/** * stepper.cpp - stepper motor driver: executes motion plans using stepper motors * Marlin Firmware * * Derived from Grbl * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Grbl is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Grbl is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Grbl. If not, see <http://www.gnu.org/licenses/>. */ /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith and Philipp Tiefenbacher. */ #include "Marlin.h" #include "stepper.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #include "cardreader.h" #include "speed_lookuptable.h" #if HAS_DIGIPOTSS #include <SPI.h> #endif //=========================================================================== //============================= public variables ============================ //=========================================================================== block_t *current_block; // A pointer to the block currently being traced //=========================================================================== //============================= private variables =========================== //=========================================================================== //static makes it impossible to be called from outside of this file by extern.! // Variables used by The Stepper Driver Interrupt static unsigned char out_bits = 0; // The next stepping-bits to be output static unsigned int cleaning_buffer_counter; #if ENABLED(Z_DUAL_ENDSTOPS) static bool performing_homing = false, locked_z_motor = false, locked_z2_motor = false; #endif // Counter variables for the Bresenham line tracer static long counter_x, counter_y, counter_z, counter_e; volatile static unsigned long step_events_completed; // The number of step events executed in the current block #if ENABLED(ADVANCE) static long advance_rate, advance, final_advance = 0; static long old_advance = 0; static long e_steps[4]; #endif static long acceleration_time, deceleration_time; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; static unsigned short acc_step_rate; // needed for deceleration start point static char step_loops; static unsigned short OCR1A_nominal; static unsigned short step_loops_nominal; volatile long endstops_trigsteps[3] = { 0 }; volatile long endstops_stepsTotal, endstops_stepsDone; static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value #if DISABLED(Z_DUAL_ENDSTOPS) static byte #else static uint16_t #endif old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) bool abort_on_endstop_hit = false; #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT; #endif static bool check_endstops = true; volatile long count_position[NUM_AXIS] = { 0 }; volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; //=========================================================================== //================================ functions ================================ //=========================================================================== #if ENABLED(DUAL_X_CARRIAGE) #define X_APPLY_DIR(v,ALWAYS) \ if (extruder_duplication_enabled || ALWAYS) { \ X_DIR_WRITE(v); \ X2_DIR_WRITE(v); \ } \ else { \ if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \ } #define X_APPLY_STEP(v,ALWAYS) \ if (extruder_duplication_enabled || ALWAYS) { \ X_STEP_WRITE(v); \ X2_STEP_WRITE(v); \ } \ else { \ if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \ } #else #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v) #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v) #endif #if ENABLED(Y_DUAL_STEPPER_DRIVERS) #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); } #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); } #else #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v) #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v) #endif #if