/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(DELTA_AUTO_CALIBRATION)
#include "../gcode.h"
#include "../../module/delta.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#include "../../lcd/ultralcd.h"
#if HAS_BED_PROBE
#include "../../module/probe.h"
#endif
#if HOTENDS > 1
#include "../../module/tool_change.h"
#endif
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
_4P_STEP = _7P_STEP * 2, // 4-point step
NPP = _7P_STEP * 6; // number of calibration points on the radius
enum CalEnum : char { // the 7 main calibration points - add definitions if needed
CEN = 0,
__A = 1,
_AB = __A + _7P_STEP,
__B = _AB + _7P_STEP,
_BC = __B + _7P_STEP,
__C = _BC + _7P_STEP,
_CA = __C + _7P_STEP,
};
#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VARCEN+0.9999; VAR-=N)
#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
#if HOTENDS > 1
const uint8_t old_tool_index = active_extruder;
#define AC_CLEANUP() ac_cleanup(old_tool_index)
#else
#define AC_CLEANUP() ac_cleanup()
#endif
float lcd_probe_pt(const float &rx, const float &ry);
void ac_home() {
endstops.enable(true);
home_delta();
endstops.not_homing();
}
void ac_setup(const bool reset_bed) {
#if HOTENDS > 1
tool_change(0, 0, true);
#endif
planner.synchronize();
setup_for_endstop_or_probe_move();
#if HAS_LEVELING
if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid
#endif
}
void ac_cleanup(
#if HOTENDS > 1
const uint8_t old_tool_index
#endif
) {
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
do_blocking_move_to_z(delta_clip_start_height);
#endif
#if HAS_BED_PROBE
STOW_PROBE();
#endif
clean_up_after_endstop_or_probe_move();
#if HOTENDS > 1
tool_change(old_tool_index, 0, true);
#endif
}
void print_signed_float(PGM_P const prefix, const float &f) {
SERIAL_ECHOPGM(" ");
serialprintPGM(prefix);
SERIAL_CHAR(':');
if (f >= 0) SERIAL_CHAR('+');
SERIAL_ECHO_F(f, 2);
}
/**
* - Print the delta settings
*/
static void print_calibration_settings(const bool end_stops, const bool tower_angles) {
SERIAL_ECHOPAIR(".Height:", delta_height);
if (end_stops) {
print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
}
if (end_stops && tower_angles) {
SERIAL_ECHOPAIR(" Radius:", delta_radius);
SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_ECHO_SP(13);
}
if (tower_angles) {
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
}
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
SERIAL_ECHOPAIR(" Radius:", delta_radius);
}
#if HAS_BED_PROBE
if (!end_stops && !tower_angles) {
SERIAL_ECHO_SP(30);
print_signed_float(PSTR("Offset"), zprobe_zoffset);
}
#endif
SERIAL_EOL();
}
/**
* - Print the probe results
*/
static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
SERIAL_ECHOPGM(". ");
print_signed_float(PSTR("c"), z_pt[CEN]);
if (tower_points) {
print_signed_float(PSTR(" x"), z_pt[__A]);
print_signed_float(PSTR(" y"), z_pt[__B]);
print_signed_float(PSTR(" z"), z_pt[__C]);
}
if (tower_points && opposite_points) {
SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_ECHO_SP(13);
}
if (opposite_points) {
print_signed_float(PSTR("yz"), z_pt[_BC]);
print_signed_float(PSTR("zx"), z_pt[_CA]);
print_signed_float(PSTR("xy"), z_pt[_AB]);
}
SERIAL_EOL();
}
/**
* - Calculate the standard deviation from the zero plane
*/
static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {
if (!_0p_cal) {
float S2 = sq(z_pt[CEN]);
int16_t N = 1;
if (!_1p_cal) { // std dev from zero plane
LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {
S2 += sq(z_pt[rad]);
N++;
}
return LROUND(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
