/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../inc/MarlinConfigPre.h" #if ENABLED(BACKLASH_COMPENSATION) #include "backlash.h" #include "../module/motion.h" #include "../module/planner.h" axis_bits_t Backlash::last_direction_bits; xyz_long_t Backlash::residual_error{0}; #ifdef BACKLASH_DISTANCE_MM #if ENABLED(BACKLASH_GCODE) xyz_float_t Backlash::distance_mm = BACKLASH_DISTANCE_MM; #else const xyz_float_t Backlash::distance_mm = BACKLASH_DISTANCE_MM; #endif #endif #if ENABLED(BACKLASH_GCODE) uint8_t Backlash::correction = (BACKLASH_CORRECTION) * all_on; #ifdef BACKLASH_SMOOTHING_MM float Backlash::smoothing_mm = BACKLASH_SMOOTHING_MM; #endif #endif #if ENABLED(MEASURE_BACKLASH_WHEN_PROBING) xyz_float_t Backlash::measured_mm{0}; xyz_uint8_t Backlash::measured_count{0}; #endif Backlash backlash; /** * To minimize seams in the printed part, backlash correction only adds * steps to the current segment (instead of creating a new segment, which * causes discontinuities and print artifacts). * * With a non-zero BACKLASH_SMOOTHING_MM value the backlash correction is * spread over multiple segments, smoothing out artifacts even more. */ void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const int32_t &dc, const axis_bits_t dm, block_t * const block) { axis_bits_t changed_dir = last_direction_bits ^ dm; // Ignore direction change unless steps are taken in that direction #if DISABLED(CORE_BACKLASH) || EITHER(MARKFORGED_XY, MARKFORGED_YX) if (!da) CBI(changed_dir, X_AXIS); if (!db) CBI(changed_dir, Y_AXIS); if (!dc) CBI(changed_dir, Z_AXIS); #elif CORE_IS_XY if (!(da + db)) CBI(changed_dir, X_AXIS); if (!(da - db)) CBI(changed_dir, Y_AXIS); if (!dc) CBI(changed_dir, Z_AXIS); #elif CORE_IS_XZ if (!(da + dc)) CBI(changed_dir, X_AXIS); if (!(da - dc)) CBI(changed_dir, Z_AXIS); if (!db) CBI(changed_dir, Y_AXIS); #elif CORE_IS_YZ if (!(db + dc)) CBI(changed_dir, Y_AXIS); if (!(db - dc)) CBI(changed_dir, Z_AXIS); if (!da) CBI(changed_dir, X_AXIS); #endif last_direction_bits ^= changed_dir; if (!correction && !residual_error) return; #ifdef BACKLASH_SMOOTHING_MM // The segment proportion is a value greater than 0.0 indicating how much residual_error // is corrected for in this segment. The contribution is based on segment length and the // smoothing distance. Since the computation of this proportion involves a floating point // division, defer computation until needed. float segment_proportion = 0; #endif const float f_corr = float(correction) / all_on; LOOP_LINEAR_AXES(axis) { if (distance_mm[axis]) { const bool reverse = TEST(dm, axis); // When an axis changes direction, add axis backlash to the residual error if (TEST(changed_dir, axis)) residual_error[axis] += (reverse ? -f_corr : f_corr) * distance_mm[axis] * planner.settings.axis_steps_per_mm[axis]; // Decide how much of the residual error to correct in this segment int32_t error_correction = residual_error[axis]; if (reverse != (error_correction < 0)) error_correction = 0; // Don't take up any backlash in this segment, as it would subtract steps #ifdef BACKLASH_SMOOTHING_MM if (error_correction && smoothing_mm != 0) { // Take up a portion of the residual_error in this segment if (segment_proportion == 0) segment_proportion = _MIN(1.0f, block->millimeters / smoothing_mm); error_correction = CEIL(segment_proportion * error_correction); } #endif // This correction reduces the residual error and adds block steps if (error_correction) { block->steps[axis] += ABS(error_correction); #if ENABLED(CORE_BACKLASH) switch (axis) { case CORE_AXIS_1: //block->steps[CORE_AXIS_2] += influence_distance_mm[axis] * planner.settings.axis_steps_per_mm[CORE_AXIS_2]; //SERIAL_ECHOLNPGM("CORE_AXIS_1 dir change. distance=", distance_mm[axis], " r.err=", residual_error[axis], // " da=", da, " db=", db, " block->steps[axis]=", block->steps[axis], " err_corr=", error_correction); break; case CORE_AXIS_2: //block->steps[CORE_AXIS_1] += influence_distance_mm[axis] * planner.settings.axis_steps_per_mm[CORE_AXIS_1];; //SERIAL_ECHOLNPGM("CORE_AXIS_2 dir change. distance=", distance_mm[axis], " r.err=", residual_error[axis], // " da=", da, " db=", db, " block->steps[axis]=", block->steps[axis], " err_corr=", error_correction); break; case NORMAL_AXIS: break; } residual_error[axis] = 0; // No residual_error needed for next CORE block, I think... #else residual_error[axis] -= error_correction; #endif } } } } int32_t Backlash::get_applied_steps(const AxisEnum axis) { if (axis >= LINEAR_AXES) return 0; const bool reverse = TEST(last_direction_bits, axis); const int32_t residual_error_axis = residual_error[axis]; // At startup it is assumed the last move was forwards. So the applied // steps will always be a non-positive number. if (!reverse) return -residual_error_axis; const float f_corr = float(correction) / all_on; const int32_t full_error_axis = -f_corr * distance_mm[axis] * planner.settings.axis_steps_per_mm[axis]; return full_error_axis - residual_error_axis; } class Backlash::StepAdjuster { xyz_long_t applied_steps; public: StepAdjuster() { LOOP_LINEAR_AXES(axis) applied_steps[axis] = backlash.get_applied_steps((AxisEnum)axis); } ~StepAdjuster() { // after backlash compensation parameter changes, ensure applied step count does not change LOOP_LINEAR_AXES(axis) residual_error[axis] += backlash.get_applied_steps((AxisEnum)axis) - applied_steps[axis]; } }; void Backlash::set_correction_uint8(const uint8_t v) { StepAdjuster adjuster; correction = v; } void Backlash::set_distance_mm(const AxisEnum axis, const float v) { StepAdjuster adjuster; distance_mm[axis] = v; } #ifdef BACKLASH_SMOOTHING_MM void Backlash::set_smoothing_mm(const float v) { StepAdjuster adjuster; smoothing_mm = v; } #endif #if ENABLED(MEASURE_BACKLASH_WHEN_PROBING) #include "../module/probe.h" // Measure Z backlash by raising nozzle in increments until probe deactivates void Backlash::measure_with_probe() { if (measured_count.z == 255) return; const float start_height = current_position.z; while (current_position.z < (start_height + BACKLASH_MEASUREMENT_LIMIT) && PROBE_TRIGGERED()) do_blocking_move_to_z(current_position.z + BACKLASH_MEASUREMENT_RESOLUTION, MMM_TO_MMS(BACKLASH_MEASUREMENT_FEEDRATE)); // The backlash from all probe points is averaged, so count the number of measurements measured_mm.z += current_position.z - start_height; measured_count.z++; } #endif #endif // BACKLASH_COMPENSATION