/** * Marlin 3D Printer Firmware * Copyright (C) 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * The class Servo uses the PWM class to implement its functions * * All PWMs use the same repetition rate - 20mS because that's the normal servo rate */ /** * This is a hybrid system. * * The PWM1 module is used to directly control the Servo 0, 1 & 3 pins and D9 & D10 pins. This keeps * the pulse width jitter to under a microsecond. * * For all other pins a timer is used to generate interrupts. The ISR * routine does the actual setting/clearing of pins. The upside is that any pin can * have a PWM channel assigned to it. The downside is that there is more pulse width * jitter. The jitter depends on what else is happening in the system and what ISRs * pre-empt the PWM ISR. */ /** * The data structures are set up to minimize the computation done by the ISR which * minimizes ISR execution time. Execution times are 5-14µs depending on how full the * ISR table is. 14uS is for a 20 element ISR table. * * Two tables are used. One table contains the data used by the ISR to update/control * the PWM pins. The other is used as an aid when updating the ISR table. * * See the end of this file for details on the hardware/firmware interaction */ /** * Directly controlled PWM pins ( * NA means not being used as a directly controlled PWM pin * * Re-ARM MKS Sbase * PWM1.1 P1_18 SERVO3_PIN NA(no connection) * PWM1.1 P2_00 NA(E0_STEP_PIN) NA(X stepper) * PWM1.2 P1_20 SERVO0_PIN NA(no connection) * PWM1.2 P2_01 NA(X_STEP_PIN) NA(Y stepper) * PWM1.3 P1_21 SERVO1_PIN NA(no connection) * PWM1.3 P2_02 NA(Y_STEP_PIN) NA(Z stepper) * PWM1.4 P1_23 NA(SDSS(SSEL0)) SERVO0_PIN * PWM1.4 P2_03 NA(Z_STEP_PIN) NA(E0 stepper) * PWM1.5 P1_24 NA(X_MIN_PIN) NA(X_MIN_pin) * PWM1.5 P2_04 RAMPS_D9_PIN FAN_PIN * PWM1.6 P1_26 NA(Y_MIN_PIN) NA(Y_MIN_pin) * PWM1.6 P2_05 RAMPS_D10_PIN HEATER_BED_PIN */ #ifdef TARGET_LPC1768 #include "../../inc/MarlinConfig.h" #include #include "LPC1768_PWM.h" #include "Arduino.h" #define NUM_ISR_PWMS 20 #define LPC_PORT_OFFSET (0x0020) #define LPC_PIN(pin) (1UL << pin) #define LPC_GPIO(port) ((volatile LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + LPC_PORT_OFFSET * port)) typedef struct { // holds all data needed to control/init one of the PWM channels bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN pin_t pin; volatile uint32_t* set_register; volatile uint32_t* clr_register; uint32_t write_mask; // USED BY SET/CLEAR COMMANDS uint32_t microseconds; // value written to MR register uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel } PWM_map; PWM_map PWM1_map_A[NUM_ISR_PWMS]; // compiler will initialize to all zeros PWM_map PWM1_map_B[NUM_ISR_PWMS]; // compiler will initialize to all zeros PWM_map *active_table = PWM1_map_A; PWM_map *work_table = PWM1_map_B; PWM_map *temp_table; #define P1_18_PWM_channel 1 // servo 3 #define P1_20_PWM_channel 2 // servo 0 #define P1_21_PWM_channel 3 // servo 1 #define P1_23_PWM_channel 4 // servo 0 for MKS Sbase #define P2_04_PWM_channel 5 // D9 #define P2_05_PWM_channel 6 // D10 typedef struct { uint32_t min; uint32_t max; bool assigned; } table_direct; table_direct direct_table[6]; // compiler will initialize to all zeros /** * Prescale register and MR0 register values * * 100MHz PCLK 50MHz PCLK 25MHz PCLK 12.5MHz PCLK * ----------------- ----------------- ----------------- ----------------- * desired prescale MR0 prescale MR0 prescale MR0 prescale MR0 resolution * prescale register register register register register register register register in degrees * freq value value value value value value value value * * 8 11.5 159,999 5.25 159,999 2.13 159,999 0.5625 159,999 0.023 * 4 24 79,999 11.5 79,999 5.25 79,999 2.125 79,999 0.045 * 2 49 39,999 24 39,999 11.5 39,999 5.25 39,999 0.090 * 1 99 19,999 49 19,999 24 19,999 11.5 19,999 0.180 * 0.5 199 9,999 99 9,999 49 9,999 24 9,999 0.360 * 0.25 399 4,999 199 4,999 99 4,999 49 4,999 0.720 * 0.125 799 2,499 399 2,499 199 2,499 99 2,499 1.440 * * The desired prescale frequency column comes from an input in the range of 544 - 2400 microseconds * and the desire to just shift the input left or right as needed. * * A resolution of 0.2 degrees seems reasonable so a prescale frequency output of 1MHz is being