/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * Marlin Firmware -- G26 - Mesh Validation Tool */ #include "MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING) #include "ubl.h" #include "Marlin.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "ultralcd.h" #define EXTRUSION_MULTIPLIER 1.0 #define RETRACTION_MULTIPLIER 1.0 #define NOZZLE 0.4 #define FILAMENT 1.75 #define LAYER_HEIGHT 0.2 #define PRIME_LENGTH 10.0 #define BED_TEMP 60.0 #define HOTEND_TEMP 205.0 #define OOZE_AMOUNT 0.3 #define SIZE_OF_INTERSECTION_CIRCLES 5 #define SIZE_OF_CROSSHAIRS 3 #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES." #endif /** * G26 Mesh Validation Tool * * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and * the intersections of those lines (respectively). * * This action allows the user to immediately see where the Mesh is properly defined and where it needs to * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively * the user can specify the X and Y position of interest with command parameters. This allows the user to * focus on a particular area of the Mesh where attention is needed. * * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed. * * C Current When searching for Mesh Intersection points to draw, use the current nozzle location * as the base for any distance comparison. * * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this * command to see how well a Mesh as been adjusted to match a print surface. In order to do * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter * alters the command's normal behaviour and disables the Unified Bed Leveling System even if * it is on. * * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed. * * F # Filament Used to specify the diameter of the filament being used. If not specified * 1.75mm filament is assumed. If you are not getting acceptable results by using the * 'correct' numbers, you can scale this number up or down a little bit to change the amount * of filament that is being extruded during the printing of the various lines on the bed. * * K Keep-On Keep the heaters turned on at the end of the command. * * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used. * * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and * un-retraction is at 1.2mm These numbers will be scaled by the specified amount * * N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed. * 'n' can be used instead if your host program does not appreciate you using 'N'. * * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This * is over kill, but using this parameter will let you get the very first 'cicle' perfect * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your * Mesh calibrated. If not specified, a filament length of .3mm is assumed. * * P # Prime Prime the nozzle with specified length of filament. If this parameter is not * given, no prime action will take place. If the parameter specifies an amount, that much * will be purged before continuing. If no amount is specified the command will start * purging filament until the user provides an LCD Click and then it will continue with * printing the Mesh. You can carefully remove the spent filament with a needle nose * pliers while holding the LCD Click wheel in a depressed state. * * R # Random Randomize the order that the circles are drawn on the bed. The search for the closest * undrawn cicle is still done. But the distance to the location for each circle has a * random number of the size specified added to it. Specifying R50 will give an interesting * deviation from the normal behaviour on a 10 x 10 Mesh. * * X # X coordinate Specify the starting location of the drawing activity. * * Y # Y coordinate Specify the starting location of the drawing activity. */ // External references extern float feedrate; extern Planner planner; #if ENABLED(ULTRA_LCD) extern char lcd_status_message[]; #endif extern float destination[XYZE]; void set_destination_to_current(); void set_current_to_destination(); float code_value_float(); float code_value_linear_units(); float code_value_axis_units(const AxisEnum axis); bool code_value_bool(); bool code_has_value(); void lcd_init(); void lcd_setstatuspgm(const char* const message, const uint8_t level); bool prepare_move_to_destination_cartesian(); void line_to_destination(); void line_to_destination(float); void sync_plan_position_e(); void chirp_at_user(); // Private functions void un_retract_filament(float where[XYZE]); void retract_filament(float where[XYZE]); void look_for_lines_to_connect(); bool parse_G26_parameters(); void move_to(const float&, const float&, const float&, const float&) ; void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&); bool turn_on_heaters(); bool prime_nozzle(); static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0; float g26_e_axis_feedrate = 