ENABLED(Z_DUAL_STEPPER_DRIVERS) #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); } #if ENABLED(Z_DUAL_ENDSTOPS) #define Z_APPLY_STEP(v,Q) \ if (performing_homing) { \ if (Z_HOME_DIR > 0) {\ if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ } else {\ if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ } \ } else { \ Z_STEP_WRITE(v); \ Z2_STEP_WRITE(v); \ } #else #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); } #endif #else #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v) #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v) #endif #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v) // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result #define MultiU16X8toH16(intRes, charIn1, intIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %A1, %A2 \n\t" \ "add %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r0 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (charIn1), \ "d" (intIn2) \ : \ "r26" \ ) // intRes = longIn1 * longIn2 >> 24 // uses: // r26 to store 0 // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result. // note that the lower two bytes and the upper byte of the 48bit result are not calculated. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones. // B0 A0 are bits 24-39 and are the returned value // C1 B1 A1 is longIn1 // D2 C2 B2 A2 is longIn2 // #define MultiU24X32toH16(intRes, longIn1, longIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "mov r27, r1 \n\t" \ "mul %B1, %C2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %C1, %C2 \n\t" \ "add %B0, r0 \n\t" \ "mul %C1, %B2 \n\t" \ "add %A0, r0 \n\t" \ "adc %B0, r1 \n\t" \ "mul %A1, %C2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %B2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %C1, %A2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %A2 \n\t" \ "add r27, r1 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r27 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "mul %D2, %A1 \n\t" \ "add %A0, r0 \n\t" \ "adc %B0, r1 \n\t" \ "mul %D2, %B1 \n\t" \ "add %B0, r0 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (longIn1), \ "d" (longIn2) \ : \ "r26" , "r27" \ ) // Some useful constants #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A) void endstops_hit_on_purpose() { endstop_hit_bits = 0; } void checkHitEndstops() { if (endstop_hit_bits) { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); if (endstop_hit_bits & BIT(X_MIN)) { SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X"); } if (endstop_hit_bits & BIT(Y_MIN)) { SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y"); } if (endstop_hit_bits & BIT(Z_MIN)) { SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z"); } #if ENABLED(Z_MIN_PROBE_ENDSTOP) if (endstop_hit_bits & BIT(Z_PROBE)) { SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP"); } #endif SERIAL_EOL; endstops_hit_on_purpose(); #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT) if (abort_on_endstop_hit) { card.sdprinting = false; card.closefile(); quickStop(); disable_all_heaters(); // switch off all heaters. } #endif } } void enable_endstops(bool check) { check_endstops = check; } // Check endstops inline void update_endstops() { #if ENABLED(Z_DUAL_ENDSTOPS) uint16_t #else byte #endif current_endstop_bits = 0; #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING #define _AXIS(AXIS) AXIS ##_AXIS #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN)) #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX))) // COPY_BIT: copy the value of COPY_BIT to BIT in bits #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT)) // TEST_ENDSTOP: test the old and the current status of an endstop #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP)) #define UPDATE_ENDSTOP(AXIS,MINMAX) \ SET_ENDSTOP_BIT(AXIS, MINMAX); \ if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \ endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \ _ENDSTOP_HIT(AXIS); \ step_events_completed = current_block->step_event_count; \ } #if ENABLED(COREXY) // Head direction in -X axis for CoreXY bots. // If DeltaX == -DeltaY, the movement is only in Y axis if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) { if (TEST(out_bits, X_HEAD)) #elif ENABLED(COREXZ) // Head direction in -X axis for CoreXZ bots. // If DeltaX == -DeltaZ, the movement is only in Z axis if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) { if (TEST(out_bits, X_HEAD)) #else if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot) #endif { // -direction #if ENABLED(DUAL_X_CARRIAGE) // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) #endif { #if HAS_X_MIN UPDATE_ENDSTOP(X, MIN); #endif } } else { // +direction #if ENABLED(DUAL_X_CARRIAGE) // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1)) #endif { #if HAS_X_MAX UPDATE_ENDSTOP(X, MAX); #endif } } #if ENABLED(COREXY) || ENABLED(COREXZ) } #endif #if ENABLED(COREXY) // Head direction in -Y axis for CoreXY bots. // If DeltaX == DeltaY, the movement is only in X axis if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) { if (TEST(out_bits, Y_HEAD)) #else if (TEST(out_bits, Y_AXIS)) // -direction #endif { // -direction #if HAS_Y_MIN UPDATE_ENDSTOP(Y, MIN); #endif } else { // +direction #if HAS_Y_MAX UPDATE_ENDSTOP(Y, MAX); #endif } #if ENABLED(COREXY) } #endif #if ENABLED(COREXZ) // Head direction in -Z axis for CoreXZ bots. // If DeltaX == DeltaZ, the movement is only in X axis if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) { if (TEST(out_bits, Z_HEAD)) #else if (TEST(out_bits, Z_AXIS)) #endif { // z -direction #if HAS_Z_MIN #if ENABLED(Z_DUAL_ENDSTOPS) SET_ENDSTOP_BIT(Z, MIN); #if HAS_Z2_MIN SET_ENDSTOP_BIT(Z2, MIN); #else COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN); #endif byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2 if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_hit_bits |= BIT(Z_MIN); if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... step_events_completed = current_block->step_event_count; } #else // !Z_DUAL_ENDSTOPS UPDATE_ENDSTOP(Z, MIN); #endif // !Z_DUAL_ENDSTOPS #endif // Z_MIN_PIN #if ENABLED(Z_MIN_PROBE_ENDSTOP) UPDATE_ENDSTOP(Z, PROBE); if (TEST_ENDSTOP(Z_PROBE)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_hit_bits |= BIT(Z_PROBE); } #endif } else { // z +direction #if HAS_Z_MAX #if ENABLED(Z_DUAL_ENDSTOPS) SET_ENDSTOP_BIT(Z, MAX); #if HAS_Z2_MAX SET_ENDSTOP_BIT(Z2, MAX); #else COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX); #endif byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2 if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_hit_bits |= BIT(Z_MIN); if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... step_events_completed = current_block->step_event_count; } #else // !Z_DUAL_ENDSTOPS UPDATE_ENDSTOP(Z, MAX); #endif // !Z_DUAL_ENDSTOPS #endif // Z_MAX_PIN } #if ENABLED(COREXZ) } #endif old_endstop_bits = current_endstop_bits; } // __________________________ // /| |\ _________________ ^ // / | | \ /| |\ | // / | | \ / | | \ s // / | | | | | \ p // / | | | | | \ e // +-----+------------------------+---+--+---------------+----+ e // | BLOCK 1 | BLOCK 2 | d // // time -----> // // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates // first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far. void st_wake_up() { // TCNT1 = 0; ENABLE_STEPPER_DRIVER_INTERRUPT(); } FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2) & 0x3fff; step_loops = 4; } else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate = (step_rate >> 1) & 0x7fff; step_loops = 2; } else { step_loops = 1; } if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000); step_rate -= (F_CPU / 500000); // Correct for minimal speed if (step_rate >= (8 * 256)) { // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); MultiU16X8toH16(timer, tmp_step_rate, gain); timer = (unsigned short)pgm_read_word_near(table_address) - timer; } else { // lower step rates unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; table_address += ((step_rate)>>1) & 0xfffc; timer = (unsigned short)pgm_read_word_near(table_address); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); } if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen) return timer; } /** * Set the stepper direction of each axis * * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ */ void set_stepper_direction() { if (TEST(out_bits, X_AXIS)) { // A_AXIS X_APPLY_DIR(INVERT_X_DIR, 0); count_direction[X_AXIS] = -1; } else { X_APPLY_DIR(!INVERT_X_DIR, 0); count_direction[X_AXIS] = 1; } if (TEST(out_bits, Y_AXIS)) { // B_AXIS Y_APPLY_DIR(INVERT_Y_DIR, 0); count_direction[Y_AXIS] = -1; } else { Y_APPLY_DIR(!INVERT_Y_DIR, 0); count_direction[Y_AXIS] = 1; } if (TEST(out_bits, Z_AXIS)) { // C_AXIS Z_APPLY_DIR(INVERT_Z_DIR, 0); count_direction[Z_AXIS] = -1; } else { Z_APPLY_DIR(!INVERT_Z_DIR, 0); count_direction[Z_AXIS] = 1; } #if DISABLED(ADVANCE) if (TEST(out_bits, E_AXIS)) { REV_E_DIR(); count_direction[E_AXIS] = -1; } else { NORM_E_DIR(); count_direction[E_AXIS] = 1; } #endif //!ADVANCE } // Initializes the trapezoid generator from the current block. Called whenever a new // block begins. FORCE_INLINE void trapezoid_generator_reset() { if (current_block->direction_bits != out_bits) { out_bits = current_block->direction_bits; set_stepper_direction(); } #if ENABLED(ADVANCE) advance = current_block->initial_advance; final_advance = current_block->final_advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); old_advance = advance >>8; #endif deceleration_time = 0; // step_rate to timer interval OCR1A_nominal = calc_timer(current_block->nominal_rate); // make a note of the number of step loops required at nominal speed step_loops_nominal = step_loops; acc_step_rate = current_block->initial_rate; acceleration_time = calc_timer(acc_step_rate); OCR1A = acceleration_time; // SERIAL_ECHO_START; // SERIAL_ECHOPGM("advance :"); // SERIAL_ECHO(current_block->advance/256.0); // SERIAL_ECHOPGM("advance rate :"); // SERIAL_ECHO(current_block->advance_rate/256.0); // SERIAL_ECHOPGM("initial advance :"); // SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOLN(current_block->final_advance/256.0); } // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) { if (cleaning_buffer_counter) { current_block = NULL; plan_discard_current_block(); #ifdef SD_FINISHED_RELEASECOMMAND if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); #endif cleaning_buffer_counter--; OCR1A = 200; return; } // If there is no current block, attempt to pop one from the buffer if (!current_block) { // Anything in the buffer? current_block = plan_get_current_block(); if (current_block) { current_block->busy = true; trapezoid_generator_reset(); counter_x = -(current_block->step_event_count >> 1); counter_y = counter_z = counter_e = counter_x; step_events_completed = 0; #if ENABLED(Z_LATE_ENABLE) if (current_block->steps[Z_AXIS] > 0) { enable_z(); OCR1A = 2000; //1ms wait return; } #endif // #if ENABLED(ADVANCE) // e_steps[current_block->active_extruder] = 0; // #endif } else { OCR1A = 2000; // 1kHz. } } if (current_block != NULL) { // Update endstops state, if enabled if (check_endstops) update_endstops(); // Take multiple steps per interrupt (For high speed moves) for (int8_t i = 0; i < step_loops; i++) { #ifndef USBCON customizedSerial.checkRx(); // Check for serial chars. #endif #if ENABLED(ADVANCE) counter_e += current_block->steps[E_AXIS]; if (counter_e > 0) { counter_e -= current_block->step_event_count; e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1; } #endif //ADVANCE #define _COUNTER(axis) counter_## axis #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN #define STEP_ADD(axis, AXIS) \ _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \ if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); } STEP_ADD(x,X); STEP_ADD(y,Y); STEP_ADD(z,Z); #if DISABLED(ADVANCE) STEP_ADD(e,E); #endif #define STEP_IF_COUNTER(axis, AXIS) \ if (_COUNTER(axis) > 0) { \ _COUNTER(axis) -= current_block->step_event_count; \ count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \ } STEP_IF_COUNTER(x, X); STEP_IF_COUNTER(y, Y); STEP_IF_COUNTER(z, Z); #if DISABLED(ADVANCE) STEP_IF_COUNTER(e, E); #endif step_events_completed++; if (step_events_completed >= current_block->step_event_count) break; } // Calculate new timer value unsigned short timer; unsigned short step_rate; if (step_events_completed <= (unsigned long)current_block->accelerate_until) { MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); acc_step_rate += current_block->initial_rate; // upper limit if (acc_step_rate > current_block->nominal_rate) acc_step_rate = current_block->nominal_rate; // step_rate to timer interval timer = calc_timer(acc_step_rate); OCR1A = timer; acceleration_time += timer; #if ENABLED(ADVANCE) for(int8_t i=0; i < step_loops; i++) { advance += advance_rate; } //if (advance > current_block->advance) advance = current_block->advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); old_advance = advance >>8; #endif } else if (step_events_completed > (unsigned long)current_block->decelerate_after) { MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate); if (step_rate > acc_step_rate) { // Check step_rate stays positive step_rate = current_block->final_rate; } else { step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point. } // lower limit if (step_rate < current_block->final_rate) step_rate = current_block->final_rate; // step_rate to timer interval timer = calc_timer(step_rate); OCR1A = timer; deceleration_time += timer; #if ENABLED(ADVANCE) for(int8_t i=0; i < step_loops; i++) { advance -= advance_rate; } if (advance < final_advance) advance = final_advance; // Do E steps + advance steps e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); old_advance = advance >>8; #endif //ADVANCE } else { OCR1A = OCR1A_nominal; // ensure we're running at the correct step rate, even if we just came off an acceleration step_loops = step_loops_nominal; } // If current block is finished, reset pointer if (step_events_completed >= current_block->step_event_count) { current_block = NULL; plan_discard_current_block(); } } } #if ENABLED(ADVANCE) unsigned char old_OCR0A; // Timer interrupt for E. e_steps is set in the main routine; // Timer 0 is shared with millies ISR(TIMER0_COMPA_vect) { old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz) OCR0A = old_OCR0A; // Set E direction (Depends on E direction + advance) for(unsigned char i=0; i<4;i++) { if (e_steps[0] != 0) { E0_STEP_WRITE(INVERT_E_STEP_PIN); if (e_steps[0] < 0) { E0_DIR_WRITE(INVERT_E0_DIR); e_steps[0]++; E0_STEP_WRITE(!INVERT_E_STEP_PIN); } else if (e_steps[0] > 0) { E0_DIR_WRITE(!INVERT_E0_DIR); e_steps[0]--; E0_STEP_WRITE(!INVERT_E_STEP_PIN); } } #if EXTRUDERS > 1 if (e_steps[1] != 0) { E1_STEP_WRITE(INVERT_E_STEP_PIN); if (e_steps[1] < 0) { E1_DIR_WRITE(INVERT_E1_DIR); e_steps[1]++; E1_STEP_WRITE(!INVERT_E_STEP_PIN); } else if (e_steps[1] > 0) { E1_DIR_WRITE(!INVERT_E1_DIR); e_steps[1]--; E1_STEP_WRITE(!INVERT_E_STEP_PIN); } } #endif #if EXTRUDERS > 2 if (e_steps[2] != 0) { E2_STEP_WRITE(INVERT_E_STEP_PIN); if (e_steps[2] < 0) { E2_DIR_WRITE(INVERT_E2_DIR); e_steps[2]++; E2_STEP_WRITE(!INVERT_E_STEP_PIN); } else if (e_steps[2] > 0) { E2_DIR_WRITE(!INVERT_E2_DIR); e_steps[2]--; E2_STEP_WRITE(!INVERT_E_STEP_PIN); } } #endif #if EXTRUDERS > 3 if (e_steps[3] != 0) { E3_STEP_WRITE(INVERT_E_STEP_PIN); if (e_steps[3] < 0) { E3_DIR_WRITE(INVERT_E3_DIR); e_steps[3]++; E3_STEP_WRITE(!INVERT_E_STEP_PIN); } else if (e_steps[3] > 0) { E3_DIR_WRITE(!INVERT_E3_DIR); e_steps[3]--; E3_STEP_WRITE(!INVERT_E_STEP_PIN); } } #endif } } #endif // ADVANCE void st_init() { digipot_init(); //Initialize Digipot Motor Current microstep_init(); //Initialize Microstepping Pins // initialise TMC Steppers #if ENABLED(HAVE_TMCDRIVER) tmc_init(); #endif // initialise L6470 Steppers #if ENABLED(HAVE_L6470DRIVER) L6470_init(); #endif // Initialize Dir Pins #if HAS_X_DIR X_DIR_INIT; #endif #if HAS_X2_DIR X2_DIR_INIT; #endif #if HAS_Y_DIR Y_DIR_INIT; #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR Y2_DIR_INIT; #endif #endif #if HAS_Z_DIR Z_DIR_INIT; #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR Z2_DIR_INIT; #endif #endif #if HAS_E0_DIR E0_DIR_INIT; #endif #if HAS_E1_DIR E1_DIR_INIT; #endif #if HAS_E2_DIR E2_DIR_INIT; #endif #if HAS_E3_DIR E3_DIR_INIT; #endif //Initialize Enable Pins - steppers default to disabled. #if HAS_X_ENABLE X_ENABLE_INIT; if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH); #endif #if HAS_X2_ENABLE X2_ENABLE_INIT; if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH); #endif #if HAS_Y_ENABLE Y_ENABLE_INIT; if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE Y2_ENABLE_INIT; if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); #endif #endif #if HAS_Z_ENABLE Z_ENABLE_INIT; if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH); #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE Z2_ENABLE_INIT; if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH); #endif #endif #if HAS_E0_ENABLE E0_ENABLE_INIT; if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH); #endif #if HAS_E1_ENABLE E1_ENABLE_INIT; if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH); #endif #if HAS_E2_ENABLE E2_ENABLE_INIT; if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH); #endif #if HAS_E3_ENABLE E3_ENABLE_INIT; if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); #endif //endstops and pullups #if HAS_X_MIN SET_INPUT(X_MIN_PIN); #if ENABLED(ENDSTOPPULLUP_XMIN) WRITE(X_MIN_PIN,HIGH); #endif #endif #if HAS_Y_MIN SET_INPUT(Y_MIN_PIN); #if ENABLED(ENDSTOPPULLUP_YMIN) WRITE(Y_MIN_PIN,HIGH); #endif #endif #if HAS_Z_MIN SET_INPUT(Z_MIN_PIN); #if ENABLED(ENDSTOPPULLUP_ZMIN) WRITE(Z_MIN_PIN,HIGH); #endif #endif #if HAS_X_MAX SET_INPUT(X_MAX_PIN); #if ENABLED(ENDSTOPPULLUP_XMAX) WRITE(X_MAX_PIN,HIGH); #endif #endif #if HAS_Y_MAX SET_INPUT(Y_MAX_PIN); #if ENABLED(ENDSTOPPULLUP_YMAX) WRITE(Y_MAX_PIN,HIGH); #endif #endif #if HAS_Z_MAX SET_INPUT(Z_MAX_PIN); #if ENABLED(ENDSTOPPULLUP_ZMAX) WRITE(Z_MAX_PIN,HIGH); #endif #endif #if HAS_Z2_MAX SET_INPUT(Z2_MAX_PIN); #if ENABLED(ENDSTOPPULLUP_ZMAX) WRITE(Z2_MAX_PIN,HIGH); #endif #endif #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used. SET_INPUT(Z_MIN_PROBE_PIN); #if ENABLED(ENDSTOPPULLUP_ZPROBE) WRITE(Z_MIN_PROBE_PIN,HIGH); #endif #endif #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW) #define _DISABLE(axis) disable_## axis() #define AXIS_INIT(axis, AXIS, PIN) \ _STEP_INIT(AXIS); \ _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \ _DISABLE(axis) #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E) // Initialize Step Pins #if HAS_X_STEP AXIS_INIT(x, X, X); #endif #if HAS_X2_STEP AXIS_INIT(x, X2, X); #endif #if HAS_Y_STEP #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP Y2_STEP_INIT; Y2_STEP_WRITE(INVERT_Y_STEP_PIN); #endif AXIS_INIT(y, Y, Y); #endif #if HAS_Z_STEP #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP Z2_STEP_INIT; Z2_STEP_WRITE(INVERT_Z_STEP_PIN); #endif AXIS_INIT(z, Z, Z); #endif #if HAS_E0_STEP E_AXIS_INIT(0); #endif #if HAS_E1_STEP E_AXIS_INIT(1); #endif #if HAS_E2_STEP E_AXIS_INIT(2); #endif #if HAS_E3_STEP E_AXIS_INIT(3); #endif // waveform generation = 0100 = CTC TCCR1B &= ~BIT(WGM13); TCCR1B |= BIT(WGM12); TCCR1A &= ~BIT(WGM11); TCCR1A &= ~BIT(WGM10); // output mode = 00 (disconnected) TCCR1A &= ~(3<<COM1A0); TCCR1A &= ~(3<<COM1B0); // Set the timer pre-scaler // Generally we use a divider of 8, resulting in a 2MHz timer // frequency on a 16MHz MCU. If you are going to change this, be // sure to regenerate speed_lookuptable.h with // create_speed_lookuptable.py TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); OCR1A = 0x4000; TCNT1 = 0; ENABLE_STEPPER_DRIVER_INTERRUPT(); #if ENABLED(ADVANCE) #if defined(TCCR0A) && defined(WGM01) TCCR0A &= ~BIT(WGM01); TCCR0A &= ~BIT(WGM00); #endif e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0; TIMSK0 |= BIT(OCIE0A); #endif //ADVANCE enable_endstops(true); // Start with endstops active. After homing they can be disabled sei(); set_stepper_direction(); // Init directions to out_bits = 0 } /** * Block until all buffered steps are executed */ void st_synchronize() { while (blocks_queued()) idle(); } void st_set_position(const long &x, const long &y, const long &z, const long &e) { CRITICAL_SECTION_START; count_position[X_AXIS] = x; count_position[Y_AXIS] = y; count_position[Z_AXIS] = z; count_position[E_AXIS] = e; CRITICAL_SECTION_END; } void st_set_e_position(const long &e) { CRITICAL_SECTION_START; count_position[E_AXIS] = e; CRITICAL_SECTION_END; } long st_get_position(uint8_t axis) { long count_pos; CRITICAL_SECTION_START; count_pos = count_position[axis]; CRITICAL_SECTION_END; return count_pos; } float st_get_position_mm(AxisEnum axis) { return st_get_position(axis) / axis_steps_per_unit[axis]; } void finishAndDisableSteppers() { st_synchronize(); disable_all_steppers(); } void quickStop() { cleaning_buffer_counter = 5000; DISABLE_STEPPER_DRIVER_INTERRUPT(); while (blocks_queued()) plan_discard_current_block(); current_block = NULL; ENABLE_STEPPER_DRIVER_INTERRUPT(); } #if ENABLED(BABYSTEPPING) // MUST ONLY BE CALLED BY AN ISR, // No other ISR should ever interrupt this! void babystep(const uint8_t axis, const bool direction) { #define _ENABLE(axis) enable_## axis() #define _READ_DIR(AXIS) AXIS ##_DIR_READ #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true) #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \ _ENABLE(axis); \ uint8_t old_pin = _READ_DIR(AXIS); \ _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \ _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \ delayMicroseconds(2); \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \ _APPLY_DIR(AXIS, old_pin); \ } switch(axis) { case X_AXIS: BABYSTEP_AXIS(x, X, false); break; case Y_AXIS: BABYSTEP_AXIS(y, Y, false); break; case Z_AXIS: { #if DISABLED(DELTA) BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z); #else // DELTA bool z_direction = direction ^ BABYSTEP_INVERT_Z; enable_x(); enable_y(); enable_z(); uint8_t old_x_dir_pin = X_DIR_READ, old_y_dir_pin = Y_DIR_READ, old_z_dir_pin = Z_DIR_READ; //setup new step X_DIR_WRITE(INVERT_X_DIR^z_direction); Y_DIR_WRITE(INVERT_Y_DIR^z_direction); Z_DIR_WRITE(INVERT_Z_DIR^z_direction); //perform step X_STEP_WRITE(!INVERT_X_STEP_PIN); Y_STEP_WRITE(!INVERT_Y_STEP_PIN); Z_STEP_WRITE(!INVERT_Z_STEP_PIN); delayMicroseconds(2); X_STEP_WRITE(INVERT_X_STEP_PIN); Y_STEP_WRITE(INVERT_Y_STEP_PIN); Z_STEP_WRITE(INVERT_Z_STEP_PIN); //get old pin state back. X_DIR_WRITE(old_x_dir_pin); Y_DIR_WRITE(old_y_dir_pin); Z_DIR_WRITE(old_z_dir_pin); #endif } break; default: break; } } #endif //BABYSTEPPING // From Arduino DigitalPotControl example void digitalPotWrite(int address, int value) { #if HAS_DIGIPOTSS digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip SPI.transfer(address); // send in the address and value via SPI: SPI.transfer(value); digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip: //delay(10); #endif } // Initialize Digipot Motor Current void digipot_init() { #if HAS_DIGIPOTSS const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; SPI.begin(); pinMode(DIGIPOTSS_PIN, OUTPUT); for (int i = 0; i <= 4; i++) { //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); digipot_current(i,digipot_motor_current[i]); } #endif #ifdef MOTOR_CURRENT_PWM_XY_PIN pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT); pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT); pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT); digipot_current(0, motor_current_setting[0]); digipot_current(1, motor_current_setting[1]); digipot_current(2, motor_current_setting[2]); //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise) TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50); #endif } void digipot_current(uint8_t driver, int current) { #if HAS_DIGIPOTSS const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; digitalPotWrite(digipot_ch[driver], current); #endif #ifdef MOTOR_CURRENT_PWM_XY_PIN switch(driver) { case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; } #endif } void microstep_init() { #if HAS_MICROSTEPS_E1 pinMode(E1_MS1_PIN,OUTPUT); pinMode(E1_MS2_PIN,OUTPUT); #endif #if HAS_MICROSTEPS pinMode(X_MS1_PIN,OUTPUT); pinMode(X_MS2_PIN,OUTPUT); pinMode(Y_MS1_PIN,OUTPUT); pinMode(Y_MS2_PIN,OUTPUT); pinMode(Z_MS1_PIN,OUTPUT); pinMode(Z_MS2_PIN,OUTPUT); pinMode(E0_MS1_PIN,OUTPUT); pinMode(E0_MS2_PIN,OUTPUT); const uint8_t microstep_modes[] = MICROSTEP_MODES; for (uint16_t i = 0; i < COUNT(microstep_modes); i++) microstep_mode(i, microstep_modes[i]); #endif } void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) { if (ms1 >= 0) switch(driver) { case 0: digitalWrite(X_MS1_PIN, ms1); break; case 1: digitalWrite(Y_MS1_PIN, ms1); break; case 2: digitalWrite(Z_MS1_PIN, ms1); break; case 3: digitalWrite(E0_MS1_PIN, ms1); break; #if HAS_MICROSTEPS_E1 case 4: digitalWrite(E1_MS1_PIN, ms1); break; #endif } if (ms2 >= 0) switch(driver) { case 0: digitalWrite(X_MS2_PIN, ms2); break; case 1: digitalWrite(Y_MS2_PIN, ms2); break; case 2: digitalWrite(Z_MS2_PIN, ms2); break; case 3: digitalWrite(E0_MS2_PIN, ms2); break; #if PIN_EXISTS(E1_MS2) case 4: digitalWrite(E1_MS2_PIN, ms2); break; #endif } } void microstep_mode(uint8_t driver, uint8_t stepping_mode) { switch(stepping_mode) { case 1: microstep_ms(driver,MICROSTEP1); break; case 2: microstep_ms(driver,MICROSTEP2); break; case 4: microstep_ms(driver,MICROSTEP4); break; case 8: microstep_ms(driver,MICROSTEP8); break; case 16: microstep_ms(driver,MICROSTEP16); break; } } void microstep_readings() { SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n"); SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOL(digitalRead(X_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN)); SERIAL_PROTOCOLPGM("Y: "); SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN)); SERIAL_PROTOCOLPGM("Z: "); SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN)); SERIAL_PROTOCOLPGM("E0: "); SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN)); #if HAS_MICROSTEPS_E1 SERIAL_PROTOCOLPGM("E1: "); SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN)); #endif } #if ENABLED(Z_DUAL_ENDSTOPS) void In_Homing_Process(bool state) { performing_homing = state; } void Lock_z_motor(bool state) { locked_z_motor = state; } void Lock_z2_motor(bool state) { locked_z2_motor = state; } #endif