used. * It also means we don't need to scale the input. * * The PCLK is set to 25MHz because that's the slowest one that gives whole numbers for prescale and * MR0 registers. * * Final settings: * PCLKSEL0: 0x0 * PWM1PR: 0x018 (24) * PWM1MR0: 0x04E1F (19,999) * */ void LPC1768_PWM_init(void) { ///// directly controlled PWM pins (interrupts not used for these) #define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable #define SBIT_CNTRST 1 // reset counters to known state #define SBIT_PWMEN 3 // 1 - PWM, 0 - timer #define SBIT_PWMMR0R 1 #define PCPWM1 6 #define PCLK_PWM1 12 SBI(LPC_SC->PCONP, PCPWM1); // Enable PWM1 controller (enabled on power up) LPC_SC->PCLKSEL0 &= ~(0x3 << PCLK_PWM1); LPC_SC->PCLKSEL0 |= (LPC_PWM1_PCLKSEL0 << PCLK_PWM1); uint32_t PR = (CLKPWR_GetPCLK(CLKPWR_PCLKSEL_PWM1) / 1000000) - 1; // Prescalar to create 1 MHz output LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS // MR0 must be set before TCR enables the PWM LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST) | _BV(SBIT_PWMEN); // Enable counters, reset counters, set mode to PWM CBI(LPC_PWM1->TCR, SBIT_CNTRST); // Take counters out of reset LPC_PWM1->PR = PR; LPC_PWM1->MCR = _BV(SBIT_PWMMR0R) | _BV(0); // Reset TC if it matches MR0, disable all interrupts except for MR0 LPC_PWM1->CTCR = 0; // Disable counter mode (enable PWM mode) LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6 LPC_PWM1->PCR = 0; // Single edge mode for all channels, PWM1 control of outputs off //// interrupt controlled PWM setup LPC_SC->PCONP |= 1 << 23; // power on timer3 HAL_PWM_TIMER->PR = PR; HAL_PWM_TIMER->MCR = 0x0B; // Interrupt on MR0 & MR1, reset on MR0 HAL_PWM_TIMER->MR0 = LPC_PWM1_MR0; HAL_PWM_TIMER->MR1 = 0; HAL_PWM_TIMER->TCR = _BV(0); // enable NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); NVIC_SetPriority(HAL_PWM_TIMER_IRQn, NVIC_EncodePriority(0, 4, 0)); } bool ISR_table_update = false; // flag to tell the ISR that the tables need to be updated & swapped uint8_t ISR_index = 0; // index used by ISR to skip already actioned entries #define COPY_ACTIVE_TABLE for (uint8_t i = 0; i < NUM_ISR_PWMS ; i++) work_table[i] = active_table[i] uint32_t first_MR1_value = LPC_PWM1_MR0 + 1; void LPC1768_PWM_sort(void) { for (uint8_t i = NUM_ISR_PWMS; --i;) { // (bubble) sort table by microseconds bool didSwap = false; PWM_map temp; for (uint16_t j = 0; j < i; ++j) { if (work_table[j].microseconds > work_table[j + 1].microseconds) { temp = work_table[j + 1]; work_table[j + 1] = work_table[j]; work_table[j] = temp; didSwap = true; } } if (!didSwap) break; } } bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - 1) */, uint8_t servo_index /* = 0xff */) { pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); // Sometimes the upper byte is garbled //// direct control PWM code switch(pin) { case P1_23: // MKS Sbase Servo 0, PWM1 channel 4 (J3-8 PWM1.4) direct_table[P1_23_PWM_channel - 1].min = min; direct_table[P1_23_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); direct_table[P1_23_PWM_channel - 1].assigned = true; return true; case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2) direct_table[P1_20_PWM_channel - 1].min = min; direct_table[P1_20_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); direct_table[P1_20_PWM_channel - 1].assigned = true; return true; case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3) direct_table[P1_21_PWM_channel - 1].min = min; direct_table[P1_21_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); direct_table[P1_21_PWM_channel - 1].assigned = true; return true; case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1) direct_table[P1_18_PWM_channel - 1].min = min; direct_table[P1_18_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); direct_table[P1_18_PWM_channel - 1].assigned = true; return true; case P2_04: // D9 FET, PWM1 channel 5 (Pin 9 P2_04 PWM1.5) direct_table[P2_04_PWM_channel - 1].min = min; direct_table[P2_04_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); direct_table[P2_04_PWM_channel - 1].assigned = true; return true; case P2_05: // D10 FET, PWM1 channel 6 (Pin 10 P2_05 PWM1.6) direct_table[P2_05_PWM_channel - 1].min = min; direct_table[P2_05_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); direct_table[P2_05_PWM_channel - 1].assigned = true; return true; } //// interrupt controlled PWM code NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); // make it safe to update the active table // OK to update the active table because the // ISR doesn't use any of the changed items if (ISR_table_update) //use work table if that's the newest temp_table = work_table; else temp_table = active_table; uint8_t slot = 0; for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // see if already in table if (temp_table[i].pin == pin) { NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts return 1; } for (uint8_t i = 1; (i < NUM_ISR_PWMS + 1) && !slot; i++) // find empty slot if ( !(temp_table[i - 1].set_register)) { slot = i; break; } // any item that can't be zero when active or just attached is OK if (!slot) { NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts return 0; } slot--; // turn it into array index temp_table[slot].pin = pin; // init slot temp_table[slot].set_register = &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET; temp_table[slot].clr_register = &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR; temp_table[slot].write_mask = LPC_PIN(LPC1768_PIN_PIN(pin)); temp_table[slot].min = min; temp_table[slot].max = max; // different max for ISR PWMs than for direct PWMs temp_table[slot].servo_index = servo_index; temp_table[slot].active_flag = false; NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts return 1; } bool LPC1768_PWM_detach_pin(pin_t pin) { pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); //// direct control PWM code switch(pin) { case P1_23: // MKS Sbase Servo 0, PWM1 channel 4 (J3-8 PWM1.4) if (!direct_table[P1_23_PWM_channel - 1].assigned) return false; CBI(LPC_PWM1->PCR, 8 + P1_23_PWM_channel); // disable PWM1 module control of this pin LPC_PINCON->PINSEL3 &= ~(0x3 << 14); // return pin to general purpose I/O direct_table[P1_23_PWM_channel - 1].assigned = false; return true; case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2) if (!direct_table[P1_20_PWM_channel - 1].assigned) return false; CBI(LPC_PWM1->PCR, 8 + P1_20_PWM_channel); // disable PWM1 module control of this pin LPC_PINCON->PINSEL3 &= ~(0x3 << 8); // return pin to general purpose I/O direct_table[P1_20_PWM_channel - 1].assigned = false; return true; case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3) if (!direct_table[P1_21_PWM_channel - 1].assigned) return false; CBI(LPC_PWM1->PCR, 8 + P1_21_PWM_channel); // disable PWM1 module control of this pin LPC_PINCON->PINSEL3 &= ~(0x3 << 10); // return pin to general purpose I/O direct_table[P1_21_PWM_channel - 1].assigned = false; return true; case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1) if (!direct_table[P1_18_PWM_channel - 1].assigned) return false; CBI(LPC_PWM1->PCR, 8 + P1_18_PWM_channel); // disable PWM1 module control of this pin LPC_PINCON->PINSEL3 &= ~(0x3 << 4); // return pin to general purpose I/O direct_table[P1_18_PWM_channel - 1].assigned = false; return true; case P2_04: // D9 FET, PWM1 channel 5 (Pin 9 P2_04 PWM1.5) if (!direct_table[P2_04_PWM_channel - 1].assigned) return false; CBI(LPC_PWM1->PCR, 8 + P2_04_PWM_channel); // disable PWM1 module control of this pin LPC_PINCON->PINSEL4 &= ~(0x3 << 10); // return pin to general purpose I/O direct_table[P2_04_PWM_channel - 1].assigned = false; return true; case P2_05: // D10 FET, PWM1 channel 6 (Pin 10 P2_05 PWM1.6) if (!direct_table[P2_05_PWM_channel - 1].assigned) return false; CBI(LPC_PWM1->PCR, 8 + P2_05_PWM_channel); // disable PWM1 module control of this pin LPC_PINCON->PINSEL4 &= ~(0x3 << 4); // return pin to general purpose I/O direct_table[P2_05_PWM_channel - 1].assigned = false; return true; } //// interrupt controlled PWM code NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); if (ISR_table_update) { ISR_table_update = false; // don't update yet - have another update to do NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts } else { NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts COPY_ACTIVE_TABLE; // copy active table into work table } uint8_t slot = 0xFF; for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) { // find slot if (work_table[i].pin == pin) { slot = i; break; } } if (slot == 0xFF) // return error if