0.020, random_deviation = 0.0, layer_height = LAYER_HEIGHT; static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched // retracts/recovers won't result in a bad state. float valid_trig_angle(float); mesh_index_pair find_closest_circle_to_print(const float&, const float&); static float extrusion_multiplier = EXTRUSION_MULTIPLIER, retraction_multiplier = RETRACTION_MULTIPLIER, nozzle = NOZZLE, filament_diameter = FILAMENT, prime_length = PRIME_LENGTH, x_pos, y_pos, ooze_amount = OOZE_AMOUNT; static int16_t bed_temp = BED_TEMP, hotend_temp = HOTEND_TEMP; static int8_t prime_flag = 0; static bool keep_heaters_on = false; /** * G26: Mesh Validation Pattern generation. * * Used to interactively edit UBL's Mesh by placing the * nozzle in a problem area and doing a G29 P4 R command. */ void gcode_G26() { SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s)."); float tmp, start_angle, end_angle; int i, xi, yi; mesh_index_pair location; // Don't allow Mesh Validation without homing first, // or if the parameter parsing did not go OK, abort if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return; if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); stepper.synchronize(); set_current_to_destination(); } if (turn_on_heaters()) goto LEAVE; current_position[E_AXIS] = 0.0; sync_plan_position_e(); if (prime_flag && prime_nozzle()) goto LEAVE; /** * Bed is preheated * * Nozzle is at temperature * * Filament is primed! * * It's "Show Time" !!! */ ZERO(circle_flags); ZERO(horizontal_mesh_line_flags); ZERO(vertical_mesh_line_flags); // Move nozzle to the specified height for the first layer set_destination_to_current(); destination[Z_AXIS] = layer_height; move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount); ubl.has_control_of_lcd_panel = true; //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); /** * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten * the CPU load and make the arc drawing faster and more smooth */ float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1]; for (i = 0; i <= 360 / 30; i++) { cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0))); sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0))); } do { if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation #if ENABLED(ULTRA_LCD) lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99); lcd_quick_feedback(); #endif while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the idle(); // Encoder Wheel if that is why we are leaving lcd_reset_alert_level(); lcd_setstatuspgm(PSTR("")); } while (ubl_lcd_clicked()) { // Wait until the user is done pressing the idle(); // Encoder Wheel if that is why we are leaving lcd_setstatuspgm(PSTR("Unpress Wheel"), 99); } goto LEAVE; } location = continue_with_closest ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now. if (location.x_index >= 0 && location.y_index >= 0) { const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem #ifdef DELTA if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS."); goto LEAVE; } #endif // TODO: Change this to use `position_is_reachable` if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to print off the bed."); goto LEAVE; } xi = location.x_index; // Just to shrink the next few lines and make them easier to understand yi = location.y_index; if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); SERIAL_ECHOPAIR(", yi=", yi); SERIAL_CHAR(')'); SERIAL_EOL; } start_angle = 0.0; // assume it is going to be a full circle end_angle = 360.0; if (xi == 0) { // Check for bottom edge start_angle = -90.0; end_angle = 90.0; if (yi == 0) // it is an edge, check for the two left corners start_angle = 0.0; else if (yi == GRID_MAX_POINTS_Y - 1) end_angle = 0.0; } else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge start_angle = 90.0; end_angle = 270.0; if (yi == 0) // it is an edge, check for the two right corners end_angle = 180.0; else if (yi == GRID_MAX_POINTS_Y - 1) start_angle = 180.0; } else if (yi == 0) { start_angle = 0.0; // only do the top side of the cirlce end_angle = 180.0; } else if (yi == GRID_MAX_POINTS_Y - 1) { start_angle = 180.0; // only do the bottom side of the cirlce end_angle = 360.0; } for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) { int tmp_div_30 = tmp / 30.0; if (tmp_div_30 < 0) tmp_div_30 += 360 / 30; if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30; float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry y = circle_y + sin_table[tmp_div_30], xe = circle_x + cos_table[tmp_div_30 + 1], ye = circle_y + sin_table[tmp_div_30 + 1]; #ifdef DELTA if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of continue; // the 'circle' is on the bed. If #else // not, we need to skip x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1); xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); #endif //if (ubl.g26_debug_flag) { // char ccc, *cptr, seg_msg[50], seg_num[10]; // strcpy(seg_msg, " segment: "); // strcpy(seg_num, " \n"); // cptr = (char*) "01234567890ABCDEF????????"; // ccc = cptr[tmp_div_30]; // seg_num[1] = ccc; // strcat(seg_msg, seg_num); // debug_current_and_destination(seg_msg); //} print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height); } //debug_current_and_destination(PSTR("Looking for lines to connect.")); look_for_lines_to_connect(); //debug_current_and_destination(PSTR("Done with line connect.")); } //debug_current_and_destination(PSTR("Done with current circle.")); } while (location.x_index >= 0 && location.y_index >= 0); LEAVE: lcd_reset_alert_level(); lcd_setstatuspgm(PSTR("Leaving G26")); retract_filament(destination); destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; //debug_current_and_destination(PSTR("ready to do Z-Raise.")); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle //debug_current_and_destination(PSTR("done doing Z-Raise.")); destination[X_AXIS] = x_pos; // Move back to the starting position destination[Y_AXIS] = y_pos; //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position //debug_current_and_destination(PSTR("done doing X/Y move.")); ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel! if (!keep_heaters_on) { #if HAS_TEMP_BED thermalManager.setTargetBed(0); #endif thermalManager.setTargetHotend(0, 0); } } float valid_trig_angle(float d) { while (d > 360.0) d -= 360.0; while (d < 0.0) d += 360.0; return d; } mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) { float closest = 99999.99; mesh_index_pair return_val; return_val.x_index = return_val.y_index = -1; for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { if (!is_bit_set(circle_flags, i, j)) { const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed my = pgm_read_float(&ubl.mesh_index_to_ypos[j]); // Get the distance to this intersection float f = HYPOT(X - mx, Y - my); // It is possible that we are being called with the values // to let us find the closest circle to the start position. // But if this is not the case, add a small weighting to the // distance calculation to help it choose a better place to continue. f += HYPOT(x_pos - mx, y_pos - my) / 15.0; // Add in the specified amount of Random Noise to our search if (random_deviation > 1.0) f += random(0.0, random_deviation); if (f < closest) { closest = f; // We found a closer location that is still return_val.x_index = i; // un-printed --- save the data for it return_val.y_index = j; return_val.distance = closest; } } } } bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done. return return_val; } void look_for_lines_to_connect() { float sx, sy, ex, ey; for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X. // This is already a half circle because we are at the edge of the bed. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left if (!is_bit_set(horizontal_mesh_line_flags, i, j)) { // // We found two circles that need a horizontal line to connect them // Print it! // sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); SERIAL_ECHOPAIR(", ey=", ey); SERIAL_CHAR(')'); SERIAL_EOL; //debug_current_and_destination(PSTR("Connecting horizontal line.")); } print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again } } if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y. // This is already a half circle because we are at the edge of the bed. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down if (!is_bit_set( vertical_mesh_line_flags, i, j)) { // // We found two circles that need a vertical line to connect them // Print it! // sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1); sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); SERIAL_ECHOPAIR(", ey=", ey); SERIAL_CHAR(')'); SERIAL_EOL; debug_current_and_destination(PSTR("Connecting vertical line.")); } print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again } } } } } } } void move_to(const float &x, const float &y, const float &z, const float &e_delta) { float feed_value; static float last_z = -999.99; bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component); if (z != last_z) { //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z); last_z = z; feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate destination[X_AXIS] = current_position[X_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS]; destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code. destination[E_AXIS] = current_position[E_AXIS]; ubl_line_to_destination(feed_value, 0); stepper.synchronize(); set_destination_to_current(); //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() done with Z move")); } // Check if X or Y is involved in the movement. // Yes: a 'normal' movement. No: a retract() or