOD;
if (ELAPSED(ms, grace_period)) grace_period = 0UL;
#else
static constexpr millis_t grace_period = 0UL;
#endif
#endif
HOTEND_LOOP() {
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
if (!grace_period && degHotend(e) > temp_range[e].maxtemp)
_temp_error(e, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, e));
#endif
#if HEATER_IDLE_HANDLER
hotend_idle[e].update(ms);
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
// Check for thermal runaway
thermal_runaway_protection(tr_state_machine[e], temp_hotend[e].current, temp_hotend[e].target, e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
#endif
temp_hotend[e].soft_pwm_amount = (temp_hotend[e].current > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].current < temp_range[e].maxtemp ? (int)get_pid_output(e) >> 1 : 0;
#if WATCH_HOTENDS
// Make sure temperature is increasing
if (watch_hotend[e].next_ms && ELAPSED(ms, watch_hotend[e].next_ms)) { // Time to check this extruder?
if (degHotend(e) < watch_hotend[e].target) // Failed to increase enough?
_temp_error(e, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, e));
else // Start again if the target is still far off
start_watching_heater(e);
}
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
// Make sure measured temperatures are close together
if (ABS(temp_hotend[0].current - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
_temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
#endif
} // HOTEND_LOOP
#if HAS_AUTO_FAN
if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500UL;
}
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
/**
* Filament Width Sensor dynamically sets the volumetric multiplier
* based on a delayed measurement of the filament diameter.
*/
if (filament_sensor) {
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
planner.calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index]);
}
#endif // FILAMENT_WIDTH_SENSOR
#if HAS_HEATED_BED
#if ENABLED(THERMAL_PROTECTION_BED)
if (!grace_period && degBed() > BED_MAXTEMP)
_temp_error(-1, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, -1));
#endif
#if WATCH_BED
// Make sure temperature is increasing
if (watch_bed.elapsed(ms)) { // Time to check the bed?
if (degBed() < watch_bed.target) // Failed to increase enough?
_temp_error(-1, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -1));
else // Start again if the target is still far off
start_watching_bed();
}
#endif // WATCH_BED
#if DISABLED(PIDTEMPBED)
if (PENDING(ms, next_bed_check_ms)
#if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
&& paused == last_pause_state
#endif
) return;
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
#if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
last_pause_state = paused;
#endif
#endif
#if HEATER_IDLE_HANDLER
bed_idle.update(ms);
#endif
#if HAS_THERMALLY_PROTECTED_BED
thermal_runaway_protection(tr_state_machine_bed, temp_bed.current, temp_bed.target, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
#endif
#if HEATER_IDLE_HANDLER
if (bed_idle.timed_out) {
temp_bed.soft_pwm_amount = 0;
#if DISABLED(PIDTEMPBED)
WRITE_HEATER_BED(LOW);
#endif
}
else
#endif
{
#if ENABLED(PIDTEMPBED)
temp_bed.soft_pwm_amount = WITHIN(temp_bed.current, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
#else
// Check if temperature is within the correct band
if (WITHIN(temp_bed.current, BED_MINTEMP, BED_MAXTEMP)) {
#if ENABLED(BED_LIMIT_SWITCHING)
if (temp_bed.current >= temp_bed.target + BED_HYSTERESIS)
temp_bed.soft_pwm_amount = 0;
else if (temp_bed.current <= temp_bed.target - (BED_HYSTERESIS))
temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1;
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
temp_bed.soft_pwm_amount = temp_bed.current < temp_bed.target ? MAX_BED_POWER >> 1 : 0;
#endif
}
else {
temp_bed.soft_pwm_amount = 0;
WRITE_HEATER_BED(LOW);
}
#endif
}
#endif // HAS_HEATED_BED
#if HAS_TEMP_CHAMBER
#ifndef CHAMBER_CHECK_INTERVAL
#define CHAMBER_CHECK_INTERVAL 1000UL
#endif
#if HAS_HEATED_CHAMBER
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
if (!grace_period && degChamber() > CHAMBER_MAXTEMP)
_temp_error(-2, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, -2));
#endif
#if WATCH_CHAMBER
// Make sure temperature is increasing
if (watch_chamber.elapsed(ms)) { // Time to check the chamber?
if (degChamber() < watch_chamber.target) // Failed to increase enough?
_temp_error(-2, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -2));
else
start_watching_chamber(); // Start again if the target is still far off
}
#endif // WATCH_CHAMBER
if (PENDING(ms, next_chamber_check_ms)) return;
next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL;
if (WITHIN(temp_chamber.current, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) {
#if ENABLED(CHAMBER_LIMIT_SWITCHING)
if (temp_chamber.current >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS)
temp_chamber.soft_pwm_amount = 0;
else if (temp_chamber.current <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS))
temp_chamber.soft_pwm_amount = MAX_CHAMBER_POWER >> 1;
#else
temp_chamber.soft_pwm_amount = temp_chamber.current < temp_chamber.target ? MAX_CHAMBER_POWER >> 1 : 0;
#endif
}
else {
temp_chamber.soft_pwm_amount = 0;
WRITE_HEATER_CHAMBER(LOW);
}
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
thermal_runaway_protection(tr_state_machine_chamber, temp_chamber.current, temp_chamber.target, -2, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS);
#endif
// TODO: Implement true PID pwm
//temp_bed.soft_pwm_amount = WITHIN(temp_chamber.current, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0;
#endif // HAS_HEATED_CHAMBER
#endif // HAS_TEMP_CHAMBER
}
#define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
#define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
/**
* Bisect search for the range of the 'raw' value, then interpolate
* proportionally between the under and over values.
*/
#define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
uint8_t l = 0, r = LEN, m; \
for (;;) { \
m = (l + r) >> 1; \
if (m == l || m == r) return (short)pgm_read_word(&TBL[LEN-1][1]); \
short v00 = pgm_read_word(&TBL[m-1][0]), \
v10 = pgm_read_word(&TBL[m-0][0]); \
if (raw < v00) r = m; \
else if (raw > v10) l = m; \
else { \
const short v01 = (short)pgm_read_word(&TBL[m-1][1]), \
v11 = (short)pgm_read_word(&TBL[m-0][1]); \
return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
} \
} \
}while(0)
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) {
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
if (e > HOTENDS)
#else
if (e >= HOTENDS)
#endif
{
SERIAL_ERROR_START();
SERIAL_ECHO((int)e);
SERIAL_ECHOLNPGM(MSG_INVALID_EXTRUDER_NUM);
kill();
return 0.0;
}
switch (e) {
case 0:
#if ENABLED(HEATER_0_USES_MAX6675)
return raw * 0.25;
#elif ENABLED(HEATER_0_USES_AD595)
return TEMP_AD595(raw);
#elif ENABLED(HEATER_0_USES_AD8495)
return TEMP_AD8495(raw);
#else
break;
#endif
case 1:
#if ENABLED(HEATER_1_USES_MAX6675)
return raw * 0.25;
#elif ENABLED(HEATER_1_USES_AD595)
return TEMP_AD595(raw);
#elif ENABLED(HEATER_1_USES_AD8495)
return TEMP_AD8495(raw);
#else
break;
#endif
case 2:
#if ENABLED(HEATER_2_USES_AD595)
return TEMP_AD595(raw);
#elif ENABLED(HEATER_2_USES_AD8495)
return TEMP_AD8495(raw);
#else
break;
#endif
case 3:
#if ENABLED(HEATER_3_USES_AD595)
return TEMP_AD595(raw);
#elif ENABLED(HEATER_3_USES_AD8495)
return TEMP_AD8495(raw);
#else
break;
#endif
case 4:
#if ENABLED(HEATER_4_USES_AD595)
return TEMP_AD595(raw);
#elif ENABLED(HEATER_4_USES_AD8495)
return TEMP_AD8495(raw);
#else
break;
#endif
case 5:
#if ENABLED(HEATER_5_USES_AD595)
return TEMP_AD595(raw);
#elif ENABLED(HEATER_5_USES_AD8495)
return TEMP_AD8495(raw);
#else
break;
#endif
default: break;
}
#if HOTEND_USES_THERMISTOR
// Thermistor with conversion table?
const short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
#endif
return 0;
}
#if HAS_HEATED_BED
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float Temperature::analog_to_celsius_bed(const int raw) {
#if ENABLED(HEATER_BED_USES_THERMISTOR)
SCAN_THERMISTOR_TABLE(BEDTEMPTABLE, BEDTEMPTABLE_LEN);
#elif ENABLED(HEATER_BED_USES_AD595)
return TEMP_AD595(raw);
#elif ENABLED(HEATER_BED_USES_AD8495)
return TEMP_AD8495(raw);
#else
return 0;
#endif
}
#endif // HAS_HEATED_BED
#if HAS_TEMP_CHAMBER
// Derived from RepRap FiveD extruder::getTemperature()
// For chamber temperature measurement.
float Temperature::analog_to_celsius_chamber(const int raw) {
#if ENABLED(HEATER_CHAMBER_USES_THERMISTOR)
SCAN_THERMISTOR_TABLE(CHAMBERTEMPTABLE, CHAMBERTEMPTABLE_LEN);
#elif ENABLED(HEATER_CHAMBER_USES_AD595)
return TEMP_AD595(raw);
#elif ENABLED(HEATER_CHAMBER_USES_AD8495)
return TEMP_AD8495(raw);
#else
return 0;
#endif
}
#endif // HAS_TEMP_CHAMBER
/**
* Get the raw values into the actual temperatures.
* The raw values are created in interrupt context,
* and this function is called from normal context
* as it would block the stepper routine.
*/
void Temperature::updateTemperaturesFromRawValues() {
#if ENABLED(HEATER_0_USES_MAX6675)
temp_hotend[0].raw = READ_MAX6675(0);
#endif
#if ENABLED(HEATER_1_USES_MAX6675)
temp_hotend[1].raw = READ_MAX6675(1);
#endif
HOTEND_LOOP() temp_hotend[e].current = analog_to_celsius_hotend(temp_hotend[e].raw, e);
#if HAS_HEATED_BED
temp_bed.current = analog_to_celsius_bed(temp_bed.raw);
#endif
#if HAS_TEMP_CHAMBER
temp_chamber.current = analog_to_celsius_chamber(temp_chamber.raw);
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
filament_width_meas = analog_to_mm_fil_width();
#endif
#if ENABLED(USE_WATCHDOG)
// Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
#endif
temp_meas_ready = false;
}
#if ENABLED(FILAMENT_WIDTH_SENSOR)
// Convert raw Filament Width to millimeters
float Temperature::analog_to_mm_fil_width() {
return current_raw_filwidth * 5.0f * (1.0f / 16383.0f);
}
/**
* Convert Filament Width (mm) to a simple ratio
* and reduce to an 8 bit value.
*
* A nominal width of 1.75 and measured width of 1.73
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
* a return value of 1.
*/
int8_t Temperature::widthFil_to_size_ratio() {
if (ABS(filament_width_nominal - filament_width_meas) <= FILWIDTH_ERROR_MARGIN)
return int(100.0f * filament_width_nominal / filament_width_meas) - 100;
return 0;
}
#endif
#if MAX6675_SEPARATE_SPI
SPIclass max6675_spi;
#endif
// Init fans according to whether they're native PWM or Software PWM
#define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH)
#if ENABLED(FAN_SOFT_PWM)
#define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P)
#else
#define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0)
#endif
#if ENABLED(FAST_PWM_FAN)
#define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY)
#else
#define SET_FAST_PWM_FREQ(P) NOOP
#endif
#define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0)
#if EXTRUDER_AUTO_FAN_SPEED != 255
#define INIT_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0)
#else
#define INIT_AUTO_FAN_PIN(P) SET_OUTPUT(P)
#endif
/**
* Initialize the temperature manager
* The manager is implemented by periodic calls to manage_heater()
*/
void Temperature::init() {
#if EARLY_WATCHDOG
// Flag that the thermalManager should be running
if (inited) return;
inited = true;
#endif
#if MB(RUMBA)
#define _AD(N) (ANY(HEATER_##N##_USES_AD595, HEATER_##N##_USES_AD8495))
#if _AD(0) || _AD(1) || _AD(2) || _AD(3) || _AD(4) || _AD(5) || _AD(BED) || _AD(CHAMBER)
// Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR = _BV(JTD);
MCUCR = _BV(JTD);
#endif
#endif
#if BOTH(PIDTEMP, PID_EXTRUSION_SCALING)
last_e_position = 0;
#endif
#if HAS_HEATER_0
OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING);
#endif
#if HAS_HEATER_1
OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING);
#endif
#if HAS_HEATER_2
OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING);
#endif
#if HAS_HEATER_3
OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING);
#endif
#if HAS_HEATER_4
OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING);
#endif
#if HAS_HEATER_5
OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING);
#endif
#if HAS_HEATED_BED
OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING);
#endif
#if HAS_HEATED_CHAMBER
OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING);
#endif
#if HAS_FAN0
INIT_FAN_PIN(FAN_PIN);
#endif
#if HAS_FAN1
INIT_FAN_PIN(FAN1_PIN);
#endif
#if HAS_FAN2
INIT_FAN_PIN(FAN2_PIN);
#endif
#if ENABLED(USE_CONTROLLER_FAN)
INIT_FAN_PIN(CONTROLLER_FAN_PIN);
#endif
#if MAX6675_SEPARATE_SPI
OUT_WRITE(SCK_PIN, LOW);
OUT_WRITE(MOSI_PIN, HIGH);
SET_INPUT_PULLUP(MISO_PIN);
max6675_spi.init();
OUT_WRITE(SS_PIN, HIGH);
OUT_WRITE(MAX6675_SS_PIN, HIGH);
#endif
#if ENABLED(HEATER_1_USES_MAX6675)
OUT_WRITE(MAX6675_SS2_PIN, HIGH);
#endif
HAL_adc_init();
#if HAS_TEMP_ADC_0
HAL_ANALOG_SELECT(TEMP_0_PIN);
#endif
#if HAS_TEMP_ADC_1
HAL_ANALOG_SELECT(TEMP_1_PIN);
#endif
#if HAS_TEMP_ADC_2
HAL_ANALOG_SELECT(TEMP_2_PIN);
#endif
#if HAS_TEMP_ADC_3
HAL_ANALOG_SELECT(TEMP_3_PIN);
#endif
#if HAS_TEMP_ADC_4
HAL_ANALOG_SELECT(TEMP_4_PIN);
#endif
#if HAS_TEMP_ADC_5
HAL_ANALOG_SELECT(TEMP_5_PIN);
#endif
#if HAS_HEATED_BED
HAL_ANALOG_SELECT(TEMP_BED_PIN);
#endif
#if HAS_TEMP_CHAMBER
HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
HAL_ANALOG_SELECT(FILWIDTH_PIN);
#endif
HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY);
ENABLE_TEMPERATURE_INTERRUPT();
#if HAS_AUTO_FAN_0
INIT_AUTO_FAN_PIN(E0_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
INIT_AUTO_FAN_PIN(E1_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_2 && !(AUTO_2_IS_0 || AUTO_2_IS_1)
INIT_AUTO_FAN_PIN(E2_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_3 && !(AUTO_3_IS_0 || AUTO_3_IS_1 || AUTO_3_IS_2)
INIT_AUTO_FAN_PIN(E3_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_4 && !(AUTO_4_IS_0 || AUTO_4_IS_1 || AUTO_4_IS_2 || AUTO_4_IS_3)
INIT_AUTO_FAN_PIN(E4_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_FAN_5 && !(AUTO_5_IS_0 || AUTO_5_IS_1 || AUTO_5_IS_2 || AUTO_5_IS_3 || AUTO_5_IS_4)
INIT_AUTO_FAN_PIN(E5_AUTO_FAN_PIN);
#endif
#if HAS_AUTO_CHAMBER_FAN && !(AUTO_CHAMBER_IS_0 || AUTO_CHAMBER_IS_1 || AUTO_CHAMBER_IS_2 || AUTO_CHAMBER_IS_3 || AUTO_CHAMBER_IS_4 || AUTO_CHAMBER_IS_5)
INIT_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN);
#endif
// Wait for temperature measurement to settle
delay(250);
#if HOTENDS
#define _TEMP_MIN_E(NR) do{ \
temp_range[NR].mintemp = HEATER_ ##NR## _MINTEMP; \
while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < HEATER_ ##NR## _MINTEMP) \
temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \
}while(0)
#define _TEMP_MAX_E(NR) do{ \
temp_range[NR].maxtemp = HEATER_ ##NR## _MAXTEMP; \
while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) > HEATER_ ##NR## _MAXTEMP) \
temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \
}while(0)
#ifdef HEATER_0_MINTEMP
_TEMP_MIN_E(0);
#endif
#ifdef HEATER_0_MAXTEMP
_TEMP_MAX_E(0);
#endif
#if HOTENDS > 1
#ifdef HEATER_1_MINTEMP
_TEMP_MIN_E(1);
#endif
#ifdef HEATER_1_MAXTEMP
_TEMP_MAX_E(1);
#endif
#if HOTENDS > 2
#ifdef HEATER_2_MINTEMP
_TEMP_MIN_E(2);
#endif
#ifdef HEATER_2_MAXTEMP
_TEMP_MAX_E(2);
#endif
#if HOTENDS > 3
#ifdef HEATER_3_MINTEMP
_TEMP_MIN_E(3);
#endif
#ifdef HEATER_3_MAXTEMP
_TEMP_MAX_E(3);
#endif
#if HOTENDS > 4
#ifdef HEATER_4_MINTEMP
_TEMP_MIN_E(4);
#endif
#ifdef HEATER_4_MAXTEMP
_TEMP_MAX_E(4);
#endif
#if HOTENDS > 5
#ifdef HEATER_5_MINTEMP
_TEMP_MIN_E(5);
#endif
#ifdef HEATER_5_MAXTEMP
_TEMP_MAX_E(5);
#endif
#endif // HOTENDS > 5
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#endif // HOTENDS > 1
#if HAS_HEATED_BED
#ifdef BED_MINTEMP
while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR);
#endif
#ifdef BED_MAXTEMP
while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) mintemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR);
#endif
#endif // HAS_HEATED_BED
#if HAS_HEATED_CHAMBER
#ifdef CHAMBER_MINTEMP
while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR);
#endif
#ifdef CHAMBER_MAXTEMP
while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) mintemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR);
#endif
#endif
#if ENABLED(PROBING_HEATERS_OFF)
paused = false;
#endif
}
#if WATCH_HOTENDS
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M104, M109)
*/
void Temperature::start_watching_heater(const uint8_t e) {
E_UNUSED();
if (degTargetHotend(HOTEND_INDEX) && degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
watch_hotend[HOTEND_INDEX].target = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
watch_hotend[HOTEND_INDEX].next_ms = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
}
else
watch_hotend[HOTEND_INDEX].next_ms = 0;
}
#endif
#if WATCH_BED
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M140, M190)
*/
void Temperature::start_watching_bed() {
if (degTargetBed() && degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
watch_bed.target = degBed() + WATCH_BED_TEMP_INCREASE;
watch_bed.next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
}
else
watch_bed.next_ms = 0;
}
#endif
#if WATCH_CHAMBER
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M141, M191)
*/
void Temperature::start_watching_chamber() {
if (degChamber() < degTargetChamber() - (WATCH_CHAMBER_TEMP_INCREASE + TEMP_CHAMBER_HYSTERESIS + 1)) {
watch_chamber.target = degChamber() + WATCH_CHAMBER_TEMP_INCREASE;
watch_chamber.next_ms = millis() + (WATCH_CHAMBER_TEMP_PERIOD) * 1000UL;
}
else
watch_chamber.next_ms = 0;
}
#endif
#if HAS_THERMAL_PROTECTION
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
Temperature::tr_state_machine_t Temperature::tr_state_machine[HOTENDS]; // = { { TRInactive, 0 } };
#endif
#if HAS_THERMALLY_PROTECTED_BED
Temperature::tr_state_machine_t Temperature::tr_state_machine_bed; // = { TRInactive, 0 };
#endif
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
Temperature::tr_state_machine_t Temperature::tr_state_machine_chamber; // = { TRInactive, 0 };
#endif
void Temperature::thermal_runaway_protection(Temperature::tr_state_machine_t &sm, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
/**
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
if (heater_id == -2) SERIAL_ECHOPGM("chamber");
if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
SERIAL_ECHOPAIR(" ; State:", sm.state, " ; Timer:", sm.timer, " ; Temperature:", current, " ; Target Temp:", target);
if (heater_id >= 0)
SERIAL_ECHOPAIR(" ; Idle Timeout:", hotend_idle[heater_id].timed_out);
else
SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle.timed_out);
SERIAL_EOL();
//*/
const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
#if HEATER_IDLE_HANDLER
// If the heater idle timeout expires, restart
if ((heater_id >= 0 && hotend_idle[heater_id].timed_out)
#if HAS_HEATED_BED
|| (heater_id < 0 && bed_idle.timed_out)
#endif
) {
sm.state = TRInactive;
tr_target_temperature[heater_index] = 0;
}
else
#endif
{
// If the target temperature changes, restart
if (tr_target_temperature[heater_index] != target) {
tr_target_temperature[heater_index] = target;
sm.state = target > 0 ? TRFirstHeating : TRInactive;
}
}
switch (sm.state) {
// Inactive state waits for a target temperature to be set
case TRInactive: break;
// When first heating, wait for the temperature to be reached then go to Stable state
case TRFirstHeating:
if (current < tr_target_temperature[heater_index]) break;
sm.state = TRStable;
// While the temperature is stable watch for a bad temperature
case TRStable:
#if ENABLED(ADAPTIVE_FAN_SLOWING)
if (adaptive_fan_slowing && heater_id >= 0) {
const int fan_index = MIN(heater_id, FAN_COUNT - 1);
if (fan_speed[fan_index] == 0 || current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.25f))
fan_speed_scaler[fan_index] = 128;
else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.3335f))
fan_speed_scaler[fan_index] = 96;
else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.5f))
fan_speed_scaler[fan_index] = 64;
else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.8f))
fan_speed_scaler[fan_index] = 32;
else
fan_speed_scaler[fan_index] = 0;
}
#endif
if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
sm.timer = millis() + period_seconds * 1000UL;
break;
}
else if (PENDING(millis(), sm.timer)) break;
sm.state = TRRunaway;
case TRRunaway:
_temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater_id));
}
}
#endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED || ENABLED(THERMAL_PROTECTION_CHAMBER)
void Temperature::disable_all_heaters() {
#if ENABLED(AUTOTEMP)
planner.autotemp_enabled = false;
#endif
HOTEND_LOOP() setTargetHotend(0, e);
#if HAS_HEATED_BED
setTargetBed(0);
#endif
#if HAS_HEATED_CHAMBER
setTargetChamber(0);
#endif
// Unpause and reset everything
#if ENABLED(PROBING_HEATERS_OFF)
pause(false);
#endif
#define DISABLE_HEATER(NR) { \
setTargetHotend(0, NR); \
temp_hotend[NR].soft_pwm_amount = 0; \
WRITE_HEATER_ ##NR (LOW); \
}
#if HAS_TEMP_HOTEND
DISABLE_HEATER(0);
#if HOTENDS > 1
DISABLE_HEATER(1);
#if HOTENDS > 2
DISABLE_HEATER(2);
#if HOTENDS > 3
DISABLE_HEATER(3);
#if HOTENDS > 4
DISABLE_HEATER(4);
#if HOTENDS > 5
DISABLE_HEATER(5);
#endif // HOTENDS > 5
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#endif
#if HAS_HEATED_BED
temp_bed.target = 0;
temp_bed.soft_pwm_amount = 0;
#if HAS_HEATED_BED
WRITE_HEATER_BED(LOW);
#endif
#endif
#if HAS_HEATED_CHAMBER
temp_chamber.target = 0;
temp_chamber.soft_pwm_amount = 0;
#if HAS_HEATED_CHAMBER
WRITE_HEATER_CHAMBER(LOW);
#endif
#endif
}
#if ENABLED(PROBING_HEATERS_OFF)
void Temperature::pause(const bool p) {
if (p != paused) {
paused = p;
if (p) {
HOTEND_LOOP() hotend_idle[e].expire(); // timeout immediately
#if HAS_HEATED_BED
bed_idle.expire(); // timeout immediately
#endif
}
else {
HOTEND_LOOP() reset_heater_idle_timer(e);
#if HAS_HEATED_BED
reset_bed_idle_timer();
#endif
}
}
}
#endif // PROBING_HEATERS_OFF
#if HAS_MAX6675
int Temperature::read_max6675(
#if COUNT_6675 > 1
const uint8_t hindex
#endif
) {
#if COUNT_6675 == 1
constexpr uint8_t hindex = 0;
#else
// Needed to return the correct temp when this is called too soon
static uint16_t max6675_temp_previous[COUNT_6675] = { 0 };
#endif
#define MAX6675_HEAT_INTERVAL 250UL
#if ENABLED(MAX6675_IS_MAX31855)
static uint32_t max6675_temp = 2000;
#define MAX6675_ERROR_MASK 7
#define MAX6675_DISCARD_BITS 18
#define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64
#else
static uint16_t max6675_temp = 2000;
#define MAX6675_ERROR_MASK 4
#define MAX6675_DISCARD_BITS 3
#define MAX6675_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16
#endif
// Return last-read value between readings
static millis_t next_max6675_ms[COUNT_6675] = { 0 };
millis_t ms = millis();
if (PENDING(ms, next_max6675_ms[hindex]))
return int(
#if COUNT_6675 == 1
max6675_temp
#else
max6675_temp_previous[hindex] // Need to return the correct previous value
#endif
);
next_max6675_ms[hindex] = ms + MAX6675_HEAT_INTERVAL;
//
// TODO: spiBegin, spiRec and spiInit doesn't work when soft spi is used.
//
#if !MAX6675_SEPARATE_SPI
spiBegin();
spiInit(MAX6675_SPEED_BITS);
#endif
#if COUNT_6675 > 1
#define WRITE_MAX6675(V) do{ switch (hindex) { case 1: WRITE(MAX6675_SS2_PIN, V); break; default: WRITE(MAX6675_SS_PIN, V); } }while(0)
#define SET_OUTPUT_MAX6675() do{ switch (hindex) { case 1: SET_OUTPUT(MAX6675_SS2_PIN); break; default: SET_OUTPUT(MAX6675_SS_PIN); } }while(0)
#elif ENABLED(HEATER_1_USES_MAX6675)
#define WRITE_MAX6675(V) WRITE(MAX6675_SS2_PIN, V)
#define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS2_PIN)
#else
#define WRITE_MAX6675(V) WRITE(MAX6675_SS_PIN, V)
#define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS_PIN)
#endif
SET_OUTPUT_MAX6675();
WRITE_MAX6675(LOW); // enable TT_MAX6675
DELAY_NS(100); // Ensure 100ns delay
// Read a big-endian temperature value
max6675_temp = 0;
for (uint8_t i = sizeof(max6675_temp); i--;) {
max6675_temp |= (
#if MAX6675_SEPARATE_SPI
max6675_spi.receive()
#else
spiRec()
#endif
);
if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
}
WRITE_MAX6675(HIGH); // disable TT_MAX6675
if (max6675_temp & MAX6675_ERROR_MASK) {
SERIAL_ERROR_START();
SERIAL_ECHOPGM("Temp measurement error! ");
#if MAX6675_ERROR_MASK == 7
SERIAL_ECHOPGM("MAX31855 ");
if (max6675_temp & 1)
SERIAL_ECHOLNPGM("Open Circuit");
else if (max6675_temp & 2)
SERIAL_ECHOLNPGM("Short to GND");
else if (max6675_temp & 4)
SERIAL_ECHOLNPGM("Short to VCC");
#else
SERIAL_ECHOLNPGM("MAX6675");
#endif
// Thermocouple open
max6675_temp = 4 * (
#if COUNT_6675 > 1
hindex ? HEATER_1_MAX6675_TMAX : HEATER_0_MAX6675_TMAX
#elif ENABLED(HEATER_1_USES_MAX6675)
HEATER_1_MAX6675_TMAX
#else
HEATER_0_MAX6675_TMAX
#endif
);
}
else
max6675_temp >>= MAX6675_DISCARD_BITS;
#if ENABLED(MAX6675_IS_MAX31855)
if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000; // Support negative temperature
#endif
#if COUNT_6675 > 1
max6675_temp_previous[hindex] = max6675_temp;
#endif
return int(max6675_temp);
}
#endif // HAS_MAX6675
/**
* Get raw temperatures
*/
void Temperature::set_current_temp_raw() {
#if HAS_TEMP_ADC_0 && DISABLED(HEATER_0_USES_MAX6675)
temp_hotend[0].raw = temp_hotend[0].acc;
#endif
#if HAS_TEMP_ADC_1
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
redundant_temperature_raw = temp_hotend[1].acc;
#elif DISABLED(HEATER_1_USES_MAX6675)
temp_hotend[1].raw = temp_hotend[1].acc;
#endif
#if HAS_TEMP_ADC_2
temp_hotend[2].raw = temp_hotend[2].acc;
#if HAS_TEMP_ADC_3
temp_hotend[3].raw = temp_hotend[3].acc;
#if HAS_TEMP_ADC_4
temp_hotend[4].raw = temp_hotend[4].acc;
#if HAS_TEMP_ADC_5
temp_hotend[5].raw = temp_hotend[5].acc;
#endif // HAS_TEMP_ADC_5
#endif // HAS_TEMP_ADC_4
#endif // HAS_TEMP_ADC_3
#endif // HAS_TEMP_ADC_2
#endif // HAS_TEMP_ADC_1
#if HAS_HEATED_BED
temp_bed.raw = temp_bed.acc;
#endif
#if HAS_TEMP_CHAMBER
temp_chamber.raw = temp_chamber.acc;
#endif
temp_meas_ready = true;
}
#if ENABLED(FILAMENT_WIDTH_SENSOR)
uint32_t raw_filwidth_value; // = 0
#endif
void Temperature::readings_ready() {
// Update the raw values if they've been read. Else we could be updating them during reading.
if (!temp_meas_ready) set_current_temp_raw();
// Filament Sensor - can be read any time since IIR filtering is used
#if ENABLED(FILAMENT_WIDTH_SENSOR)
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
HOTEND_LOOP() temp_hotend[e].acc = 0;
#if HAS_HEATED_BED
temp_bed.acc = 0;
#endif
#if HAS_TEMP_CHAMBER
temp_chamber.acc = 0;
#endif
int constexpr temp_dir[] = {
#if ENABLED(HEATER_0_USES_MAX6675)
0
#else
TEMPDIR(0)
#endif
#if HOTENDS > 1
, TEMPDIR(1)
#if HOTENDS > 2
, TEMPDIR(2)
#if HOTENDS > 3
, TEMPDIR(3)
#if HOTENDS > 4
, TEMPDIR(4)
#if HOTENDS > 5
, TEMPDIR(5)
#endif // HOTENDS > 5
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
};
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
const int16_t tdir = temp_dir[e], rawtemp = temp_hotend[e].raw * tdir;
const bool heater_on = (temp_hotend[e].target > 0)
#if ENABLED(PIDTEMP)
|| (temp_hotend[e].soft_pwm_amount > 0)
#endif
;
if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error(e);
if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error(e);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[e] = 0;
#endif
}
#if HAS_HEATED_BED
#if TEMPDIR(BED) < 0
#define BEDCMP(A,B) ((A)<=(B))
#else
#define BEDCMP(A,B) ((A)>=(B))
#endif
const bool bed_on = (temp_bed.target > 0)
#if ENABLED(PIDTEMPBED)
|| (temp_bed.soft_pwm_amount > 0)
#endif
;
if (BEDCMP(temp_bed.raw, maxtemp_raw_BED)) max_temp_error(-1);
if (bed_on && BEDCMP(mintemp_raw_BED, temp_bed.raw)) min_temp_error(-1);
#endif
#if HAS_HEATED_CHAMBER
#if TEMPDIR(CHAMBER) < 0
#define CHAMBERCMP(A,B) ((A)<=(B))
#else
#define CHAMBERCMP(A,B) ((A)>=(B))
#endif
const bool chamber_on = (temp_chamber.target > 0);
if (CHAMBERCMP(temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(-2);
if (chamber_on && CHAMBERCMP(mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(-2);
#endif
}
/**
* Timer 0 is shared with millies so don't change the prescaler.
*
* On AVR this ISR uses the compare method so it runs at the base
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
* in OCR0B above (128 or halfway between OVFs).