pin not found return false; work_table[slot] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; LPC1768_PWM_sort(); // sort table by microseconds ISR_table_update = true; return true; } // value is 0-20,000 microseconds (0% to 100% duty cycle) // servo routine provides values in the 544 - 2400 range bool LPC1768_PWM_write(pin_t pin, uint32_t value) { pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); //// direct control PWM code switch(pin) { case P1_23: // MKS Sbase Servo 0, PWM1 channel 4 (J3-8 PWM1.4) if (!direct_table[P1_23_PWM_channel - 1].assigned) return false; LPC_PWM1->PCR |= _BV(8 + P1_23_PWM_channel); // enable PWM1 module control of this pin LPC_PINCON->PINSEL3 = 0x2 << 14; // must set pin function AFTER setting PCR // load the new time value LPC_PWM1->MR4 = MAX(MIN(value, direct_table[P1_23_PWM_channel - 1].max), direct_table[P1_23_PWM_channel - 1].min); LPC_PWM1->LER = 0x1 << P1_23_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 return true; case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2) if (!direct_table[P1_20_PWM_channel - 1].assigned) return false; LPC_PWM1->PCR |= _BV(8 + P1_20_PWM_channel); // enable PWM1 module control of this pin LPC_PINCON->PINSEL3 |= 0x2 << 8; // must set pin function AFTER setting PCR // load the new time value LPC_PWM1->MR2 = MAX(MIN(value, direct_table[P1_20_PWM_channel - 1].max), direct_table[P1_20_PWM_channel - 1].min); LPC_PWM1->LER = 0x1 << P1_20_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 return true; case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3) if (!direct_table[P1_21_PWM_channel - 1].assigned) return false; LPC_PWM1->PCR |= _BV(8 + P1_21_PWM_channel); // enable PWM1 module control of this pin LPC_PINCON->PINSEL3 |= 0x2 << 10; // must set pin function AFTER setting PCR // load the new time value LPC_PWM1->MR3 = MAX(MIN(value, direct_table[P1_21_PWM_channel - 1].max), direct_table[P1_21_PWM_channel - 1].min); LPC_PWM1->LER = 0x1 << P1_21_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 return true; case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1) if (!direct_table[P1_18_PWM_channel - 1].assigned) return false; LPC_PWM1->PCR |= _BV(8 + P1_18_PWM_channel); // enable PWM1 module control of this pin LPC_PINCON->PINSEL3 |= 0x2 << 4; // must set pin function AFTER setting PCR // load the new time value LPC_PWM1->MR1 = MAX(MIN(value, direct_table[P1_18_PWM_channel - 1].max), direct_table[P1_18_PWM_channel - 1].min); LPC_PWM1->LER = 0x1 << P1_18_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 return true; case P2_04: // D9 FET, PWM1 channel 5 (Pin 9 P2_04 PWM1.5) if (!direct_table[P2_04_PWM_channel - 1].assigned) return false; LPC_PWM1->PCR |= _BV(8 + P2_04_PWM_channel); // enable PWM1 module control of this pin LPC_PINCON->PINSEL4 |= 0x1 << 8; // must set pin function AFTER setting PCR // load the new time value LPC_PWM1->MR5 = MAX(MIN(value, direct_table[P2_04_PWM_channel - 1].max), direct_table[P2_04_PWM_channel - 1].min); LPC_PWM1->LER = 0x1 << P2_04_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 return true; case P2_05: // D10 FET, PWM1 channel 6 (Pin 10 P2_05 PWM1.6) if (!direct_table[P2_05_PWM_channel - 1].assigned) return false; LPC_PWM1->PCR |= _BV(8 + P2_05_PWM_channel); // enable PWM1 module control of this pin LPC_PINCON->PINSEL4 |= 0x1 << 10; // must set pin function AFTER setting PCR // load the new time value LPC_PWM1->MR6 = MAX(MIN(value, direct_table[P2_05_PWM_channel - 1].max), direct_table[P2_05_PWM_channel - 1].min); LPC_PWM1->LER = 0x1 << P2_05_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 return true; } //// interrupt controlled PWM code NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); if (!ISR_table_update) // use the most up to date table COPY_ACTIVE_TABLE; // copy active table into work table uint8_t slot = 0xFF; for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // find slot if (work_table[i].pin == pin) { slot = i; break; } if (slot == 0xFF) { // return error if pin not found NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); return false; } work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);; work_table[slot].active_flag = true; LPC1768_PWM_sort(); // sort table by microseconds ISR_table_update = true; NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts return 1; } bool useable_hardware_PWM(pin_t pin) { pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); bool return_flag = false; for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // see if it's already setup if (active_table[i].pin == pin) return_flag = true; for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // see if there is an empty slot if (!active_table[i].set_register) return_flag = true; NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts return return_flag; } //////////////////////////////////////////////////////////////////////////////// #define PWM_LPC1768_ISR_SAFETY_FACTOR 5 // amount of time needed to guarantee MR1 count will be above TC volatile bool in_PWM_isr = false; HAL_PWM_TIMER_ISR { bool first_active_entry = true; uint32_t next_MR1_val; if (in_PWM_isr) goto exit_PWM_ISR; // prevent re-entering this ISR in_PWM_isr = true; if (HAL_PWM_TIMER->IR & 0x01) { // MR0 interrupt next_MR1_val = first_MR1_value; // only used if have a blank ISR table if (ISR_table_update) { // new values have been loaded so swap tables temp_table = active_table; active_table = work_table; work_table = temp_table; ISR_table_update = false; } } HAL_PWM_TIMER->IR = 0x3F; // clear all interrupts for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) { if (active_table[i].active_flag) { if (first_active_entry) { first_active_entry = false; next_MR1_val = active_table[i].microseconds; } if (HAL_PWM_TIMER->TC < active_table[i].microseconds) { *active_table[i].set_register = active_table[i].write_mask; // set pin high } else { *active_table[i].clr_register = active_table[i].write_mask; // set pin low next_MR1_val = (i == NUM_ISR_PWMS -1) ? LPC_PWM1_MR0 + 1 // done with table, wait for MR0 : active_table[i + 1].microseconds; // set next MR1 interrupt? } } } if (first_active_entry) next_MR1_val = LPC_PWM1_MR0 + 1; // empty table so disable MR1 interrupt HAL_PWM_TIMER->MR1 = MAX(next_MR1_val, HAL_PWM_TIMER->TC + PWM_LPC1768_ISR_SAFETY_FACTOR); // set next in_PWM_isr = false; exit_PWM_ISR: return; } #endif ///////////////////////////////////////////////////////////////// ///////////////// HARDWARE FIRMWARE INTERACTION //////////////// ///////////////////////////////////////////////////////////////// /** * There are two distinct systems used for PWMs: * directly controlled pins * ISR controlled pins. * * The two systems are independent of each other. The use the same counter frequency so there's no * translation needed when setting the time values. The init, attach, detach and write routines all * start with the direct pin code which is followed by the ISR pin code. * * The PMW1 module handles the directly controlled pins. Each directly controlled pin is associated * with a match register (MR1 - MR6). When the associated MR equals the module's TIMER/COUNTER (TC) * then the pins is set to low. The MR0 register controls the repetition rate. When the TC equals * MR0 then the TC is reset and ALL directly controlled pins are set high. The resulting pulse widths * are almost immune to system loading and ISRs. No PWM1 interrupts are used. * * The ISR controlled pins use the TIMER/COUNTER, MR0 and MR1 registers from one timer. MR0 controls * period of the controls the repetition rate. When the TC equals MR0 then the TC is reset and an * interrupt is generated. When the TC equals MR1 then an interrupt is generated. * * Each interrupt does the following: * 1) Swaps the tables if it's a MR0 interrupt and the swap flag is set. It then clears the swap flag. * 2) Scans the entire ISR table (it's been sorted low to high time) * a. If its the first active entry then it grabs the time as a tentative time for MR1 * b. If active and TC is less than the time then it sets the pin high * c. If active and TC is more than the time it sets the pin high * d. On every entry that sets a pin low it grabs the NEXT entry's time for use as the next MR1. * This results in MR1 being set to the time in the first active entry that does NOT set a * pin low. * e. If it's setting the last entry's pin low then it sets MR1 to a value bigger than MR0 * f. If no value has been grabbed for the next MR1 then it's an empty table and MR1 is set to a * value greater than MR0 */