}
}
return 0.00001;
}
/**
* - Probe a point
*/
static float calibration_probe(const float &nx, const float &ny, const bool stow, const bool set_up) {
#if HAS_BED_PROBE
return probe_pt(nx, ny, set_up ? PROBE_PT_BIG_RAISE : stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, false);
#else
UNUSED(stow);
UNUSED(set_up);
return lcd_probe_pt(nx, ny);
#endif
}
#if HAS_BED_PROBE && HAS_LCD_MENU
static float probe_z_shift(const float center) {
STOW_PROBE();
endstops.enable_z_probe(false);
float z_shift = lcd_probe_pt(0, 0) - center;
endstops.enable_z_probe(true);
return z_shift;
}
#endif
/**
* - Probe a grid
*/
static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each, const bool set_up) {
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1 || probe_points == -1,
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3,
_7p_no_intermediates = probe_points == 3,
_7p_1_intermediates = probe_points == 4,
_7p_2_intermediates = probe_points == 5,
_7p_4_intermediates = probe_points == 6,
_7p_6_intermediates = probe_points == 7,
_7p_8_intermediates = probe_points == 8,
_7p_11_intermediates = probe_points == 9,
_7p_14_intermediates = probe_points == 10,
_7p_intermed_points = probe_points >= 4,
_7p_6_center = probe_points >= 5 && probe_points <= 7,
_7p_9_center = probe_points >= 8;
LOOP_CAL_ALL(rad) z_pt[rad] = 0.0;
if (!_0p_calibration) {
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
z_pt[CEN] += calibration_probe(0, 0, stow_after_each, set_up);
if (isnan(z_pt[CEN])) return false;
}
if (_7p_calibration) { // probe extra center points
const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0 : _7p_6_center ? float(_CA) : float(__C),
steps = _7p_9_center ? _4P_STEP / 3.0 : _7p_6_center ? _7P_STEP : _4P_STEP;
I_LOOP_CAL_PT(rad, start, steps) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = delta_calibration_radius * 0.1;
z_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each, set_up);
if (isnan(z_pt[CEN])) return false;
}
z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
}
if (!_1p_calibration) { // probe the radius
const CalEnum start = _4p_opposite_points ? _AB : __A;
const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
_7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
_7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
_7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
_7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
_7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
_7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
_4P_STEP; // .5r * 6 + 1c = 4
bool zig_zag = true;
F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {
const int8_t offset = _7p_9_center ? 2 : 0;
for (int8_t circle = 0; circle <= offset; circle++) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = delta_calibration_radius * (1 - 0.1 * (zig_zag ? offset - circle : circle)),
interpol = FMOD(rad, 1);
const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each, set_up);
if (isnan(z_temp)) return false;
// split probe point to neighbouring calibration points
z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
}
zig_zag = !zig_zag;
}
if (_7p_intermed_points)
LOOP_CAL_RAD(rad)
z_pt[rad] /= _7P_STEP / steps;
do_blocking_move_to_xy(0.0, 0.0);
}
}
return true;
}
/**
* kinematics routines and auto tune matrix scaling parameters:
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - formulae for approximative forward kinematics in the end-stop displacement matrix
* - definition of the matrix scaling parameters
*/
static void reverse_kinematics_probe_points(float z_pt[NPP + 1], float mm_at_pt_axis[NPP + 1][ABC]) {
float pos[XYZ] = { 0.0 };
LOOP_CAL_ALL(rad) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = (rad == CEN ? 0.0 : delta_calibration_radius);
pos[X_AXIS] = cos(a) * r;
pos[Y_AXIS] = sin(a) * r;
pos[Z_AXIS] = z_pt[rad];
inverse_kinematics(pos);
LOOP_XYZ(axis) mm_at_pt_axis[rad][axis] = delta[axis];
}
}
static void forward_kinematics_probe_points(float mm_at_pt_axis[NPP + 1][ABC], float z_pt[NPP + 1]) {
const float r_quot = delta_calibration_radius / delta_radius;
#define ZPP(N,I,A) ((1 / 3.0 + r_quot * (N) / 3.0 ) * mm_at_pt_axis[I][A])
#define Z00(I, A) ZPP( 0, I, A)
#define Zp1(I, A) ZPP(+1, I, A)
#define Zm1(I, A) ZPP(-1, I, A)
#define Zp2(I, A) ZPP(+2, I, A)
#define Zm2(I, A) ZPP(-2, I, A)
z_pt[CEN] = Z00(CEN, A_AXIS) + Z00(CEN, B_AXIS) + Z00(CEN, C_AXIS);
z_pt[__A] = Zp2(__A, A_AXIS) + Zm1(__A, B_AXIS) + Zm1(__A, C_AXIS);
z_pt[__B] = Zm1(__B, A_AXIS) + Zp2(__B, B_AXIS) + Zm1(__B, C_AXIS);
z_pt[__C] = Zm1(__C, A_AXIS) + Zm1(__C, B_AXIS) + Zp2(__C, C_AXIS);
z_pt[_BC] = Zm2(_BC, A_AXIS) + Zp1(_BC, B_AXIS) + Zp1(_BC, C_AXIS);
z_pt[_CA] = Zp1(_CA, A_AXIS) + Zm2(_CA, B_AXIS) + Zp1(_CA, C_AXIS);
z_pt[_AB] = Zp1(_AB, A_AXIS) + Zp1(_AB, B_AXIS) + Zm2(_AB, C_AXIS);
}
static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], float delta_e[ABC], float delta_r, float delta_t[ABC]) {
const float z_center = z_pt[CEN];
float diff_mm_at_pt_axis[NPP + 1][ABC],
new_mm_at_pt_axis[NPP + 1][ABC];
reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);
delta_radius += delta_r;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += delta_t[axis];
recalc_delta_settings();
reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);
LOOP_XYZ(axis) LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad][axis] -= new_mm_at_pt_axis[rad][axis] + delta_e[axis];
forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);
LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;
z_pt[CEN] = z_center;
delta_radius -= delta_r;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= delta_t[axis];
recalc_delta_settings();
}
static float auto_tune_h() {
const float r_quot = delta_calibration_radius / delta_radius;
float h_fac = 0.0;
h_fac = r_quot / (2.0 / 3.0);
h_fac = 1.0f / h_fac; // (2/3)/CR
return h_fac;
}
static float auto_tune_r() {
const float diff = 0.01;
float r_fac = 0.0,
z_pt[NPP + 1] = { 0.0 },
delta_e[ABC] = {0.0},
delta_r = {0.0},
delta_t[ABC] = {0.0};
delta_r = diff;
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0;
r_fac = diff / r_fac / 3.0; // 1/(3*delta_Z)
return r_fac;
}
static float auto_tune_a() {
const float diff = 0.01;
float a_fac = 0.0,
z_pt[NPP + 1] = { 0.0 },
delta_e[ABC] = {0.0},
delta_r = {0.0},
delta_t[ABC] = {0.0};
LOOP_XYZ(axis) {
LOOP_XYZ(axis_2) delta_t[axis_2] = 0.0;
delta_t[axis] = diff;
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0;
a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0;
}
a_fac = diff / a_fac / 3.0; // 1/(3*delta_Z)
return a_fac;
}
/**
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, z_offset, endstops, delta radius, and tower angles.
*
* Parameters:
*
* S Setup mode; disables probe protection
*
* Pn Number of probe points:
* P-1 Checks the z_offset with a center probe and paper test.
* P0 Normalizes calibration.
* P1 Calibrates height only with center probe.
* P2 Probe center and towers. Calibrate height, endstops and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Calibrate all.
* P4-P10 Probe all positions at different intermediate locations and average them.