*
* - Manage PWM to all the heaters and fan
* - Prepare or Measure one of the raw ADC sensor values
* - Check new temperature values for MIN/MAX errors (kill on error)
* - Step the babysteps value for each axis towards 0
* - For PINS_DEBUGGING, monitor and report endstop pins
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
* - Call planner.tick to count down its "ignore" time
*/
HAL_TEMP_TIMER_ISR() {
HAL_timer_isr_prologue(TEMP_TIMER_NUM);
Temperature::isr();
HAL_timer_isr_epilogue(TEMP_TIMER_NUM);
}
#if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME)
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
class SoftPWM {
public:
uint8_t count;
inline bool add(const uint8_t mask, const uint8_t amount) {
count = (count & mask) + amount; return (count > mask);
}
#if ENABLED(SLOW_PWM_HEATERS)
bool state_heater;
uint8_t state_timer_heater;
inline void dec() { if (state_timer_heater > 0) state_timer_heater--; }
inline bool ready(const bool v) {
const bool rdy = !state_timer_heater;
if (rdy && state_heater != v) {
state_heater = v;
state_timer_heater = MIN_STATE_TIME;
}
return rdy;
}
#endif
};
void Temperature::isr() {
static int8_t temp_count = -1;
static ADCSensorState adc_sensor_state = StartupDelay;
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
// avoid multiple loads of pwm_count
uint8_t pwm_count_tmp = pwm_count;
#if HAS_ADC_BUTTONS
static unsigned int raw_ADCKey_value = 0;
#endif
#if ENABLED(SLOW_PWM_HEATERS)
static uint8_t slow_pwm_count = 0;
#endif
static SoftPWM soft_pwm_hotend[HOTENDS];
#if HAS_HEATED_BED
static SoftPWM soft_pwm_bed;
#endif
#if HAS_HEATED_CHAMBER
static SoftPWM soft_pwm_chamber;
#endif
#if DISABLED(SLOW_PWM_HEATERS)
constexpr uint8_t pwm_mask =
#if ENABLED(SOFT_PWM_DITHER)
_BV(SOFT_PWM_SCALE) - 1
#else
0
#endif
;
/**
* Standard heater PWM modulation
*/
if (pwm_count_tmp >= 127) {
pwm_count_tmp -= 127;
#define _PWM_MOD(N,S,T) do{ \
const bool on = S.add(pwm_mask, T.soft_pwm_amount); \
WRITE_HEATER_##N(on); \
}while(0)
#define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N])
_PWM_MOD_E(0);
#if HOTENDS > 1
_PWM_MOD_E(1);
#if HOTENDS > 2
_PWM_MOD_E(2);
#if HOTENDS > 3
_PWM_MOD_E(3);
#if HOTENDS > 4
_PWM_MOD_E(4);
#if HOTENDS > 5
_PWM_MOD_E(5);
#endif // HOTENDS > 5
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if HAS_HEATED_BED
_PWM_MOD(BED,soft_pwm_bed,temp_bed);
#endif
#if HAS_HEATED_CHAMBER
_PWM_MOD(CHAMBER,soft_pwm_chamber,temp_chamber);
#endif
#if ENABLED(FAN_SOFT_PWM)
#define _FAN_PWM(N) do{ \
soft_pwm_count_fan[N] = (soft_pwm_count_fan[N] & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \
WRITE_FAN_N(N, soft_pwm_count_fan[N] > pwm_mask ? HIGH : LOW); \
}while(0)
#if HAS_FAN0
_FAN_PWM(0);
#endif
#if HAS_FAN1
_FAN_PWM(1);
#endif
#if HAS_FAN2
_FAN_PWM(2);
#endif
#endif
}
else {
#define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0)
#if HOTENDS
#define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N])
_PWM_LOW_E(0);
#if HOTENDS > 1
_PWM_LOW_E(1);
#if HOTENDS > 2
_PWM_LOW_E(2);
#if HOTENDS > 3
_PWM_LOW_E(3);
#if HOTENDS > 4
_PWM_LOW_E(4);
#if HOTENDS > 5
_PWM_LOW_E(5);
#endif // HOTENDS > 5
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#endif // HOTENDS
#if HAS_HEATED_BED
_PWM_LOW(BED, soft_pwm_bed);
#endif
#if HAS_HEATED_CHAMBER
_PWM_LOW(CHAMBER, soft_pwm_chamber);
#endif
#if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
#endif
#if HAS_FAN1
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
#endif
#if HAS_FAN2
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
#endif
#endif
}
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
#else // SLOW_PWM_HEATERS
/**
* SLOW PWM HEATERS
*
* For relay-driven heaters
*/
#define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0)
#define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0)
#define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0)
if (slow_pwm_count == 0) {
#if HOTENDS
#define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N])
_SLOW_PWM_E(0);
#if HOTENDS > 1
_SLOW_PWM_E(1);
#if HOTENDS > 2
_SLOW_PWM_E(2);
#if HOTENDS > 3
_SLOW_PWM_E(3);
#if HOTENDS > 4
_SLOW_PWM_E(4);
#if HOTENDS > 5
_SLOW_PWM_E(5);
#endif // HOTENDS > 5
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#endif // HOTENDS
#if HAS_HEATED_BED
_SLOW_PWM(BED, soft_pwm_bed, temp_bed);
#endif
} // slow_pwm_count == 0
#if HOTENDS
#define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]);
_PWM_OFF_E(0);
#if HOTENDS > 1
_PWM_OFF_E(1);
#if HOTENDS > 2
_PWM_OFF_E(2);
#if HOTENDS > 3
_PWM_OFF_E(3);
#if HOTENDS > 4
_PWM_OFF_E(4);
#if HOTENDS > 5
_PWM_OFF_E(5);
#endif // HOTENDS > 5
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#endif // HOTENDS
#if HAS_HEATED_BED
_PWM_OFF(BED, soft_pwm_bed);
#endif
#if ENABLED(FAN_SOFT_PWM)
if (pwm_count_tmp >= 127) {
pwm_count_tmp = 0;
#define _PWM_FAN(N,I) do{ \
soft_pwm_count_fan[I] = soft_pwm_amount_fan[I] >> 1; \
WRITE_FAN##N(soft_pwm_count_fan[I] > 0 ? HIGH : LOW); \
}while(0)
#if HAS_FAN0
_PWM_FAN(,0);
#endif
#if HAS_FAN1
_PWM_FAN(1,1);
#endif
#if HAS_FAN2
_PWM_FAN(2,2);
#endif
}
#if HAS_FAN0
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
#endif
#if HAS_FAN1
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
#endif
#if HAS_FAN2
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
#endif
#endif // FAN_SOFT_PWM
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
// increment slow_pwm_count only every 64th pwm_count,
// i.e. yielding a PWM frequency of 16/128 Hz (8s).
if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7F;
soft_pwm_hotend[0].dec();
#if HOTENDS > 1
soft_pwm_hotend[1].dec();
#if HOTENDS > 2
soft_pwm_hotend[2].dec();
#if HOTENDS > 3
soft_pwm_hotend[3].dec();
#if HOTENDS > 4
soft_pwm_hotend[4].dec();
#if HOTENDS > 5
soft_pwm_hotend[5].dec();
#endif // HOTENDS > 5
#endif // HOTENDS > 4
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#if HAS_HEATED_BED
soft_pwm_bed.dec();
#endif
} // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
#endif // SLOW_PWM_HEATERS
//
// Update lcd buttons 488 times per second
//
static bool do_buttons;
if ((do_buttons ^= true)) ui.update_buttons();
/**
* One sensor is sampled on every other call of the ISR.
* Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
*
* On each Prepare pass, ADC is started for a sensor pin.
* On the next pass, the ADC value is read and accumulated.
*
* This gives each ADC 0.9765ms to charge up.
*/
#define ACCUMULATE_ADC(obj) do{ \
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
else obj.acc += HAL_READ_ADC(); \
}while(0)
ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
switch (adc_sensor_state) {
case SensorsReady: {
// All sensors have been read. Stay in this state for a few
// ISRs to save on calls to temp update/checking code below.
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
static uint8_t delay_count = 0;
if (extra_loops > 0) {
if (delay_count == 0) delay_count = extra_loops; // Init this delay
if (--delay_count) // While delaying...
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
break;
}
else {
adc_sensor_state = StartSampling; // Fall-through to start sampling
next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
}
}
case StartSampling: // Start of sampling loops. Do updates/checks.
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
temp_count = 0;
readings_ready();
}
break;
#if HAS_TEMP_ADC_0
case PrepareTemp_0:
HAL_START_ADC(TEMP_0_PIN);
break;
case MeasureTemp_0:
ACCUMULATE_ADC(temp_hotend[0]);
break;
#endif
#if HAS_HEATED_BED
case PrepareTemp_BED:
HAL_START_ADC(TEMP_BED_PIN);
break;
case MeasureTemp_BED:
ACCUMULATE_ADC(temp_bed);
break;
#endif
#if HAS_TEMP_CHAMBER
case PrepareTemp_CHAMBER:
HAL_START_ADC(TEMP_CHAMBER_PIN);
break;
case MeasureTemp_CHAMBER:
ACCUMULATE_ADC(temp_chamber);
break;
#endif
#if HAS_TEMP_ADC_1
case PrepareTemp_1:
HAL_START_ADC(TEMP_1_PIN);
break;
case MeasureTemp_1:
ACCUMULATE_ADC(temp_hotend[1]);
break;
#endif
#if HAS_TEMP_ADC_2
case PrepareTemp_2:
HAL_START_ADC(TEMP_2_PIN);
break;
case MeasureTemp_2:
ACCUMULATE_ADC(temp_hotend[2]);
break;
#endif
#if HAS_TEMP_ADC_3
case PrepareTemp_3:
HAL_START_ADC(TEMP_3_PIN);
break;
case MeasureTemp_3:
ACCUMULATE_ADC(temp_hotend[3]);
break;
#endif
#if HAS_TEMP_ADC_4
case PrepareTemp_4:
HAL_START_ADC(TEMP_4_PIN);
break;
case MeasureTemp_4:
ACCUMULATE_ADC(temp_hotend[4]);
break;
#endif
#if HAS_TEMP_ADC_5
case PrepareTemp_5:
HAL_START_ADC(TEMP_5_PIN);
break;
case MeasureTemp_5:
ACCUMULATE_ADC(temp_hotend[5]);
break;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
case Prepare_FILWIDTH:
HAL_START_ADC(FILWIDTH_PIN);
break;
case Measure_FILWIDTH:
if (!HAL_ADC_READY())
next_sensor_state = adc_sensor_state; // redo this state
else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
raw_filwidth_value -= raw_filwidth_value >> 7; // Subtract 1/128th of the raw_filwidth_value
raw_filwidth_value += uint32_t(HAL_READ_ADC()) << 7; // Add new ADC reading, scaled by 128
}
break;
#endif
#if HAS_ADC_BUTTONS
case Prepare_ADC_KEY:
HAL_START_ADC(ADC_KEYPAD_PIN);
break;
case Measure_ADC_KEY:
if (!HAL_ADC_READY())
next_sensor_state = adc_sensor_state; // redo this state
else if (ADCKey_count < 16) {
raw_ADCKey_value = HAL_READ_ADC();
if (raw_ADCKey_value > 900) {
//ADC Key release
ADCKey_count = 0;
current_ADCKey_raw = 0;
}
else {
current_ADCKey_raw += raw_ADCKey_value;
ADCKey_count++;
}
}
break;
#endif // ADC_KEYPAD
case StartupDelay: break;
} // switch(adc_sensor_state)
// Go to the next state
adc_sensor_state = next_sensor_state;
//
// Additional ~1KHz Tasks
//
#if ENABLED(BABYSTEPPING)
babystep.task();
#endif
// Poll endstops state, if required
endstops.poll();
// Periodically call the planner timer
planner.tick();
}
#if HAS_TEMP_SENSOR
#include "../gcode/gcode.h"
static void print_heater_state(const float &c, const float &t
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, const float r
#endif
, const int8_t e=-3
) {
#if !(HAS_HEATED_BED && HAS_TEMP_HOTEND && HAS_TEMP_CHAMBER) && HOTENDS <= 1
UNUSED(e);
#endif
SERIAL_CHAR(' ');
SERIAL_CHAR(
#if HAS_TEMP_CHAMBER && HAS_HEATED_BED && HAS_TEMP_HOTEND
e == -2 ? 'C' : e == -1 ? 'B' : 'T'
#elif HAS_HEATED_BED && HAS_TEMP_HOTEND
e == -1 ? 'B' : 'T'
#elif HAS_TEMP_HOTEND
'T'
#else
'B'
#endif
);
#if HOTENDS > 1
if (e >= 0) SERIAL_CHAR('0' + e);
#endif
SERIAL_CHAR(':');
SERIAL_ECHO(c);
SERIAL_ECHOPAIR(" /" , t);
#if ENABLED(SHOW_TEMP_ADC_VALUES)
SERIAL_ECHOPAIR(" (", r / OVERSAMPLENR);
SERIAL_CHAR(')');
#endif
delay(2);
}
void Temperature::print_heater_states(const uint8_t target_extruder) {
#if HAS_TEMP_HOTEND
print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder)
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawHotendTemp(target_extruder)
#endif
);
#endif
#if HAS_HEATED_BED
print_heater_state(degBed(), degTargetBed()
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawBedTemp()
#endif
, -1 // BED
);
#endif
#if HAS_TEMP_CHAMBER
#if HAS_HEATED_CHAMBER
print_heater_state(degChamber(), degTargetChamber()
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawChamberTemp()
#endif
, -2 // CHAMBER
);
#else
print_heater_state(degChamber(), 0
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawChamberTemp()
#endif
, -2 // CHAMBER
);
#endif // HAS_HEATED_CHAMBER
#endif
#if HOTENDS > 1
HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
#if ENABLED(SHOW_TEMP_ADC_VALUES)
, rawHotendTemp(e)
#endif
, e
);
#endif
SERIAL_ECHOPAIR(" @:", getHeaterPower(target_extruder));
#if HAS_HEATED_BED
SERIAL_ECHOPAIR(" B@:", getHeaterPower(-1));
#endif
#if HAS_HEATED_CHAMBER
SERIAL_ECHOPAIR(" C@:", getHeaterPower(-2));
#endif
#if HOTENDS > 1
HOTEND_LOOP() {
SERIAL_ECHOPAIR(" @", e);
SERIAL_CHAR(':');
SERIAL_ECHO(getHeaterPower(e));
}
#endif
}
#if ENABLED(AUTO_REPORT_TEMPERATURES)
uint8_t Temperature::auto_report_temp_interval;
millis_t Temperature::next_temp_report_ms;
void Temperature::auto_report_temperatures() {
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
PORT_REDIRECT(SERIAL_BOTH);
print_heater_states(active_extruder);
SERIAL_EOL();
}
}
#endif // AUTO_REPORT_TEMPERATURES
#if EITHER(ULTRA_LCD, EXTENSIBLE_UI)
void Temperature::set_heating_message(const uint8_t e) {
const bool heating = isHeatingHotend(e);
#if HOTENDS > 1
ui.status_printf_P(0, heating ? PSTR("E%c " MSG_HEATING) : PSTR("E%c " MSG_COOLING), '1' + e);
#else
ui.set_status_P(heating ? PSTR("E " MSG_HEATING) : PSTR("E " MSG_COOLING));
#endif
}
#endif
#if HAS_TEMP_HOTEND
#ifndef MIN_COOLING_SLOPE_DEG
#define MIN_COOLING_SLOPE_DEG 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME
#define MIN_COOLING_SLOPE_TIME 60
#endif
bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/
#if G26_CLICK_CAN_CANCEL
, const bool click_to_cancel/*=false*/
#endif
) {
#if TEMP_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
// Loop until the temperature has stabilized
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
#else
// Loop until the temperature is very close target
#define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
#endif
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state;
KEEPALIVE_STATE(NOT_BUSY);
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = degHotend(target_extruder);
printerEventLEDs.onHotendHeatingStart();
#endif
float target_temp = -1.0, old_temp = 9999.0;
bool wants_to_cool = false, first_loop = true;
wait_for_heatup = true;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
do {
// Target temperature might be changed during the loop
if (target_temp != degTargetHotend(target_extruder)) {
wants_to_cool = isCoolingHotend(target_extruder);
target_temp = degTargetHotend(target_extruder);
// Exit if S, continue if S, R, or R
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting
next_temp_ms = now + 1000UL;
print_heater_states(target_extruder);
#if TEMP_RESIDENCY_TIME > 0
SERIAL_ECHOPGM(" W:");
if (residency_start_ms)
SERIAL_ECHO(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_CHAR('?');
#endif
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
const float temp = degHotend(target_extruder);
#if ENABLED(PRINTER_EVENT_LEDS)
// Gradually change LED strip from violet to red as nozzle heats up
if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp);
#endif
#if TEMP_RESIDENCY_TIME > 0
const float temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_WINDOW) {
residency_start_ms = now;
if (first_loop) residency_start_ms += (TEMP_RESIDENCY_TIME) * 1000UL;
}
}
else if (temp_diff > TEMP_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
#endif
// Prevent a wait-forever situation if R is misused i.e. M109 R0
if (wants_to_cool) {
// break after MIN_COOLING_SLOPE_TIME seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
old_temp = temp;
}
}
#if G26_CLICK_CAN_CANCEL
if (click_to_cancel && ui.use_click()) {
wait_for_heatup = false;
ui.quick_feedback();
}
#endif
first_loop = false;
} while (wait_for_heatup && TEMP_CONDITIONS);
if (wait_for_heatup) {
ui.reset_status();
#if ENABLED(PRINTER_EVENT_LEDS)
printerEventLEDs.onHeatingDone();
#endif
}
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
gcode.busy_state = old_busy_state;
#endif
return wait_for_heatup;
}
#endif // HAS_TEMP_HOTEND
#if HAS_HEATED_BED
#ifndef MIN_COOLING_SLOPE_DEG_BED
#define MIN_COOLING_SLOPE_DEG_BED 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME_BED
#define MIN_COOLING_SLOPE_TIME_BED 60
#endif
bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/
#if G26_CLICK_CAN_CANCEL
, const bool click_to_cancel/*=false*/
#endif
) {
#if TEMP_BED_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
bool first_loop = true;
// Loop until the temperature has stabilized
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
#else
// Loop until the temperature is very close target
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
#endif
float target_temp = -1, old_temp = 9999;
bool wants_to_cool = false;
wait_for_heatup = true;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state;
KEEPALIVE_STATE(NOT_BUSY);
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = degBed();
printerEventLEDs.onBedHeatingStart();
#endif
do {
// Target temperature might be changed during the loop
if (target_temp != degTargetBed()) {
wants_to_cool = isCoolingBed();
target_temp = degTargetBed();
// Exit if S, continue if S, R, or R
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL;
print_heater_states(active_extruder);
#if TEMP_BED_RESIDENCY_TIME > 0
SERIAL_ECHOPGM(" W:");
if (residency_start_ms)
SERIAL_ECHO(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_CHAR('?');
#endif
SERIAL_EOL();
}
idle();
gcode.reset_stepper_timeout(); // Keep steppers powered
const float temp = degBed();
#if ENABLED(PRINTER_EVENT_LEDS)
// Gradually change LED strip from blue to violet as bed heats up
if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp);
#endif
#if TEMP_BED_RESIDENCY_TIME > 0
const float temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_BED_WINDOW) {
residency_start_ms = now;
if (first_loop) residency_start_ms += (TEMP_BED_RESIDENCY_TIME) * 1000UL;
}
}
else if (temp_diff > TEMP_BED_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
#endif // TEMP_BED_RESIDENCY_TIME > 0
// Prevent a wait-forever situation if R is misused i.e. M190 R0
if (wants_to_cool) {
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
old_temp = temp;
}
}
#if G26_CLICK_CAN_CANCEL
if (click_to_cancel && ui.use_click()) {
wait_for_heatup = false;
ui.quick_feedback();
}
#endif
#if TEMP_BED_RESIDENCY_TIME > 0
first_loop = false;
#endif
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
if (wait_for_heatup) ui.reset_status();
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
gcode.busy_state = old_busy_state;
#endif
return wait_for_heatup;
}
#endif // HAS_HEATED_BED
#endif // HAS_TEMP_SENSOR