/** * Marlin 3D Printer Firmware * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * motion.cpp */ #include "motion.h" #include "endstops.h" #include "stepper.h" #include "planner.h" #include "temperature.h" #include "../gcode/gcode.h" #include "../inc/MarlinConfig.h" #if IS_SCARA #include "../libs/buzzer.h" #include "../lcd/ultralcd.h" #endif #if HAS_BED_PROBE #include "probe.h" #endif #if HAS_LEVELING #include "../feature/bedlevel/bedlevel.h" #endif #if HAS_AXIS_UNHOMED_ERR && (ENABLED(ULTRA_LCD) || ENABLED(EXTENSIBLE_UI)) #include "../lcd/ultralcd.h" #endif #if ENABLED(SENSORLESS_HOMING) #include "../feature/tmc_util.h" #endif #if ENABLED(FWRETRACT) #include "../feature/fwretract.h" #endif #define XYZ_CONSTS(type, array, CONFIG) const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG } XYZ_CONSTS(float, base_min_pos, MIN_POS); XYZ_CONSTS(float, base_max_pos, MAX_POS); XYZ_CONSTS(float, base_home_pos, HOME_POS); XYZ_CONSTS(float, max_length, MAX_LENGTH); XYZ_CONSTS(float, home_bump_mm, HOME_BUMP_MM); XYZ_CONSTS(signed char, home_dir, HOME_DIR); /** * axis_homed * Flags that each linear axis was homed. * XYZ on cartesian, ABC on delta, ABZ on SCARA. * * axis_known_position * Flags that the position is known in each linear axis. Set when homed. * Cleared whenever a stepper powers off, potentially losing its position. */ uint8_t axis_homed, axis_known_position; // = 0 // Relative Mode. Enable with G91, disable with G90. bool relative_mode; // = false; /** * Cartesian Current Position * Used to track the native machine position as moves are queued. * Used by 'buffer_line_to_current_position' to do a move after changing it. * Used by 'sync_plan_position' to update 'planner.position'. */ float current_position[XYZE] = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS }; /** * Cartesian Destination * The destination for a move, filled in by G-code movement commands, * and expected by functions like 'prepare_move_to_destination'. * Set with 'get_destination_from_command' or 'set_destination_from_current'. */ float destination[XYZE]; // = { 0 } // The active extruder (tool). Set with T command. #if EXTRUDERS > 1 uint8_t active_extruder; // = 0 #endif // Extruder offsets #if HAS_HOTEND_OFFSET float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load() #endif // The feedrate for the current move, often used as the default if // no other feedrate is specified. Overridden for special moves. // Set by the last G0 through G5 command's "F" parameter. // Functions that override this for custom moves *must always* restore it! float feedrate_mm_s = MMM_TO_MMS(1500.0f); int16_t feedrate_percentage = 100; // Homing feedrate is const progmem - compare to constexpr in the header const float homing_feedrate_mm_s[XYZ] PROGMEM = { #if ENABLED(DELTA) MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z), #else MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY), #endif MMM_TO_MMS(HOMING_FEEDRATE_Z) }; // Cartesian conversion result goes here: float cartes[XYZ]; #if IS_KINEMATIC float delta[ABC]; #endif #if HAS_SCARA_OFFSET float scara_home_offset[ABC]; #endif /** * The workspace can be offset by some commands, or * these offsets may be omitted to save on computation. */ #if HAS_POSITION_SHIFT // The distance that XYZ has been offset by G92. Reset by G28. float position_shift[XYZ] = { 0 }; #endif #if HAS_HOME_OFFSET // This offset is added to the configured home position. // Set by M206, M428, or menu item. Saved to EEPROM. float home_offset[XYZ] = { 0 }; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT // The above two are combined to save on computes float workspace_offset[XYZ] = { 0 }; #endif #if HAS_ABL_NOT_UBL float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); #endif /** * Output the current position to serial */ void report_current_position() { SERIAL_ECHOPAIR("X:", LOGICAL_X_POSITION(current_position[X_AXIS])); SERIAL_ECHOPAIR(" Y:", LOGICAL_Y_POSITION(current_position[Y_AXIS])); SERIAL_ECHOPAIR(" Z:", LOGICAL_Z_POSITION(current_position[Z_AXIS])); SERIAL_ECHOPAIR(" E:", current_position[E_AXIS]); stepper.report_positions(); #if IS_SCARA scara_report_positions(); #endif } /** * sync_plan_position * * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); #endif planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } /** * Get the stepper positions in the cartes[] array. * Forward kinematics are applied for DELTA and SCARA. * * The result is in the current coordinate space with * leveling applied. The coordinates need to be run through * unapply_leveling to obtain the "ideal" coordinates * suitable for current_position, etc. */ void get_cartesian_from_steppers() { #if ENABLED(DELTA) forward_kinematics_DELTA( planner.get_axis_position_mm(A_AXIS), planner.get_axis_position_mm(B_AXIS), planner.get_axis_position_mm(C_AXIS) ); #else #if IS_SCARA forward_kinematics_SCARA( planner.get_axis_position_degrees(A_AXIS), planner.get_axis_position_degrees(B_AXIS) ); #else cartes[X_AXIS] = planner.get_axis_position_mm(X_AXIS); cartes[Y_AXIS] = planner.get_axis_position_mm(Y_AXIS); #endif cartes[Z_AXIS] = planner.get_axis_position_mm(Z_AXIS); #endif } /** * Set the current_position for an axis based on * the stepper positions, removing any leveling that * may have been applied. * * To prevent small shifts in axis position always call * sync_plan_position after updating axes with this. * * To keep hosts in sync, always call report_current_position * after updating the current_position. */ void set_current_from_steppers_for_axis(const AxisEnum axis) { get_cartesian_from_steppers(); #if HAS_POSITION_MODIFIERS float pos[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], current_position[E_AXIS] }; planner.unapply_modifiers(pos #if HAS_LEVELING , true #endif ); const float (&cartes)[XYZE] = pos; #endif if (axis == ALL_AXES) COPY(current_position, cartes); else current_position[axis] = cartes[axis]; } /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ void line_to_current_position(const float &fr_mm_s/*=feedrate_mm_s*/) { planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s, active_extruder); } /** * Move the planner to the position stored in the destination array, which is * used by G0/G1/G2/G3/G5 and many other functions to set a destination. */ void buffer_line_to_destination(const float fr_mm_s) { planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder); } #if IS_KINEMATIC /** * Calculate delta, start a line, and set current_position to destination */ void prepare_uninterpolated_move_to_destination(const float &fr_mm_s/*=0.0*/) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination); #endif #if UBL_SEGMENTED // ubl segmented line will do z-only moves in single segment ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s)); #else if ( current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS] && current_position[Z_AXIS] == destination[Z_AXIS] && current_position[E_AXIS] == destination[E_AXIS] ) return; planner.buffer_line(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder); #endif set_current_from_destination(); } #endif // IS_KINEMATIC /** * Plan a move to (X, Y, Z) and set the current_position */ void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s/*=0.0*/) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, rx, ry, rz); #endif const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS), xy_feedrate = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; #if ENABLED(DELTA) if (!position_is_reachable(rx, ry)) return; REMEMBER(fr, feedrate_mm_s, xy_feedrate); set_destination_from_current(); // sync destination at the start #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination); #endif // when in the danger zone if (current_position[Z_AXIS] > delta_clip_start_height) { if (rz > delta_clip_start_height) { // staying in the danger zone destination[X_AXIS] = rx; // move directly (uninterpolated) destination[Y_AXIS] = ry; destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position); #endif return; } destination[Z_AXIS] = delta_clip_start_height; prepare_uninterpolated_move_to_destination(); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position); #endif } if (rz > current_position[Z_AXIS]) { // raising? destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position); #endif } destination[X_AXIS] = rx; destination[Y_AXIS] = ry; prepare_move_to_destination(); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position); #endif if (rz < current_position[Z_AXIS]) { // lowering? destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position); #endif } #elif IS_SCARA if (!position_is_reachable(rx, ry)) return; set_destination_from_current(); // If Z needs to raise, do it before moving XY if (destination[Z_AXIS] < rz) { destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(z_feedrate); } destination[X_AXIS] = rx; destination[Y_AXIS] = ry; prepare_uninterpolated_move_to_destination(xy_feedrate); // If Z needs to lower, do it after moving XY if (destination[Z_AXIS] > rz) { destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(z_feedrate); } #else // If Z needs to raise, do it before moving XY if (current_position[Z_AXIS] < rz) { current_position[Z_AXIS] = rz; line_to_current_position(z_feedrate); } current_position[X_AXIS] = rx; current_position[Y_AXIS] = ry; line_to_current_position(xy_feedrate); // If Z needs to lower, do it after moving XY if (current_position[Z_AXIS] > rz) { current_position[Z_AXIS] = rz; line_to_current_position(z_feedrate); } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to"); #endif planner.synchronize(); } void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s); } void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s); } void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s); } // // Prepare to do endstop or probe moves with custom feedrates. // - Save / restore current feedrate and multiplier // static float saved_feedrate_mm_s; static int16_t saved_feedrate_percentage; void setup_for_endstop_or_probe_move() { saved_feedrate_mm_s = feedrate_mm_s; saved_feedrate_percentage = feedrate_percentage; feedrate_percentage = 100; } void clean_up_after_endstop_or_probe_move() { feedrate_mm_s = saved_feedrate_mm_s; feedrate_percentage = saved_feedrate_percentage; } #if HAS_SOFTWARE_ENDSTOPS bool soft_endstops_enabled = true; // Software Endstops are based on the configured limits. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS }; #if IS_KINEMATIC float soft_endstop_radius, soft_endstop_radius_2; #endif /** * Constrain the given coordinates to the software endstops. * * For DELTA/SCARA the XY constraint is based on the smallest * radius within the set software endstops. */ void clamp_to_software_endstops(float target[XYZ]) { if (!soft_endstops_enabled) return; #if IS_KINEMATIC const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]); if (dist_2 > soft_endstop_radius_2) { const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66 target[X_AXIS] *= ratio; target[Y_AXIS] *= ratio; } #else #if ENABLED(MIN_SOFTWARE_ENDSTOP_X) NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]); #endif #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y) NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]); #endif #if ENABLED(MAX_SOFTWARE_ENDSTOP_X) NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]); #endif #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y) NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]); #endif #endif #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z) NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]); #endif #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z) NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]); #endif } /** * Software endstops can be used to monitor the open end of * an axis that has a hardware endstop on the other end. Or * they can prevent axes from moving past endstops and grinding. * * To keep doing their job as the coordinate system changes, * the software endstop positions must be refreshed to remain * at the same positions relative to the machine. */ void update_software_endstops(const AxisEnum axis) { #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { // In Dual X mode hotend_offset[X] is T1's home position const float dual_max_x = MAX(hotend_offset[X_AXIS][1], X2_MAX_POS); if (active_extruder != 0) { // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger) soft_endstop_min[X_AXIS] = X2_MIN_POS; soft_endstop_max[X_AXIS] = dual_max_x; } else if (dxc_is_duplicating()) { // In Duplication Mode, T0 can move as far left as X1_MIN_POS // but not so far to the right that T1 would move past the end soft_endstop_min[X_AXIS] = X1_MIN_POS; soft_endstop_max[X_AXIS] = MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset); } else { // In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS soft_endstop_min[X_AXIS] = X1_MIN_POS; soft_endstop_max[X_AXIS] = X1_MAX_POS; } } #elif ENABLED(DELTA) soft_endstop_min[axis] = base_min_pos(axis); soft_endstop_max[axis] = (axis == Z_AXIS ? delta_height #if HAS_BED_PROBE - zprobe_zoffset #endif : base_max_pos(axis)); switch (axis) { case X_AXIS: case Y_AXIS: // Get a minimum radius for clamping soft_endstop_radius = MIN(ABS(MAX(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]); soft_endstop_radius_2 = sq(soft_endstop_radius); break; case Z_AXIS: delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top(); default: break; } #else soft_endstop_min[axis] = base_min_pos(axis); soft_endstop_max[axis] = base_max_pos(axis); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("For ", axis_codes[axis]); SERIAL_ECHOPAIR(" axis:\n soft_endstop_min = ", soft_endstop_min[axis]); SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]); } #endif } #endif #if !UBL_SEGMENTED #if IS_KINEMATIC #if IS_SCARA /** * Before raising this value, use M665 S[seg_per_sec] to decrease * the number of segments-per-second. Default is 200. Some deltas * do better with 160 or lower. It would be good to know how many * segments-per-second are actually possible for SCARA on AVR. * * Longer segments result in less kinematic overhead * but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm * and compare the difference. */ #define SCARA_MIN_SEGMENT_LENGTH 0.5f #endif /** * Prepare a linear move in a DELTA or SCARA setup. * * Called from prepare_move_to_destination as the * default Delta/SCARA segmenter. * * This calls planner.buffer_line several times, adding * small incremental moves for DELTA or SCARA. * * For Unified Bed Leveling (Delta or Segmented Cartesian) * the ubl.prepare_segmented_line_to method replaces this. * * For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES * this is replaced by segmented_line_to_destination below. */ inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) { // Get the top feedrate of the move in the XY plane const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s); const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS], ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS]; // If the move is only in Z/E don't split up the move if (!xdiff && !ydiff) { planner.buffer_line(rtarget, _feedrate_mm_s, active_extruder); return false; // caller will update current_position } // Fail if attempting move outside printable radius if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true; // Remaining cartesian distances const float zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS], ediff = rtarget[E_AXIS] - current_position[E_AXIS]; // Get the linear distance in XYZ float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff)); // If the move is very short, check the E move distance if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff); // No E move either? Game over. if (UNEAR_ZERO(cartesian_mm)) return true; // Minimum number of seconds to move the given distance const float seconds = cartesian_mm / _feedrate_mm_s; // The number of segments-per-second times the duration // gives the number of segments uint16_t segments = delta_segments_per_second * seconds; // For SCARA enforce a minimum segment size #if IS_SCARA NOMORE(segments, cartesian_mm * (1.0f / float(SCARA_MIN_SEGMENT_LENGTH))); #endif // At least one segment is required NOLESS(segments, 1U); // The approximate length of each segment const float inv_segments = 1.0f / float(segments), segment_distance[XYZE] = { xdiff * inv_segments, ydiff * inv_segments, zdiff * inv_segments, ediff * inv_segments }, cartesian_segment_mm = cartesian_mm * inv_segments; #if ENABLED(SCARA_FEEDRATE_SCALING) const float inv_duration = _feedrate_mm_s / cartesian_segment_mm; #endif /* SERIAL_ECHOPAIR("mm=", cartesian_mm); SERIAL_ECHOPAIR(" seconds=", seconds); SERIAL_ECHOPAIR(" segments=", segments); SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm); SERIAL_EOL(); //*/ // Get the current position as starting point float raw[XYZE]; COPY(raw, current_position); // Calculate and execute the segments while (--segments) { static millis_t next_idle_ms = millis() + 200UL; thermalManager.manage_heater(); // This returns immediately if not really needed. if (ELAPSED(millis(), next_idle_ms)) { next_idle_ms = millis() + 200UL; idle(); } LOOP_XYZE(i) raw[i] += segment_distance[i]; if (!planner.buffer_line(raw, _feedrate_mm_s, active_extruder, cartesian_segment_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif )) break; } // Ensure last segment arrives at target location. planner.buffer_line(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif ); return false; // caller will update current_position } #else // !IS_KINEMATIC #if ENABLED(SEGMENT_LEVELED_MOVES) /** * Prepare a segmented move on a CARTESIAN setup. * * This calls planner.buffer_line several times, adding * small incremental moves. This allows the planner to * apply more detailed bed leveling to the full move. */ inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) { const float xdiff = destination[X_AXIS] - current_position[X_AXIS], ydiff = destination[Y_AXIS] - current_position[Y_AXIS]; // If the move is only in Z/E don't split up the move if (!xdiff && !ydiff) { planner.buffer_line(destination, fr_mm_s, active_extruder); return; } // Remaining cartesian distances const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS], ediff = destination[E_AXIS] - current_position[E_AXIS]; // Get the linear distance in XYZ // If the move is very short, check the E move distance // No E move either? Game over. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff)); if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff); if (UNEAR_ZERO(cartesian_mm)) return; // The length divided by the segment size // At least one segment is required uint16_t segments = cartesian_mm / segment_size; NOLESS(segments, 1U); // The approximate length of each segment const float inv_segments = 1.0f / float(segments), cartesian_segment_mm = cartesian_mm * inv_segments, segment_distance[XYZE] = { xdiff * inv_segments, ydiff * inv_segments, zdiff * inv_segments, ediff * inv_segments }; #if ENABLED(SCARA_FEEDRATE_SCALING) const float inv_duration = _feedrate_mm_s / cartesian_segment_mm; #endif // SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOLNPAIR(" segments=", segments); // SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm); // Get the raw current position as starting point float raw[XYZE]; COPY(raw, current_position); // Calculate and execute the segments while (--segments) { static millis_t next_idle_ms = millis() + 200UL; thermalManager.manage_heater(); // This returns immediately if not really needed. if (ELAPSED(millis(), next_idle_ms)) { next_idle_ms = millis() + 200UL; idle(); } LOOP_XYZE(i) raw[i] += segment_distance[i]; if (!planner.buffer_line(raw, fr_mm_s, active_extruder, cartesian_segment_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif )) break; } // Since segment_distance is only approximate, // the final move must be to the exact destination. planner.buffer_line(destination, fr_mm_s, active_extruder, cartesian_segment_mm #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif ); } #endif // SEGMENT_LEVELED_MOVES /** * Prepare a linear move in a Cartesian setup. * * When a mesh-based leveling system is active, moves are segmented * according to the configuration of the leveling system. * * Returns true if current_position[] was set to destination[] */ inline bool prepare_move_to_destination_cartesian() { #if HAS_MESH if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) { #if ENABLED(AUTO_BED_LEVELING_UBL) ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about return true; // all moves, including Z-only moves. #elif ENABLED(SEGMENT_LEVELED_MOVES) segmented_line_to_destination(MMS_SCALED(feedrate_mm_s)); return false; // caller will update current_position #else /** * For MBL and ABL-BILINEAR only segment moves when X or Y are involved. * Otherwise fall through to do a direct single move. */ if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) { #if ENABLED(MESH_BED_LEVELING) mbl.line_to_destination(MMS_SCALED(feedrate_mm_s)); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s)); #endif return true; } #endif } #endif // HAS_MESH buffer_line_to_destination(MMS_SCALED(feedrate_mm_s)); return false; // caller will update current_position } #endif // !IS_KINEMATIC #endif // !UBL_SEGMENTED #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) bool extruder_duplication_enabled = false, // Used in Dual X mode 2 & 3 scaled_duplication_mode = false; // Used in Dual X mode 2 & 3 #endif #if ENABLED(DUAL_X_CARRIAGE) DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; float inactive_extruder_x_pos = X2_MAX_POS, // used in mode 0 & 1 raised_parked_position[XYZE], // used in mode 1 duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2 bool active_extruder_parked = false; // used in mode 1 & 2 millis_t delayed_move_time = 0; // used in mode 1 int16_t duplicate_extruder_temp_offset = 0; // used in mode 2 float x_home_pos(const int extruder) { if (extruder == 0) return base_home_pos(X_AXIS); else /** * In dual carriage mode the extruder offset provides an override of the * second X-carriage position when homed - otherwise X2_HOME_POS is used. * This allows soft recalibration of the second extruder home position * without firmware reflash (through the M218 command). */ return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS; } /** * Prepare a linear move in a dual X axis setup * * Return true if current_position[] was set to destination[] */ inline bool dual_x_carriage_unpark() { if (active_extruder_parked) { switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: break; case DXC_AUTO_PARK_MODE: if (current_position[E_AXIS] == destination[E_AXIS]) { // This is a travel move (with no extrusion) // Skip it, but keep track of the current position // (so it can be used as the start of the next non-travel move) if (delayed_move_time != 0xFFFFFFFFUL) { set_current_from_destination(); NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]); delayed_move_time = millis(); return true; } } // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower #define CUR_X current_position[X_AXIS] #define CUR_Y current_position[Y_AXIS] #define CUR_Z current_position[Z_AXIS] #define CUR_E current_position[E_AXIS] #define RAISED_X raised_parked_position[X_AXIS] #define RAISED_Y raised_parked_position[Y_AXIS] #define RAISED_Z raised_parked_position[Z_AXIS] if ( planner.buffer_line(RAISED_X, RAISED_Y, RAISED_Z, CUR_E, planner.settings.max_feedrate_mm_s[Z_AXIS], active_extruder)) if (planner.buffer_line( CUR_X, CUR_Y, RAISED_Z, CUR_E, PLANNER_XY_FEEDRATE(), active_extruder)) planner.buffer_line( CUR_X, CUR_Y, CUR_Z, CUR_E, planner.settings.max_feedrate_mm_s[Z_AXIS], active_extruder); delayed_move_time = 0; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked"); #endif break; case DXC_SCALED_DUPLICATION_MODE: case DXC_DUPLICATION_MODE: if (active_extruder == 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos); SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset); } #endif // move duplicate extruder into correct duplication position. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); if (!planner.buffer_line( dual_x_carriage_mode == DXC_DUPLICATION_MODE ? duplicate_extruder_x_offset + current_position[X_AXIS] : inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.settings.max_feedrate_mm_s[X_AXIS], 1 ) ) break; planner.synchronize(); sync_plan_position(); extruder_duplication_enabled = true; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked"); #endif } else { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0"); #endif } break; } } stepper.set_directions(); return false; } #endif // DUAL_X_CARRIAGE /** * Prepare a single move and get ready for the next one * * This may result in several calls to planner.buffer_line to * do smaller moves for DELTA, SCARA, mesh moves, etc. * * Make sure current_position[E] and destination[E] are good * before calling or cold/lengthy extrusion may get missed. */ void prepare_move_to_destination() { clamp_to_software_endstops(destination); #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) if (!DEBUGGING(DRYRUN)) { if (destination[E_AXIS] != current_position[E_AXIS]) { #if ENABLED(PREVENT_COLD_EXTRUSION) if (thermalManager.tooColdToExtrude(active_extruder)) { current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_MSG(MSG_ERR_COLD_EXTRUDE_STOP); } #endif // PREVENT_COLD_EXTRUSION #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (ABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) { current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_MSG(MSG_ERR_LONG_EXTRUDE_STOP); } #endif // PREVENT_LENGTHY_EXTRUDE } } #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_unpark()) return; #endif if ( #if UBL_SEGMENTED //ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s)) // This doesn't seem to work correctly on UBL. #if IS_KINEMATIC // Use Kinematic / Cartesian cases as a workaround for now. ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s)) #else prepare_move_to_destination_cartesian() #endif #elif IS_KINEMATIC prepare_kinematic_move_to(destination) #else prepare_move_to_destination_cartesian() #endif ) return; set_current_from_destination(); } #if HAS_AXIS_UNHOMED_ERR bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) { #if ENABLED(HOME_AFTER_DEACTIVATE) const bool xx = x && !TEST(axis_known_position, X_AXIS), yy = y && !TEST(axis_known_position, Y_AXIS), zz = z && !TEST(axis_known_position, Z_AXIS); #else const bool xx = x && !TEST(axis_homed, X_AXIS), yy = y && !TEST(axis_homed, Y_AXIS), zz = z && !TEST(axis_homed, Z_AXIS); #endif if (xx || yy || zz) { SERIAL_ECHO_START(); SERIAL_ECHOPGM(MSG_HOME " "); if (xx) SERIAL_ECHOPGM(MSG_X); if (yy) SERIAL_ECHOPGM(MSG_Y); if (zz) SERIAL_ECHOPGM(MSG_Z); SERIAL_ECHOLNPGM(" " MSG_FIRST); #if ENABLED(ULTRA_LCD) || ENABLED(EXTENSIBLE_UI) ui.status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : ""); #endif return true; } return false; } #endif // HAS_AXIS_UNHOMED_ERR /** * Homing bump feedrate (mm/s) */ float get_homing_bump_feedrate(const AxisEnum axis) { #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW); #endif static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR; uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]); if (hbd < 1) { hbd = 10; SERIAL_ECHO_MSG("Warning: Homing Bump Divisor < 1"); } return homing_feedrate(axis) / hbd; } #if ENABLED(SENSORLESS_HOMING) /** * Set sensorless homing if the axis has it, accounting for Core Kinematics. */ sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis) { sensorless_t stealth_states { false, false, false, false, false, false, false }; switch (axis) { default: break; #if X_SENSORLESS case X_AXIS: stealth_states.x = tmc_enable_stallguard(stepperX); #if AXIS_HAS_STALLGUARD(X2) stealth_states.x2 = tmc_enable_stallguard(stepperX2); #endif #if CORE_IS_XY && Y_SENSORLESS stealth_states.y = tmc_enable_stallguard(stepperY); #elif CORE_IS_XZ && Z_SENSORLESS stealth_states.z = tmc_enable_stallguard(stepperZ); #endif break; #endif #if Y_SENSORLESS case Y_AXIS: stealth_states.y = tmc_enable_stallguard(stepperY); #if AXIS_HAS_STALLGUARD(Y2) stealth_states.y2 = tmc_enable_stallguard(stepperY2); #endif #if CORE_IS_XY && X_SENSORLESS stealth_states.x = tmc_enable_stallguard(stepperX); #elif CORE_IS_YZ && Z_SENSORLESS stealth_states.z = tmc_enable_stallguard(stepperZ); #endif break; #endif #if Z_SENSORLESS case Z_AXIS: stealth_states.z = tmc_enable_stallguard(stepperZ); #if AXIS_HAS_STALLGUARD(Z2) stealth_states.z2 = tmc_enable_stallguard(stepperZ2); #endif #if AXIS_HAS_STALLGUARD(Z3) stealth_states.z3 = tmc_enable_stallguard(stepperZ3); #endif #if CORE_IS_XZ && X_SENSORLESS stealth_states.x = tmc_enable_stallguard(stepperX); #elif CORE_IS_YZ && Y_SENSORLESS stealth_states.y = tmc_enable_stallguard(stepperY); #endif break; #endif } return stealth_states; } void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth) { switch (axis) { default: break; #if X_SENSORLESS case X_AXIS: tmc_disable_stallguard(stepperX, enable_stealth.x); #if AXIS_HAS_STALLGUARD(X2) tmc_disable_stallguard(stepperX2, enable_stealth.x2); #endif #if CORE_IS_XY && Y_SENSORLESS tmc_disable_stallguard(stepperY, enable_stealth.y); #elif CORE_IS_XZ && Z_SENSORLESS tmc_disable_stallguard(stepperZ, enable_stealth.z); #endif break; #endif #if Y_SENSORLESS case Y_AXIS: tmc_disable_stallguard(stepperY, enable_stealth.y); #if AXIS_HAS_STALLGUARD(Y2) tmc_disable_stallguard(stepperY2, enable_stealth.y2); #endif #if CORE_IS_XY && X_SENSORLESS tmc_disable_stallguard(stepperX, enable_stealth.x); #elif CORE_IS_YZ && Z_SENSORLESS tmc_disable_stallguard(stepperZ, enable_stealth.z); #endif break; #endif #if Z_SENSORLESS case Z_AXIS: tmc_disable_stallguard(stepperZ, enable_stealth.z); #if AXIS_HAS_STALLGUARD(Z2) tmc_disable_stallguard(stepperZ2, enable_stealth.z2); #endif #if AXIS_HAS_STALLGUARD(Z3) tmc_disable_stallguard(stepperZ3, enable_stealth.z3); #endif #if CORE_IS_XZ && X_SENSORLESS tmc_disable_stallguard(stepperX, enable_stealth.x); #elif CORE_IS_YZ && Y_SENSORLESS tmc_disable_stallguard(stepperY, enable_stealth.y); #endif break; #endif } } #endif // SENSORLESS_HOMING /** * Home an individual linear axis */ void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]); SERIAL_ECHOPAIR(", ", distance); SERIAL_ECHOPGM(", "); if (fr_mm_s) SERIAL_ECHO(fr_mm_s); else { SERIAL_ECHOPAIR("[", homing_feedrate(axis)); SERIAL_CHAR(']'); } SERIAL_ECHOLNPGM(")"); } #endif #if HOMING_Z_WITH_PROBE && HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER) // Wait for bed to heat back up between probing points if (axis == Z_AXIS && distance < 0 && thermalManager.isHeatingBed()) { serialprintPGM(msg_wait_for_bed_heating); LCD_MESSAGEPGM(MSG_BED_HEATING); thermalManager.wait_for_bed(); ui.reset_status(); } #endif // Only do some things when moving towards an endstop const int8_t axis_home_dir = #if ENABLED(DUAL_X_CARRIAGE) (axis == X_AXIS) ? x_home_dir(active_extruder) : #endif home_dir(axis); const bool is_home_dir = (axis_home_dir > 0) == (distance > 0); #if ENABLED(SENSORLESS_HOMING) sensorless_t stealth_states; #endif if (is_home_dir) { #if HOMING_Z_WITH_PROBE && QUIET_PROBING if (axis == Z_AXIS) probing_pause(true); #endif // Disable stealthChop if used. Enable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) stealth_states = start_sensorless_homing_per_axis(axis); #endif } #if IS_SCARA // Tell the planner the axis is at 0 current_position[axis] = 0; sync_plan_position(); current_position[axis] = distance; planner.buffer_line(current_position, fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder); #else float target[ABCE] = { planner.get_axis_position_mm(A_AXIS), planner.get_axis_position_mm(B_AXIS), planner.get_axis_position_mm(C_AXIS), planner.get_axis_position_mm(E_AXIS) }; target[axis] = 0; planner.set_machine_position_mm(target); target[axis] = distance; #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION) const float delta_mm_cart[XYZE] = {0, 0, 0, 0}; #endif // Set delta/cartesian axes directly planner.buffer_segment(target #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION) , delta_mm_cart #endif , fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder ); #endif planner.synchronize(); if (is_home_dir) { #if HOMING_Z_WITH_PROBE && QUIET_PROBING if (axis == Z_AXIS) probing_pause(false); #endif endstops.validate_homing_move(); // Re-enable stealthChop if used. Disable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) end_sensorless_homing_per_axis(axis, stealth_states); #endif } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif } /** * Set an axis' current position to its home position (after homing). * * For Core and Cartesian robots this applies one-to-one when an * individual axis has been homed. * * DELTA should wait until all homing is done before setting the XYZ * current_position to home, because homing is a single operation. * In the case where the axis positions are already known and previously * homed, DELTA could home to X or Y individually by moving either one * to the center. However, homing Z always homes XY and Z. * * SCARA should wait until all XY homing is done before setting the XY * current_position to home, because neither X nor Y is at home until * both are at home. Z can however be homed individually. * * Callers must sync the planner position after calling this! */ void set_axis_is_at_home(const AxisEnum axis) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif SBI(axis_known_position, axis); SBI(axis_homed, axis); #if HAS_POSITION_SHIFT position_shift[axis] = 0; update_workspace_offset(axis); #endif #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { current_position[X_AXIS] = x_home_pos(active_extruder); return; } #endif #if ENABLED(MORGAN_SCARA) scara_set_axis_is_at_home(axis); #elif ENABLED(DELTA) current_position[axis] = (axis == Z_AXIS ? delta_height #if HAS_BED_PROBE - zprobe_zoffset #endif : base_home_pos(axis)); #else current_position[axis] = base_home_pos(axis); #endif /** * Z Probe Z Homing? Account for the probe's Z offset. */ #if HAS_BED_PROBE && Z_HOME_DIR < 0 if (axis == Z_AXIS) { #if HOMING_Z_WITH_PROBE current_position[Z_AXIS] -= zprobe_zoffset; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***"); SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset); } #endif #elif ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***"); #endif } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { #if HAS_HOME_OFFSET SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]); SERIAL_ECHOLNPAIR("] = ", home_offset[axis]); #endif DEBUG_POS("", current_position); SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif #if ENABLED(I2C_POSITION_ENCODERS) I2CPEM.homed(axis); #endif } /** * Set an axis' to be unhomed. */ void set_axis_is_not_at_home(const AxisEnum axis) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> set_axis_is_not_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif CBI(axis_known_position, axis); CBI(axis_homed, axis); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< set_axis_is_not_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif #if ENABLED(I2C_POSITION_ENCODERS) I2CPEM.unhomed(axis); #endif } /** * Home an individual "raw axis" to its endstop. * This applies to XYZ on Cartesian and Core robots, and * to the individual ABC steppers on DELTA and SCARA. * * At the end of the procedure the axis is marked as * homed and the current position of that axis is updated. * Kinematic robots should wait till all axes are homed * before updating the current position. */ void homeaxis(const AxisEnum axis) { #if IS_SCARA // Only Z homing (with probe) is permitted if (axis != Z_AXIS) { BUZZ(100, 880); return; } #else #define CAN_HOME(A) \ (axis == _AXIS(A) && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0))) if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif const int axis_home_dir = ( #if ENABLED(DUAL_X_CARRIAGE) axis == X_AXIS ? x_home_dir(active_extruder) : #endif home_dir(axis) ); // Homing Z towards the bed? Deploy the Z probe or endstop. #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS && DEPLOY_PROBE()) return; #endif // Set flags for X, Y, Z motor locking #if HAS_EXTRA_ENDSTOPS switch (axis) { #if ENABLED(X_DUAL_ENDSTOPS) case X_AXIS: #endif #if ENABLED(Y_DUAL_ENDSTOPS) case Y_AXIS: #endif #if Z_MULTI_ENDSTOPS case Z_AXIS: #endif stepper.set_separate_multi_axis(true); default: break; } #endif // Fast move towards endstop until triggered #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:"); #endif #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) // BLTOUCH needs to be deployed every time if (axis == Z_AXIS && set_bltouch_deployed(true)) return; #endif do_homing_move(axis, 1.5f * max_length( #if ENABLED(DELTA) Z_AXIS #else axis #endif ) * axis_home_dir ); #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) // BLTOUCH needs to be stowed after trigger to rearm itself if (axis == Z_AXIS) set_bltouch_deployed(false); #endif // When homing Z with probe respect probe clearance const float bump = axis_home_dir * ( #if HOMING_Z_WITH_PROBE (axis == Z_AXIS && (Z_HOME_BUMP_MM)) ? MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_HOME_BUMP_MM) : #endif home_bump_mm(axis) ); // If a second homing move is configured... if (bump) { // Move away from the endstop by the axis HOME_BUMP_MM #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:"); #endif do_homing_move(axis, -bump #if HOMING_Z_WITH_PROBE , axis == Z_AXIS ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) : 0.0 #endif ); // Slow move towards endstop until triggered #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:"); #endif #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) // BLTOUCH needs to be deployed every time if (axis == Z_AXIS && set_bltouch_deployed(true)) return; #endif do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis)); #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) // BLTOUCH needs to be stowed after trigger to rearm itself if (axis == Z_AXIS) set_bltouch_deployed(false); #endif } #if HAS_EXTRA_ENDSTOPS const bool pos_dir = axis_home_dir > 0; #if ENABLED(X_DUAL_ENDSTOPS) if (axis == X_AXIS) { const float adj = ABS(endstops.x2_endstop_adj); if (adj) { if (pos_dir ? (endstops.x2_endstop_adj > 0) : (endstops.x2_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true); do_homing_move(axis, pos_dir ? -adj : adj); stepper.set_x_lock(false); stepper.set_x2_lock(false); } } #endif #if ENABLED(Y_DUAL_ENDSTOPS) if (axis == Y_AXIS) { const float adj = ABS(endstops.y2_endstop_adj); if (adj) { if (pos_dir ? (endstops.y2_endstop_adj > 0) : (endstops.y2_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true); do_homing_move(axis, pos_dir ? -adj : adj); stepper.set_y_lock(false); stepper.set_y2_lock(false); } } #endif #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) { const float adj = ABS(endstops.z2_endstop_adj); if (adj) { if (pos_dir ? (endstops.z2_endstop_adj > 0) : (endstops.z2_endstop_adj < 0)) stepper.set_z_lock(true); else stepper.set_z2_lock(true); do_homing_move(axis, pos_dir ? -adj : adj); stepper.set_z_lock(false); stepper.set_z2_lock(false); } } #endif #if ENABLED(Z_TRIPLE_ENDSTOPS) if (axis == Z_AXIS) { // we push the function pointers for the stepper lock function into an array void (*lock[3]) (bool)= {&stepper.set_z_lock, &stepper.set_z2_lock, &stepper.set_z3_lock}; float adj[3] = {0, endstops.z2_endstop_adj, endstops.z3_endstop_adj}; void (*tempLock) (bool); float tempAdj; // manual bubble sort by adjust value if (adj[1] < adj[0]) { tempLock = lock[0], tempAdj = adj[0]; lock[0] = lock[1], adj[0] = adj[1]; lock[1] = tempLock, adj[1] = tempAdj; } if (adj[2] < adj[1]) { tempLock = lock[1], tempAdj = adj[1]; lock[1] = lock[2], adj[1] = adj[2]; lock[2] = tempLock, adj[2] = tempAdj; } if (adj[1] < adj[0]) { tempLock = lock[0], tempAdj = adj[0]; lock[0] = lock[1], adj[0] = adj[1]; lock[1] = tempLock, adj[1] = tempAdj; } if (pos_dir) { // normalize adj to smallest value and do the first move (*lock[0])(true); do_homing_move(axis, adj[1] - adj[0]); // lock the second stepper for the final correction (*lock[1])(true); do_homing_move(axis, adj[2] - adj[1]); } else { (*lock[2])(true); do_homing_move(axis, adj[1] - adj[2]); (*lock[1])(true); do_homing_move(axis, adj[0] - adj[1]); } stepper.set_z_lock(false); stepper.set_z2_lock(false); stepper.set_z3_lock(false); } #endif // Reset flags for X, Y, Z motor locking switch (axis) { #if ENABLED(X_DUAL_ENDSTOPS) case X_AXIS: #endif #if ENABLED(Y_DUAL_ENDSTOPS) case Y_AXIS: #endif #if Z_MULTI_ENDSTOPS case Z_AXIS: #endif stepper.set_separate_multi_axis(false); default: break; } #endif #if IS_SCARA set_axis_is_at_home(axis); sync_plan_position(); #elif ENABLED(DELTA) // Delta has already moved all three towers up in G28 // so here it re-homes each tower in turn. // Delta homing treats the axes as normal linear axes. // retrace by the amount specified in delta_endstop_adj + additional dist in order to have minimum steps if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:"); #endif do_homing_move(axis, delta_endstop_adj[axis] - (MIN_STEPS_PER_SEGMENT + 1) * planner.steps_to_mm[axis] * Z_HOME_DIR); } #else // CARTESIAN / CORE set_axis_is_at_home(axis); sync_plan_position(); destination[axis] = current_position[axis]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position); #endif #endif // Put away the Z probe #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS && STOW_PROBE()) return; #endif // Clear retracted status if homing the Z axis #if ENABLED(FWRETRACT) if (axis == Z_AXIS) fwretract.current_hop = 0.0; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif } // homeaxis() #if HAS_WORKSPACE_OFFSET void update_workspace_offset(const AxisEnum axis) { workspace_offset[axis] = home_offset[axis] + position_shift[axis]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("For ", axis_codes[axis]); SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]); SERIAL_ECHOLNPAIR("\n position_shift = ", position_shift[axis]); } #endif } #endif #if HAS_M206_COMMAND /** * Change the home offset for an axis. * Also refreshes the workspace offset. */ void set_home_offset(const AxisEnum axis, const float v) { home_offset[axis] = v; update_workspace_offset(axis); } #endif // HAS_M206_COMMAND