*
* T Don't calibrate tower angle corrections
*
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
*
* Fn Force to run at least n iterations and take the best result
*
* Vn Verbose level:
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report start and end settings only
* V2 Report settings at each iteration
* V3 Report settings and probe results
*
* E Engage the probe for each point
*/
void GcodeSuite::G33() {
const bool set_up =
#if HAS_BED_PROBE
parser.seen('S');
#else
false;
#endif
const int8_t probe_points = set_up ? 2 : parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(probe_points, -1, 10)) {
SERIAL_ECHOLNPGM("?(P)oints is implausible (-1 - 10).");
return;
}
const bool towers_set = !parser.seen('T');
const float calibration_precision = set_up ? Z_CLEARANCE_BETWEEN_PROBES / 5.0 : parser.floatval('C', 0.0);
if (calibration_precision < 0) {
SERIAL_ECHOLNPGM("?(C)alibration precision is implausible (>=0).");
return;
}
const int8_t force_iterations = parser.intval('F', 0);
if (!WITHIN(force_iterations, 0, 30)) {
SERIAL_ECHOLNPGM("?(F)orce iteration is implausible (0 - 30).");
return;
}
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 3)) {
SERIAL_ECHOLNPGM("?(V)erbose level is implausible (0 - 3).");
return;
}
const bool stow_after_each = parser.seen('E');
if (set_up) {
delta_height = 999.99;
delta_radius = DELTA_PRINTABLE_RADIUS;
ZERO(delta_endstop_adj);
ZERO(delta_tower_angle_trim);
recalc_delta_settings();
}
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1 || probe_points == -1,
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_9_center = probe_points >= 8,
_tower_results = (_4p_calibration && towers_set) || probe_points >= 3,
_opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,
_endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,
_angle_results = probe_points >= 3 && towers_set;
static const char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
int8_t iterations = 0;
float test_precision,
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
zero_std_dev_min = zero_std_dev,
zero_std_dev_old = zero_std_dev,
h_factor,
r_factor,
a_factor,
e_old[ABC] = {
delta_endstop_adj[A_AXIS],
delta_endstop_adj[B_AXIS],
delta_endstop_adj[C_AXIS]
},
r_old = delta_radius,
h_old = delta_height,
a_old[ABC] = {
delta_tower_angle_trim[A_AXIS],
delta_tower_angle_trim[B_AXIS],
delta_tower_angle_trim[C_AXIS]
};
SERIAL_ECHOLNPGM("G33 Auto Calibrate");
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
LOOP_CAL_RAD(axis) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius;
if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
SERIAL_ECHOLNPGM("?(M665 B)ed radius is implausible.");
return;
}
}
}
// Report settings
PGM_P checkingac = PSTR("Checking... AC");
serialprintPGM(checkingac);
if (verbose_level == 0) SERIAL_ECHOPGM(" (DRY-RUN)");
if (set_up) SERIAL_ECHOPGM(" (SET-UP)");
SERIAL_EOL();
ui.set_status_P(checkingac);
print_calibration_settings(_endstop_results, _angle_results);
ac_setup(!_0p_calibration && !_1p_calibration);
if (!_0p_calibration) ac_home();
do { // start iterations
float z_at_pt[NPP + 1] = { 0.0 };
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
iterations++;
// Probe the points
zero_std_dev_old = zero_std_dev;
if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each, set_up)) {
SERIAL_ECHOLNPGM("Correct delta settings with M665 and M666");
return AC_CLEANUP();
}
zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);
// Solve matrices
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
#if !HAS_BED_PROBE
test_precision = 0.00; // forced end
#endif
if (zero_std_dev < zero_std_dev_min) {
// set roll-back point
COPY(e_old, delta_endstop_adj);
r_old = delta_radius;
h_old = delta_height;
COPY(a_old, delta_tower_angle_trim);
}
float e_delta[ABC] = { 0.0 },
r_delta = 0.0,
t_delta[ABC] = { 0.0 };
/**
* convergence matrices:
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - definition of the matrix scaling parameters
* - matrices for 4 and 7 point calibration
*/
#define ZP(N,I) ((N) * z_at_pt[I] / 4.0) // 4.0 = divider to normalize to integers
#define Z12(I) ZP(12, I)
#define Z4(I) ZP(4, I)
#define Z2(I) ZP(2, I)
#define Z1(I) ZP(1, I)
#define Z0(I) ZP(0, I)
// calculate factors
const float cr_old = delta_calibration_radius;
if (_7p_9_center) delta_calibration_radius *= 0.9;
h_factor = auto_tune_h();
r_factor = auto_tune_r();
a_factor = auto_tune_a();
delta_calibration_radius = cr_old;
switch (probe_points) {
case -1:
#if HAS_BED_PROBE && HAS_LCD_MENU
zprobe_zoffset += probe_z_shift(z_at_pt[CEN]);
#endif
case 0:
test_precision = 0.00; // forced end
break;
case 1:
test_precision = 0.00; // forced end
LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);
break;
case 2:
if (towers_set) { // see 4 point calibration (towers) matrix
e_delta[A_AXIS] = (+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN);
e_delta[B_AXIS] = (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN);
e_delta[C_AXIS] = (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN);
r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;
}
else { // see 4 point calibration (opposites) matrix
e_delta[A_AXIS] = (-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN);
e_delta[B_AXIS] = (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN);
e_delta[C_AXIS] = (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN);
r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;
}
break;
default: // see 7 point calibration (towers & opposites) matrix
e_delta[A_AXIS] = (+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN);
e_delta[B_AXIS] = (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN);
e_delta[C_AXIS] = (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN);
r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;
if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix
t_delta[A_AXIS] = (+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor;
t_delta[B_AXIS] = (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor;
t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor;
}
break;
}
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
delta_radius += r_delta;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
}
else if (zero_std_dev >= test_precision) {
// roll back
COPY(delta_endstop_adj, e_old);
delta_radius = r_old;
delta_height = h_old;
COPY(delta_tower_angle_trim, a_old);
}
if (verbose_level != 0) { // !dry run
// Normalize angles to least-squares
if (_angle_results) {
float a_sum = 0.0;
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
}
// adjust delta_height and endstops by the max amount
const float z_temp = MAX(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
delta_height -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
}
recalc_delta_settings();
NOMORE(zero_std_dev_min, zero_std_dev);
// print report
if (verbose_level == 3)
print_calibration_results(z_at_pt, _tower_results, _opposite_results);
if (verbose_level != 0) { // !dry run
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
SERIAL_ECHOPGM("Calibration OK");
SERIAL_ECHO_SP(32);
#if HAS_BED_PROBE
if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)
SERIAL_ECHOPGM("rolling back.");
else
#endif
{
SERIAL_ECHOPAIR_F("std dev:", zero_std_dev_min, 3);
}
SERIAL_EOL();
char mess[21];
strcpy_P(mess, PSTR("Calibration sd:"));
if (zero_std_dev_min < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev_min * 1000.0));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev_min));
ui.set_status(mess);
print_calibration_settings(_endstop_results, _angle_results);
serialprintPGM(save_message);
SERIAL_EOL();
}
else { // !end iterations
char mess[15];
if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
else
strcpy_P(mess, PSTR("No convergence"));
SERIAL_ECHO(mess);
SERIAL_ECHO_SP(32);
SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
ui.set_status(mess);
if (verbose_level > 1)
print_calibration_settings(_endstop_results, _angle_results);
}
}
else { // dry run
PGM_P enddryrun = PSTR("End DRY-RUN");
serialprintPGM(enddryrun);
SERIAL_ECHO_SP(35);
SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
char mess[21];
strcpy_P(mess, enddryrun);
strcpy_P(&mess[11], PSTR(" sd:"));
if (zero_std_dev < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev * 1000.0));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev));
ui.set_status(mess);
}
ac_home();
}
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
AC_CLEANUP();
}
#endif // DELTA_AUTO_CALIBRATION