un_retract() feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); destination[X_AXIS] = x; destination[Y_AXIS] = y; destination[E_AXIS] += e_delta; //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() doing last move")); ubl_line_to_destination(feed_value, 0); //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() after last move")); stepper.synchronize(); set_destination_to_current(); } void retract_filament(float where[XYZE]) { if (!g26_retracted) { // Only retract if we are not already retracted! g26_retracted = true; //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract."); move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done."); } } void un_retract_filament(float where[XYZE]) { if (g26_retracted) { // Only un-retract if we are retracted. move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier); g26_retracted = false; //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done."); } } /** * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one * to the other. But there are really three sets of coordinates involved. The first coordinate * is the present location of the nozzle. We don't necessarily want to print from this location. * We first need to move the nozzle to the start of line segment where we want to print. Once * there, we can use the two coordinates supplied to draw the line. * * Note: Although we assume the first set of coordinates is the start of the line and the second * set of coordinates is the end of the line, it does not always work out that way. This function * optimizes the movement to minimize the travel distance before it can start printing. This saves * a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does * cause a lot of very little short retracement of th nozzle when it draws the very first line * segment of a 'circle'. The time this requires is very short and is easily saved by the other * cases where the optimization comes into play. */ void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment dy_s = current_position[Y_AXIS] - sy, dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2 // to save computation time dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment dy_e = current_position[Y_AXIS] - ey, dist_end = HYPOT2(dx_e, dy_e), line_length = HYPOT(ex - sx, ey - sy); // If the end point of the line is closer to the nozzle, flip the direction, // moving from the end to the start. On very small lines the optimization isn't worth it. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) { //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()"); return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); } // Decide whether to retract & bump if (dist_start > 2.0) { retract_filament(destination); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted."); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Z bumping by 0.500 to minimize scraping."); //todo: parameterize the bump height with a define move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]+0.500, 0.0); // Z bump to minimize scraping move_to(sx, sy, sz+0.500, 0.0); // Get to the starting point with no extrusion while bumped } move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier; un_retract_filament(destination); //if (ubl.g26_debug_flag) { // SERIAL_ECHOLNPGM(" doing printing move."); // debug_current_and_destination(PSTR("doing final move_to() inside print_line_from_here_to_there()")); //} move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion } /** * This function used to be inline code in G26. But there are so many * parameters it made sense to turn them into static globals and get * this code out of sight of the main routine. */ bool parse_G26_parameters() { extrusion_multiplier = EXTRUSION_MULTIPLIER; retraction_multiplier = RETRACTION_MULTIPLIER; nozzle = NOZZLE; filament_diameter = FILAMENT; layer_height = LAYER_HEIGHT; prime_length = PRIME_LENGTH; bed_temp = BED_TEMP; hotend_temp = HOTEND_TEMP; ooze_amount = OOZE_AMOUNT; prime_flag = 0; keep_heaters_on = false; if (code_seen('B')) { bed_temp = code_value_temp_abs(); if (!WITHIN(bed_temp, 15, 140)) { SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); return UBL_ERR; } } if (code_seen('C')) continue_with_closest++; if (code_seen('L')) { layer_height = code_value_linear_units(); if (!WITHIN(layer_height, 0.0, 2.0)) { SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); return UBL_ERR; } } if (code_seen('Q')) { if (code_has_value()) { retraction_multiplier = code_value_float(); if (!WITHIN(retraction_multiplier, 0.05, 15.0)) { SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); return UBL_ERR; } } else { SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified."); return UBL_ERR; } } if (code_seen('N') || code_seen('n')) { nozzle = code_value_float(); if (!WITHIN(nozzle, 0.1, 1.0)) { SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); return UBL_ERR; } } if (code_seen('K')) keep_heaters_on++; if (code_seen('O') && code_has_value()) ooze_amount = code_value_linear_units(); if (code_seen('P')) { if (!code_has_value()) prime_flag = -1; else { prime_flag++; prime_length = code_value_linear_units(); if (!WITHIN(prime_length, 0.0, 25.0)) { SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); return UBL_ERR; } } } if (code_seen('F')) { filament_diameter = code_value_linear_units(); if (!WITHIN(filament_diameter, 1.0, 4.0)) { SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); return UBL_ERR; } } extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to // scale up or down the length needed to get the // same volume of filament extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size if (code_seen('H')) { hotend_temp = code_value_temp_abs(); if (!WITHIN(hotend_temp, 165, 280)) { SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); return UBL_ERR; } } if (code_seen('R')) { randomSeed(millis()); random_deviation = code_has_value() ? code_value_float() : 50.0; } x_pos = current_position[X_AXIS]; y_pos = current_position[Y_AXIS]; if (code_seen('X')) { x_pos = code_value_axis_units(X_AXIS); if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) { SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible."); return UBL_ERR; } } else if (code_seen('Y')) { y_pos = code_value_axis_units(Y_AXIS); if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) { SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible."); return UBL_ERR; } } /** * We save the question of what to do with the Unified Bed Leveling System's Activation until the very * end. The reason is, if one of the parameters specified up above is incorrect, we don't want to * alter the system's status. We wait until we know everything is correct before altering the state * of the system. */ ubl.state.active = !code_seen('D'); return UBL_OK; } bool exit_from_g26() { //strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue; lcd_reset_alert_level(); lcd_setstatuspgm(PSTR("Leaving G26")); while (ubl_lcd_clicked()) idle(); return UBL_ERR; } /** * Turn on the bed and nozzle heat and * wait for them to get up to temperature. */ bool turn_on_heaters() { millis_t next; #if HAS_TEMP_BED #if ENABLED(ULTRA_LCD) if (bed_temp > 25) { lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99); lcd_quick_feedback(); #endif ubl.has_control_of_lcd_panel = true; thermalManager.setTargetBed(bed_temp); next = millis() + 5000UL; while (abs(thermalManager.degBed() - bed_temp) > 3) { if (ubl_lcd_clicked()) return exit_from_g26(); if (PENDING(millis(), next)) { next = millis() + 5000UL; print_heaterstates(); } idle(); } #if ENABLED(ULTRA_LCD) } lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99); lcd_quick_feedback(); #endif #endif // Start heating the nozzle and wait for it to reach temperature. thermalManager.setTargetHotend(hotend_temp, 0); while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) { if (ubl_lcd_clicked()) return exit_from_g26(); if (PENDING(millis(), next)) { next = millis() + 5000UL; print_heaterstates(); } idle(); } #if ENABLED(ULTRA_LCD) lcd_reset_alert_level(); lcd_setstatuspgm(PSTR("")); lcd_quick_feedback(); #endif return UBL_OK; } /** * Prime the nozzle if needed. Return true on error. */ bool prime_nozzle() { float Total_Prime = 0.0; if (prime_flag == -1) { // The user wants to control how much filament gets purged ubl.has_control_of_lcd_panel = true; lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99); chirp_at_user(); set_destination_to_current(); un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted(). while (!ubl_lcd_clicked()) { chirp_at_user(); destination[E_AXIS] += 0.25; #ifdef PREVENT_LENGTHY_EXTRUDE Total_Prime += 0.25; if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR; #endif ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); stepper.synchronize(); // Without this synchronize, the purge is more consistent, // but because the planner has a buffer, we won't be able // to stop as quickly. So we put up with the less smooth // action to give the user a more responsive 'Stop'. set_destination_to_current(); idle(); } while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel #if ENABLED(ULTRA_LCD) strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue; // So... We cheat to get a message up. lcd_setstatuspgm(PSTR("Done Priming"), 99); lcd_quick_feedback(); #endif ubl.has_control_of_lcd_panel = false; } else { #if ENABLED(ULTRA_LCD) lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99); lcd_quick_feedback(); #endif set_destination_to_current(); destination[E_AXIS] += prime_length; ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); stepper.synchronize(); set_destination_to_current(); retract_filament(destination); } return UBL_OK; } #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING