/**
 * Marlin 3D Printer Firmware
 * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#pragma once

/**
 * Configuration.h
 *
 * Basic settings such as:
 *
 * - Type of electronics
 * - Type of temperature sensor
 * - Printer geometry
 * - Endstop configuration
 * - LCD controller
 * - Extra features
 *
 * Advanced settings can be found in Configuration_adv.h
 *
 */
#define CONFIGURATION_H_VERSION 020000

//===========================================================================
//============================= Getting Started =============================
//===========================================================================

/**
 * Here are some standard links for getting your machine calibrated:
 *
 * http://reprap.org/wiki/Calibration
 * http://youtu.be/wAL9d7FgInk
 * http://calculator.josefprusa.cz
 * http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide
 * http://www.thingiverse.com/thing:5573
 * https://sites.google.com/site/repraplogphase/calibration-of-your-reprap
 * http://www.thingiverse.com/thing:298812
 */

//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer start with one of the configuration files in the
// config/examples/delta directory and customize for your machine.
//

//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a SCARA printer start with the configuration files in
// config/examples/SCARA and customize for your machine.
//

// @section info

// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_CONFIG_H_AUTHOR "(1138-4EB, Geeetech Prusa i3 Pro B BLTouch config)" // Who made the changes.
#define SHOW_BOOTSCREEN
#define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1
#define STRING_SPLASH_LINE2 WEBSITE_URL         // will be shown during bootup in line 2

/**
 * *** VENDORS PLEASE READ ***
 *
 * Marlin allows you to add a custom boot image for Graphical LCDs.
 * With this option Marlin will first show your custom screen followed
 * by the standard Marlin logo with version number and web URL.
 *
 * We encourage you to take advantage of this new feature and we also
 * respectfully request that you retain the unmodified Marlin boot screen.
 */

// Enable to show the bitmap in Marlin/_Bootscreen.h on startup.
//#define SHOW_CUSTOM_BOOTSCREEN

// Enable to show the bitmap in Marlin/_Statusscreen.h on the status screen.
//#define CUSTOM_STATUS_SCREEN_IMAGE

// @section machine

/**
 * Select the serial port on the board to use for communication with the host.
 * This allows the connection of wireless adapters (for instance) to non-default port pins.
 * Note: The first serial port (-1 or 0) will always be used by the Arduino bootloader.
 *
 * :[-1, 0, 1, 2, 3, 4, 5, 6, 7]
 */
#define SERIAL_PORT 0

/**
 * Select a secondary serial port on the board to use for communication with the host.
 * This allows the connection of wireless adapters (for instance) to non-default port pins.
 * Serial port -1 is the USB emulated serial port, if available.
 *
 * :[-1, 0, 1, 2, 3, 4, 5, 6, 7]
 */
//#define SERIAL_PORT_2 -1

/**
 * This setting determines the communication speed of the printer.
 *
 * 250000 works in most cases, but you might try a lower speed if
 * you commonly experience drop-outs during host printing.
 * You may try up to 1000000 to speed up SD file transfer.
 *
 * :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000]
 */
#define BAUDRATE 250000

// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH

// The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD
  #define MOTHERBOARD BOARD_GT2560_REV_A_PLUS
#endif

// Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message
#define CUSTOM_MACHINE_NAME "i3 Pro B"

// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"

// @section extruder

// This defines the number of extruders
// :[1, 2, 3, 4, 5, 6]
#define EXTRUDERS 1

// Generally expected filament diameter (1.75, 2.85, 3.0, ...). Used for Volumetric, Filament Width Sensor, etc.
#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75

// For Cyclops or any "multi-extruder" that shares a single nozzle.
//#define SINGLENOZZLE

/**
 * Průša MK2 Single Nozzle Multi-Material Multiplexer, and variants.
 *
 * This device allows one stepper driver on a control board to drive
 * two to eight stepper motors, one at a time, in a manner suitable
 * for extruders.
 *
 * This option only allows the multiplexer to switch on tool-change.
 * Additional options to configure custom E moves are pending.
 */
//#define MK2_MULTIPLEXER
#if ENABLED(MK2_MULTIPLEXER)
  // Override the default DIO selector pins here, if needed.
  // Some pins files may provide defaults for these pins.
  //#define E_MUX0_PIN 40  // Always Required
  //#define E_MUX1_PIN 42  // Needed for 3 to 8 inputs
  //#define E_MUX2_PIN 44  // Needed for 5 to 8 inputs
#endif

/**
 * Prusa Multi-Material Unit v2
 *
 * Requires NOZZLE_PARK_FEATURE to park print head in case MMU unit fails.
 * Requires EXTRUDERS = 5
 *
 * For additional configuration see Configuration_adv.h
 */
//#define PRUSA_MMU2

// A dual extruder that uses a single stepper motor
//#define SWITCHING_EXTRUDER
#if ENABLED(SWITCHING_EXTRUDER)
  #define SWITCHING_EXTRUDER_SERVO_NR 0
  #define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1[, E2, E3]
  #if EXTRUDERS > 3
    #define SWITCHING_EXTRUDER_E23_SERVO_NR 1
  #endif
#endif

// A dual-nozzle that uses a servomotor to raise/lower one (or both) of the nozzles
//#define SWITCHING_NOZZLE
#if ENABLED(SWITCHING_NOZZLE)
  #define SWITCHING_NOZZLE_SERVO_NR 0
  //#define SWITCHING_NOZZLE_E1_SERVO_NR 1          // If two servos are used, the index of the second
  #define SWITCHING_NOZZLE_SERVO_ANGLES { 0, 90 }   // Angles for E0, E1 (single servo) or lowered/raised (dual servo)
#endif

/**
 * Two separate X-carriages with extruders that connect to a moving part
 * via a solenoid docking mechanism. Requires SOL1_PIN and SOL2_PIN.
 */
//#define PARKING_EXTRUDER

/**
 * Two separate X-carriages with extruders that connect to a moving part
 * via a magnetic docking mechanism using movements and no solenoid
 *
 * project   : https://www.thingiverse.com/thing:3080893
 * movements : https://youtu.be/0xCEiG9VS3k
 *             https://youtu.be/Bqbcs0CU2FE
 */
//#define MAGNETIC_PARKING_EXTRUDER

#if EITHER(PARKING_EXTRUDER, MAGNETIC_PARKING_EXTRUDER)

  #define PARKING_EXTRUDER_PARKING_X { -78, 184 }     // X positions for parking the extruders
  #define PARKING_EXTRUDER_GRAB_DISTANCE 1            // (mm) Distance to move beyond the parking point to grab the extruder
  //#define MANUAL_SOLENOID_CONTROL                   // Manual control of docking solenoids with M380 S / M381

  #if ENABLED(PARKING_EXTRUDER)

    #define PARKING_EXTRUDER_SOLENOIDS_INVERT           // If enabled, the solenoid is NOT magnetized with applied voltage
    #define PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE LOW  // LOW or HIGH pin signal energizes the coil
    #define PARKING_EXTRUDER_SOLENOIDS_DELAY 250        // (ms) Delay for magnetic field. No delay if 0 or not defined.
    //#define MANUAL_SOLENOID_CONTROL                   // Manual control of docking solenoids with M380 S / M381

  #elif ENABLED(MAGNETIC_PARKING_EXTRUDER)

    #define MPE_FAST_SPEED      9000      // (mm/m) Speed for travel before last distance point
    #define MPE_SLOW_SPEED      4500      // (mm/m) Speed for last distance travel to park and couple
    #define MPE_TRAVEL_DISTANCE   10      // (mm) Last distance point
    #define MPE_COMPENSATION       0      // Offset Compensation -1 , 0 , 1 (multiplier) only for coupling

  #endif

#endif

/**
 * Switching Toolhead
 *
 * Support for swappable and dockable toolheads, such as
 * the E3D Tool Changer. Toolheads are locked with a servo.
 */
//#define SWITCHING_TOOLHEAD

/**
 * Magnetic Switching Toolhead
 *
 * Support swappable and dockable toolheads with a magnetic
 * docking mechanism using movement and no servo.
 */
//#define MAGNETIC_SWITCHING_TOOLHEAD

/**
 * Electromagnetic Switching Toolhead
 *
 * Parking for CoreXY / HBot kinematics.
 * Toolheads are parked at one edge and held with an electromagnet.
 * Supports more than 2 Toolheads. See https://youtu.be/JolbsAKTKf4
 */
//#define ELECTROMAGNETIC_SWITCHING_TOOLHEAD

#if ANY(SWITCHING_TOOLHEAD, MAGNETIC_SWITCHING_TOOLHEAD, ELECTROMAGNETIC_SWITCHING_TOOLHEAD)
  #define SWITCHING_TOOLHEAD_Y_POS          235         // (mm) Y position of the toolhead dock
  #define SWITCHING_TOOLHEAD_Y_SECURITY      10         // (mm) Security distance Y axis
  #define SWITCHING_TOOLHEAD_Y_CLEAR         60         // (mm) Minimum distance from dock for unobstructed X axis
  #define SWITCHING_TOOLHEAD_X_POS          { 215, 0 }  // (mm) X positions for parking the extruders
  #if ENABLED(SWITCHING_TOOLHEAD)
    #define SWITCHING_TOOLHEAD_SERVO_NR       2         // Index of the servo connector
    #define SWITCHING_TOOLHEAD_SERVO_ANGLES { 0, 180 }  // (degrees) Angles for Lock, Unlock
  #elif ENABLED(MAGNETIC_SWITCHING_TOOLHEAD)
    #define SWITCHING_TOOLHEAD_Y_RELEASE      5         // (mm) Security distance Y axis
    #define SWITCHING_TOOLHEAD_X_SECURITY   -35         // (mm) Security distance X axis
  #elif ENABLED(ELECTROMAGNETIC_SWITCHING_TOOLHEAD)
    #define SWITCHING_TOOLHEAD_Z_HOP          2         // (mm) Z raise for switching
  #endif
#endif

/**
 * "Mixing Extruder"
 *   - Adds G-codes M163 and M164 to set and "commit" the current mix factors.
 *   - Extends the stepping routines to move multiple steppers in proportion to the mix.
 *   - Optional support for Repetier Firmware's 'M164 S<index>' supporting virtual tools.
 *   - This implementation supports up to two mixing extruders.
 *   - Enable DIRECT_MIXING_IN_G1 for M165 and mixing in G1 (from Pia Taubert's reference implementation).
 */
//#define MIXING_EXTRUDER
#if ENABLED(MIXING_EXTRUDER)
  #define MIXING_STEPPERS 2        // Number of steppers in your mixing extruder
  #define MIXING_VIRTUAL_TOOLS 16  // Use the Virtual Tool method with M163 and M164
  //#define DIRECT_MIXING_IN_G1    // Allow ABCDHI mix factors in G1 movement commands
  //#define GRADIENT_MIX           // Support for gradient mixing with M166 and LCD
  #if ENABLED(GRADIENT_MIX)
    //#define GRADIENT_VTOOL       // Add M166 T to use a V-tool index as a Gradient alias
  #endif
#endif

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define HOTEND_OFFSET_X { 0.0, 20.00 } // (mm) relative X-offset for each nozzle
//#define HOTEND_OFFSET_Y { 0.0, 5.00 }  // (mm) relative Y-offset for each nozzle
//#define HOTEND_OFFSET_Z { 0.0, 0.00 }  // (mm) relative Z-offset for each nozzle

// @section machine

/**
 * Power Supply Control
 *
 * Enable and connect the power supply to the PS_ON_PIN.
 * Specify whether the power supply is active HIGH or active LOW.
 */
//#define PSU_CONTROL
//#define PSU_NAME "Power Supply"

#if ENABLED(PSU_CONTROL)
  #define PSU_ACTIVE_HIGH false // Set 'false' for ATX (1), 'true' for X-Box (2)

  //#define PS_DEFAULT_OFF      // Keep power off until enabled directly with M80

  //#define AUTO_POWER_CONTROL  // Enable automatic control of the PS_ON pin
  #if ENABLED(AUTO_POWER_CONTROL)
    #define AUTO_POWER_FANS           // Turn on PSU if fans need power
    #define AUTO_POWER_E_FANS
    #define AUTO_POWER_CONTROLLERFAN
    #define AUTO_POWER_CHAMBER_FAN
    //#define AUTO_POWER_E_TEMP        50 // (°C) Turn on PSU over this temperature
    //#define AUTO_POWER_CHAMBER_TEMP  30 // (°C) Turn on PSU over this temperature
    #define POWER_TIMEOUT 30
  #endif
#endif

// @section temperature

//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================

/**
 * --NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
 *
 * Temperature sensors available:
 *
 *    -4 : thermocouple with AD8495
 *    -3 : thermocouple with MAX31855 (only for sensor 0)
 *    -2 : thermocouple with MAX6675 (only for sensor 0)
 *    -1 : thermocouple with AD595
 *     0 : not used
 *     1 : 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
 *     2 : 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
 *     3 : Mendel-parts thermistor (4.7k pullup)
 *     4 : 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
 *     5 : 100K thermistor - ATC Semitec 104GT-2/104NT-4-R025H42G (Used in ParCan & J-Head) (4.7k pullup)
 *   501 : 100K Zonestar (Tronxy X3A) Thermistor
 *   512 : 100k RPW-Ultra hotend thermistor (4.7k pullup)
 *     6 : 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
 *     7 : 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
 *    71 : 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
 *     8 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
 *     9 : 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
 *    10 : 100k RS thermistor 198-961 (4.7k pullup)
 *    11 : 100k beta 3950 1% thermistor (4.7k pullup)
 *    12 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
 *    13 : 100k Hisens 3950  1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
 *    15 : 100k thermistor calibration for JGAurora A5 hotend
 *    18 : ATC Semitec 204GT-2 (4.7k pullup) Dagoma.Fr - MKS_Base_DKU001327
 *    20 : the PT100 circuit found in the Ultimainboard V2.x
 *    60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
 *    61 : 100k Formbot / Vivedino 3950 350C thermistor 4.7k pullup
 *    66 : 4.7M High Temperature thermistor from Dyze Design
 *    67 : 450C thermistor from SliceEngineering
 *    70 : the 100K thermistor found in the bq Hephestos 2
 *    75 : 100k Generic Silicon Heat Pad with NTC 100K MGB18-104F39050L32 thermistor
 *
 *       1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
 *                              (but gives greater accuracy and more stable PID)
 *    51 : 100k thermistor - EPCOS (1k pullup)
 *    52 : 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
 *    55 : 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
 *
 *  1047 : Pt1000 with 4k7 pullup
 *  1010 : Pt1000 with 1k pullup (non standard)
 *   147 : Pt100 with 4k7 pullup
 *   110 : Pt100 with 1k pullup (non standard)
 *
 *  1000 : Custom - Specify parameters in Configuration_adv.h
 *
 *         Use these for Testing or Development purposes. NEVER for production machine.
 *   998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.
 *   999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.
 *
 * :{ '0':"Not used", '1':"100k / 4.7k - EPCOS", '2':"200k / 4.7k - ATC Semitec 204GT-2", '3':"Mendel-parts / 4.7k", '4':"10k !! do not use for a hotend. Bad resolution at high temp. !!", '5':"100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '501':"100K Zonestar (Tronxy X3A)", '512':"100k RPW-Ultra hotend thermistor", '6':"100k / 4.7k EPCOS - Not as accurate as Table 1", '7':"100k / 4.7k Honeywell 135-104LAG-J01", '8':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT", '9':"100k / 4.7k GE Sensing AL03006-58.2K-97-G1", '10':"100k / 4.7k RS 198-961", '11':"100k / 4.7k beta 3950 1%", '12':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)", '13':"100k Hisens 3950  1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'", '18':"ATC Semitec 204GT-2 (4.7k pullup) Dagoma.Fr - MKS_Base_DKU001327" '20':"PT100 (Ultimainboard V2.x)", '51':"100k / 1k - EPCOS", '52':"200k / 1k - ATC Semitec 204GT-2", '55':"100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '60':"100k Maker's Tool Works Kapton Bed Thermistor beta=3950", '61':"100k Formbot / Vivedino 3950 350C thermistor 4.7k pullup", '66':"Dyze Design 4.7M High Temperature thermistor", '67':"Slice Engineering 450C High Temperature thermistor", '70':"the 100K thermistor found in the bq Hephestos 2", '71':"100k / 4.7k Honeywell 135-104LAF-J01", '147':"Pt100 / 4.7k", '1047':"Pt1000 / 4.7k", '110':"Pt100 / 1k (non-standard)", '1010':"Pt1000 / 1k (non standard)", '-4':"Thermocouple + AD8495", '-3':"Thermocouple + MAX31855 (only for sensor 0)", '-2':"Thermocouple + MAX6675 (only for sensor 0)", '-1':"Thermocouple + AD595", '998':"Dummy 1", '999':"Dummy 2", '1000':"Custom thermistor params" }
 */
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_4 0
#define TEMP_SENSOR_5 0
#define TEMP_SENSOR_BED 1
#define TEMP_SENSOR_CHAMBER 0

// Dummy thermistor constant temperature readings, for use with 998 and 999
#define DUMMY_THERMISTOR_998_VALUE 25
#define DUMMY_THERMISTOR_999_VALUE 100

// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings
// from the two sensors differ too much the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10

#define TEMP_RESIDENCY_TIME     10  // (seconds) Time to wait for hotend to "settle" in M109
#define TEMP_WINDOW              1  // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_HYSTERESIS          3  // (°C) Temperature proximity considered "close enough" to the target

#define TEMP_BED_RESIDENCY_TIME 10  // (seconds) Time to wait for bed to "settle" in M190
#define TEMP_BED_WINDOW          1  // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_BED_HYSTERESIS      3  // (°C) Temperature proximity considered "close enough" to the target

// Below this temperature the heater will be switched off
// because it probably indicates a broken thermistor wire.
#define HEATER_0_MINTEMP   5
#define HEATER_1_MINTEMP   5
#define HEATER_2_MINTEMP   5
#define HEATER_3_MINTEMP   5
#define HEATER_4_MINTEMP   5
#define HEATER_5_MINTEMP   5
#define BED_MINTEMP        5

// Above this temperature the heater will be switched off.
// This can protect components from overheating, but NOT from shorts and failures.
// (Use MINTEMP for thermistor short/failure protection.)
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define HEATER_4_MAXTEMP 275
#define HEATER_5_MAXTEMP 275
#define BED_MAXTEMP      125

//===========================================================================
//============================= PID Settings ================================
//===========================================================================
// PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning

// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255     // Limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // Limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define PID_K1 0.95      // Smoothing factor within any PID loop
#if ENABLED(PIDTEMP)
  //#define PID_EDIT_MENU         // Add PID editing to the "Advanced Settings" menu. (~700 bytes of PROGMEM)
  //#define PID_AUTOTUNE_MENU     // Add PID auto-tuning to the "Advanced Settings" menu. (~250 bytes of PROGMEM)
  //#define PID_DEBUG             // Sends debug data to the serial port.
  //#define PID_OPENLOOP 1        // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
  //#define SLOW_PWM_HEATERS      // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
  //#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)
                                  // Set/get with gcode: M301 E[extruder number, 0-2]
  #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
                                  // is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.

  // Geeetech MK8 Extruder
  #define DEFAULT_Kp 12.33
  #define DEFAULT_Ki 0.51
  #define DEFAULT_Kd 74.50

  // CTC MK8 Extruder
  //#define DEFAULT_Kp 19.86
  //#define DEFAULT_Ki 1.0
  //#define DEFAULT_Kd 98.83

  // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it

  // Ultimaker
  //#define DEFAULT_Kp 22.2
  //#define DEFAULT_Ki 1.08
  //#define DEFAULT_Kd 114

  // MakerGear
  //#define DEFAULT_Kp 7.0
  //#define DEFAULT_Ki 0.1
  //#define DEFAULT_Kd 12

  // Mendel Parts V9 on 12V
  //#define DEFAULT_Kp 63.0
  //#define DEFAULT_Ki 2.25
  //#define DEFAULT_Kd 440

#endif // PIDTEMP

//===========================================================================
//====================== PID > Bed Temperature Control ======================
//===========================================================================

/**
 * PID Bed Heating
 *
 * If this option is enabled set PID constants below.
 * If this option is disabled, bang-bang will be used and BED_LIMIT_SWITCHING will enable hysteresis.
 *
 * The PID frequency will be the same as the extruder PWM.
 * If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz,
 * which is fine for driving a square wave into a resistive load and does not significantly
 * impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W
 * heater. If your configuration is significantly different than this and you don't understand
 * the issues involved, don't use bed PID until someone else verifies that your hardware works.
 */
//#define PIDTEMPBED

//#define BED_LIMIT_SWITCHING

/**
 * Max Bed Power
 * Applies to all forms of bed control (PID, bang-bang, and bang-bang with hysteresis).
 * When set to any value below 255, enables a form of PWM to the bed that acts like a divider
 * so don't use it unless you are OK with PWM on your bed. (See the comment on enabling PIDTEMPBED)
 */
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current

#if ENABLED(PIDTEMPBED)

  //#define PID_BED_DEBUG // Sends debug data to the serial port.

  //12v (120 watt?) MK2a PCB Heatbed into 4mm borosilicate (Geeetech Prusa i3 Pro, Pro/B/C/X)
  #define DEFAULT_bedKp 234.88
  #define DEFAULT_bedKi 42.79
  #define DEFAULT_bedKd 322.28

  //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
  //from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
  //#define DEFAULT_bedKp 10.00
  //#define DEFAULT_bedKi .023
  //#define DEFAULT_bedKd 305.4

  //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
  //from pidautotune
  //#define DEFAULT_bedKp 97.1
  //#define DEFAULT_bedKi 1.41
  //#define DEFAULT_bedKd 1675.16

  // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED

// @section extruder

/**
 * Prevent extrusion if the temperature is below EXTRUDE_MINTEMP.
 * Add M302 to set the minimum extrusion temperature and/or turn
 * cold extrusion prevention on and off.
 *
 * *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! ***
 */
#define PREVENT_COLD_EXTRUSION
#define EXTRUDE_MINTEMP 170

/**
 * Prevent a single extrusion longer than EXTRUDE_MAXLENGTH.
 * Note: For Bowden Extruders make this large enough to allow load/unload.
 */
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MAXLENGTH 200

//===========================================================================
//======================== Thermal Runaway Protection =======================
//===========================================================================

/**
 * Thermal Protection provides additional protection to your printer from damage
 * and fire. Marlin always includes safe min and max temperature ranges which
 * protect against a broken or disconnected thermistor wire.
 *
 * The issue: If a thermistor falls out, it will report the much lower
 * temperature of the air in the room, and the the firmware will keep
 * the heater on.
 *
 * If you get "Thermal Runaway" or "Heating failed" errors the
 * details can be tuned in Configuration_adv.h
 */

#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED     // Enable thermal protection for the heated bed
#define THERMAL_PROTECTION_CHAMBER // Enable thermal protection for the heated chamber

//===========================================================================
//============================= Mechanical Settings =========================
//===========================================================================

// @section machine

// Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics
// either in the usual order or reversed
//#define COREXY
//#define COREXZ
//#define COREYZ
//#define COREYX
//#define COREZX
//#define COREZY

//===========================================================================
//============================== Endstop Settings ===========================
//===========================================================================

// @section homing

// Specify here all the endstop connectors that are connected to any endstop or probe.
// Almost all printers will be using one per axis. Probes will use one or more of the
// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.
#define USE_XMIN_PLUG
#define USE_YMIN_PLUG
#define USE_ZMIN_PLUG
//#define USE_XMAX_PLUG
//#define USE_YMAX_PLUG
#define USE_ZMAX_PLUG

// Enable pullup for all endstops to prevent a floating state
#define ENDSTOPPULLUPS
#if DISABLED(ENDSTOPPULLUPS)
  // Disable ENDSTOPPULLUPS to set pullups individually
  //#define ENDSTOPPULLUP_XMAX
  //#define ENDSTOPPULLUP_YMAX
  //#define ENDSTOPPULLUP_ZMAX
  //#define ENDSTOPPULLUP_XMIN
  //#define ENDSTOPPULLUP_YMIN
  //#define ENDSTOPPULLUP_ZMIN
  //#define ENDSTOPPULLUP_ZMIN_PROBE
#endif

// Enable pulldown for all endstops to prevent a floating state
//#define ENDSTOPPULLDOWNS
#if DISABLED(ENDSTOPPULLDOWNS)
  // Disable ENDSTOPPULLDOWNS to set pulldowns individually
  //#define ENDSTOPPULLDOWN_XMAX
  //#define ENDSTOPPULLDOWN_YMAX
  //#define ENDSTOPPULLDOWN_ZMAX
  //#define ENDSTOPPULLDOWN_XMIN
  //#define ENDSTOPPULLDOWN_YMIN
  //#define ENDSTOPPULLDOWN_ZMIN
  //#define ENDSTOPPULLDOWN_ZMIN_PROBE
#endif

// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
#define X_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING false // Set to true to invert the logic of the probe.

/**
 * Stepper Drivers
 *
 * These settings allow Marlin to tune stepper driver timing and enable advanced options for
 * stepper drivers that support them. You may also override timing options in Configuration_adv.h.
 *
 * A4988 is assumed for unspecified drivers.
 *
 * Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100,
 *          TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
 *          TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
 *          TMC26X,  TMC26X_STANDALONE,  TMC2660, TMC2660_STANDALONE,
 *          TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
 * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
 */
//#define X_DRIVER_TYPE  A4988
//#define Y_DRIVER_TYPE  A4988
//#define Z_DRIVER_TYPE  A4988
//#define X2_DRIVER_TYPE A4988
//#define Y2_DRIVER_TYPE A4988
//#define Z2_DRIVER_TYPE A4988
//#define Z3_DRIVER_TYPE A4988
//#define E0_DRIVER_TYPE A4988
//#define E1_DRIVER_TYPE A4988
//#define E2_DRIVER_TYPE A4988
//#define E3_DRIVER_TYPE A4988
//#define E4_DRIVER_TYPE A4988
//#define E5_DRIVER_TYPE A4988

// Enable this feature if all enabled endstop pins are interrupt-capable.
// This will remove the need to poll the interrupt pins, saving many CPU cycles.
//#define ENDSTOP_INTERRUPTS_FEATURE

/**
 * Endstop Noise Threshold
 *
 * Enable if your probe or endstops falsely trigger due to noise.
 *
 * - Higher values may affect repeatability or accuracy of some bed probes.
 * - To fix noise install a 100nF ceramic capacitor inline with the switch.
 * - This feature is not required for common micro-switches mounted on PCBs
 *   based on the Makerbot design, which already have the 100nF capacitor.
 *
 * :[2,3,4,5,6,7]
 */
//#define ENDSTOP_NOISE_THRESHOLD 2

//=============================================================================
//============================== Movement Settings ============================
//=============================================================================
// @section motion

/**
 * Default Settings
 *
 * These settings can be reset by M502
 *
 * Note that if EEPROM is enabled, saved values will override these.
 */

/**
 * With this option each E stepper can have its own factors for the
 * following movement settings. If fewer factors are given than the
 * total number of extruders, the last value applies to the rest.
 */
//#define DISTINCT_E_FACTORS

/**
 * Default Axis Steps Per Unit (steps/mm)
 * Override with M92
 *                                      X, Y, Z, E0 [, E1[, E2[, E3[, E4[, E5]]]]]
 */
#define PRO_B_WITH_LEADSCREW
#if ENABLED(PRO_B_WITH_LEADSCREW)       // M8 leadscrew version
  #define DEFAULT_AXIS_STEPS_PER_UNIT   { 78.74, 78.74, 400, 105 }
#else                                   // M8 threaded rod version
  #define DEFAULT_AXIS_STEPS_PER_UNIT   { 78.74, 78.74, 2560, 105 }
#endif

/**
 * Default Max Feed Rate (mm/s)
 * Override with M203
 *                                      X, Y, Z, E0 [, E1[, E2[, E3[, E4[, E5]]]]]
 */
#define DEFAULT_MAX_FEEDRATE          { 400, 400, 2, 45 }

/**
 * Default Max Acceleration (change/s) change = mm/s
 * (Maximum start speed for accelerated moves)
 * Override with M201
 *                                      X, Y, Z, E0 [, E1[, E2[, E3[, E4[, E5]]]]]
 */
#define DEFAULT_MAX_ACCELERATION      { 5000, 5000, 75, 5000 }

/**
 * Default Acceleration (change/s) change = mm/s
 * Override with M204
 *
 *   M204 P    Acceleration
 *   M204 R    Retract Acceleration
 *   M204 T    Travel Acceleration
 */
#define DEFAULT_ACCELERATION          1000    // X, Y, Z and E acceleration for printing moves
#define DEFAULT_RETRACT_ACCELERATION  2000    // E acceleration for retracts
#define DEFAULT_TRAVEL_ACCELERATION   3000    // X, Y, Z acceleration for travel (non printing) moves

/**
 * Junction Deviation
 *
 * Use Junction Deviation instead of traditional Jerk Limiting
 *
 * See:
 *   https://reprap.org/forum/read.php?1,739819
 *   http://blog.kyneticcnc.com/2018/10/computing-junction-deviation-for-marlin.html
 */
//#define JUNCTION_DEVIATION
#if ENABLED(JUNCTION_DEVIATION)
  #define JUNCTION_DEVIATION_MM 0.02  // (mm) Distance from real junction edge
#endif

/**
 * Default Jerk (mm/s)
 * Override with M205 X Y Z E
 *
 * "Jerk" specifies the minimum speed change that requires acceleration.
 * When changing speed and direction, if the difference is less than the
 * value set here, it may happen instantaneously.
 */
#if DISABLED(JUNCTION_DEVIATION)
  #define DEFAULT_XJERK 10.0
  #define DEFAULT_YJERK 10.0
  #define DEFAULT_ZJERK  0.3
#endif

#define DEFAULT_EJERK    5.0  // May be used by Linear Advance

/**
 * S-Curve Acceleration
 *
 * This option eliminates vibration during printing by fitting a Bézier
 * curve to move acceleration, producing much smoother direction changes.
 *
 * See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained
 */
//#define S_CURVE_ACCELERATION

//===========================================================================
//============================= Z Probe Options =============================
//===========================================================================
// @section probes

//
// See http://marlinfw.org/docs/configuration/probes.html
//

/**
 * Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN
 *
 * Enable this option for a probe connected to the Z Min endstop pin.
 */
//#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

/**
 * Z_MIN_PROBE_PIN
 *
 * Define this pin if the probe is not connected to Z_MIN_PIN.
 * If not defined the default pin for the selected MOTHERBOARD
 * will be used. Most of the time the default is what you want.
 *
 *  - The simplest option is to use a free endstop connector.
 *  - Use 5V for powered (usually inductive) sensors.
 *
 *  - RAMPS 1.3/1.4 boards may use the 5V, GND, and Aux4->D32 pin:
 *    - For simple switches connect...
 *      - normally-closed switches to GND and D32.
 *      - normally-open switches to 5V and D32.
 *
 */
//#define Z_MIN_PROBE_PIN 32 // Pin 32 is the RAMPS default
#define Z_MIN_PROBE_PIN 32

/**
 * Probe Type
 *
 * Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.
 * Activate one of these to use Auto Bed Leveling below.
 */

/**
 * The "Manual Probe" provides a means to do "Auto" Bed Leveling without a probe.
 * Use G29 repeatedly, adjusting the Z height at each point with movement commands
 * or (with LCD_BED_LEVELING) the LCD controller.
 */
//#define PROBE_MANUALLY
//#define MANUAL_PROBE_START_Z 0.2

/**
 * A Fix-Mounted Probe either doesn't deploy or needs manual deployment.
 *   (e.g., an inductive probe or a nozzle-based probe-switch.)
 */
//#define FIX_MOUNTED_PROBE

/**
 * Z Servo Probe, such as an endstop switch on a rotating arm.
 */
//#define Z_PROBE_SERVO_NR 0       // Defaults to SERVO 0 connector.
//#define Z_SERVO_ANGLES { 70, 0 } // Z Servo Deploy and Stow angles

/**
 * The BLTouch probe uses a Hall effect sensor and emulates a servo.
 */
#define BLTOUCH

/**
 * Touch-MI Probe by hotends.fr
 *
 * This probe is deployed and activated by moving the X-axis to a magnet at the edge of the bed.
 * By default, the magnet is assumed to be on the left and activated by a home. If the magnet is
 * on the right, enable and set TOUCH_MI_DEPLOY_XPOS to the deploy position.
 *
 * Also requires: BABYSTEPPING, BABYSTEP_ZPROBE_OFFSET, Z_SAFE_HOMING,
 *                and a minimum Z_HOMING_HEIGHT of 10.
 */
//#define TOUCH_MI_PROBE
#if ENABLED(TOUCH_MI_PROBE)
  #define TOUCH_MI_RETRACT_Z 0.5                  // Height at which the probe retracts
  //#define TOUCH_MI_DEPLOY_XPOS (X_MAX_BED + 2)  // For a magnet on the right side of the bed
  //#define TOUCH_MI_MANUAL_DEPLOY                // For manual deploy (LCD menu)
#endif

// A probe that is deployed and stowed with a solenoid pin (SOL1_PIN)
//#define SOLENOID_PROBE

// A sled-mounted probe like those designed by Charles Bell.
//#define Z_PROBE_SLED
//#define SLED_DOCKING_OFFSET 5  // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

// A probe deployed by moving the x-axis, such as the Wilson II's rack-and-pinion probe designed by Marty Rice.
//#define RACK_AND_PINION_PROBE
#if ENABLED(RACK_AND_PINION_PROBE)
  #define Z_PROBE_DEPLOY_X  X_MIN_POS
  #define Z_PROBE_RETRACT_X X_MAX_POS
#endif

//
// For Z_PROBE_ALLEN_KEY see the Delta example configurations.
//

/**
 * Z Probe to nozzle (X,Y) offset, relative to (0, 0).
 * X and Y offsets must be integers.
 *
 * In the following example the X and Y offsets are both positive:
 * #define X_PROBE_OFFSET_FROM_EXTRUDER 10
 * #define Y_PROBE_OFFSET_FROM_EXTRUDER 10
 *
 *     +-- BACK ---+
 *     |           |
 *   L |    (+) P  | R <-- probe (20,20)
 *   E |           | I
 *   F | (-) N (+) | G <-- nozzle (10,10)
 *   T |           | H
 *     |    (-)    | T
 *     |           |
 *     O-- FRONT --+
 *   (0,0)
 */
#define X_PROBE_OFFSET_FROM_EXTRUDER 4     // X offset: -left  +right  [of the nozzle]
#define Y_PROBE_OFFSET_FROM_EXTRUDER -44   // Y offset: -front +behind [the nozzle]
#define Z_PROBE_OFFSET_FROM_EXTRUDER -1.4  // Z offset: -below +above  [the nozzle]

// Certain types of probes need to stay away from edges
#define MIN_PROBE_EDGE 10

// X and Y axis travel speed (mm/m) between probes
#define XY_PROBE_SPEED 8000

// Feedrate (mm/m) for the first approach when double-probing (MULTIPLE_PROBING == 2)
#define Z_PROBE_SPEED_FAST (20*60)

// Feedrate (mm/m) for the "accurate" probe of each point
#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 2)

/**
 * Multiple Probing
 *
 * You may get improved results by probing 2 or more times.
 * With EXTRA_PROBING the more atypical reading(s) will be disregarded.
 *
 * A total of 2 does fast/slow probes with a weighted average.
 * A total of 3 or more adds more slow probes, taking the average.
 */
#define MULTIPLE_PROBING 3
//#define EXTRA_PROBING    1

/**
 * Z probes require clearance when deploying, stowing, and moving between
 * probe points to avoid hitting the bed and other hardware.
 * Servo-mounted probes require extra space for the arm to rotate.
 * Inductive probes need space to keep from triggering early.
 *
 * Use these settings to specify the distance (mm) to raise the probe (or
 * lower the bed). The values set here apply over and above any (negative)
 * probe Z Offset set with Z_PROBE_OFFSET_FROM_EXTRUDER, M851, or the LCD.
 * Only integer values >= 1 are valid here.
 *
 * Example: `M851 Z-5` with a CLEARANCE of 4  =>  9mm from bed to nozzle.
 *     But: `M851 Z+1` with a CLEARANCE of 2  =>  2mm from bed to nozzle.
 */
#define Z_CLEARANCE_DEPLOY_PROBE   10 // Z Clearance for Deploy/Stow
#define Z_CLEARANCE_BETWEEN_PROBES  5 // Z Clearance between probe points
#define Z_CLEARANCE_MULTI_PROBE     5 // Z Clearance between multiple probes
//#define Z_AFTER_PROBING           5 // Z position after probing is done

#define Z_PROBE_LOW_POINT          -2 // Farthest distance below the trigger-point to go before stopping

// For M851 give a range for adjusting the Z probe offset
#define Z_PROBE_OFFSET_RANGE_MIN -20
#define Z_PROBE_OFFSET_RANGE_MAX 20

// Enable the M48 repeatability test to test probe accuracy
#define Z_MIN_PROBE_REPEATABILITY_TEST

// Before deploy/stow pause for user confirmation
//#define PAUSE_BEFORE_DEPLOY_STOW
#if ENABLED(PAUSE_BEFORE_DEPLOY_STOW)
  //#define PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED // For Manual Deploy Allenkey Probe
#endif

/**
 * Enable one or more of the following if probing seems unreliable.
 * Heaters and/or fans can be disabled during probing to minimize electrical
 * noise. A delay can also be added to allow noise and vibration to settle.
 * These options are most useful for the BLTouch probe, but may also improve
 * readings with inductive probes and piezo sensors.
 */
#define PROBING_HEATERS_OFF       // Turn heaters off when probing
#if ENABLED(PROBING_HEATERS_OFF)
  //#define WAIT_FOR_BED_HEATER     // Wait for bed to heat back up between probes (to improve accuracy)
#endif
#define PROBING_FANS_OFF            // Turn fans off when probing
//#define PROBING_STEPPERS_OFF      // Turn steppers off (unless needed to hold position) when probing
#define DELAY_BEFORE_PROBING 200    // (ms) To prevent vibrations from triggering piezo sensors

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :{ 0:'Low', 1:'High' }
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders

// Disables axis stepper immediately when it's not being used.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false

// Warn on display about possibly reduced accuracy
//#define DISABLE_REDUCED_ACCURACY_WARNING

// @section extruder

#define DISABLE_E false             // For all extruders
#define DISABLE_INACTIVE_EXTRUDER   // Keep only the active extruder enabled

// @section machine

// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR true
#define INVERT_Y_DIR true
#define INVERT_Z_DIR false

// @section extruder

// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR true
#define INVERT_E1_DIR true
#define INVERT_E2_DIR true
#define INVERT_E3_DIR true
#define INVERT_E4_DIR true
#define INVERT_E5_DIR true

// @section homing

//#define NO_MOTION_BEFORE_HOMING  // Inhibit movement until all axes have been homed

//#define UNKNOWN_Z_NO_RAISE // Don't raise Z (lower the bed) if Z is "unknown." For beds that fall when Z is powered off.

//#define Z_HOMING_HEIGHT 4  // (mm) Minimal Z height before homing (G28) for Z clearance above the bed, clamps, ...
                             // Be sure you have this distance over your Z_MAX_POS in case.

// Direction of endstops when homing; 1=MAX, -1=MIN
// :[-1,1]
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1

// @section machine

// The size of the print bed
#define X_BED_SIZE 200
#define Y_BED_SIZE 200

// Travel limits (mm) after homing, corresponding to endstop positions.
#define X_MIN_POS -12
#define Y_MIN_POS -8
#define Z_MIN_POS 0
#define X_MAX_POS (-X_MIN_POS+X_BED_SIZE)
#define Y_MAX_POS (-Y_MIN_POS+Y_BED_SIZE)
#define Z_MAX_POS 200

/**
 * Software Endstops
 *
 * - Prevent moves outside the set machine bounds.
 * - Individual axes can be disabled, if desired.
 * - X and Y only apply to Cartesian robots.
 * - Use 'M211' to set software endstops on/off or report current state
 */

// Min software endstops constrain movement within minimum coordinate bounds
#define MIN_SOFTWARE_ENDSTOPS
#if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  #define MIN_SOFTWARE_ENDSTOP_X
  #define MIN_SOFTWARE_ENDSTOP_Y
  #define MIN_SOFTWARE_ENDSTOP_Z
#endif

// Max software endstops constrain movement within maximum coordinate bounds
#define MAX_SOFTWARE_ENDSTOPS
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  #define MAX_SOFTWARE_ENDSTOP_X
  #define MAX_SOFTWARE_ENDSTOP_Y
  #define MAX_SOFTWARE_ENDSTOP_Z
#endif

#if EITHER(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS)
  //#define SOFT_ENDSTOPS_MENU_ITEM  // Enable/Disable software endstops from the LCD
#endif

/**
 * Filament Runout Sensors
 * Mechanical or opto endstops are used to check for the presence of filament.
 *
 * RAMPS-based boards use SERVO3_PIN for the first runout sensor.
 * For other boards you may need to define FIL_RUNOUT_PIN, FIL_RUNOUT2_PIN, etc.
 * By default the firmware assumes HIGH=FILAMENT PRESENT.
 */
//#define FILAMENT_RUNOUT_SENSOR
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
  #define NUM_RUNOUT_SENSORS   1     // Number of sensors, up to one per extruder. Define a FIL_RUNOUT#_PIN for each.
  #define FIL_RUNOUT_INVERTING false // Set to true to invert the logic of the sensor.
  #define FIL_RUNOUT_PULLUP          // Use internal pullup for filament runout pins.
  //#define FIL_RUNOUT_PULLDOWN      // Use internal pulldown for filament runout pins.

  // Set one or more commands to execute on filament runout.
  // (After 'M412 H' Marlin will ask the host to handle the process.)
  #define FILAMENT_RUNOUT_SCRIPT "M600"

  // After a runout is detected, continue printing this length of filament
  // before executing the runout script. Useful for a sensor at the end of
  // a feed tube. Requires 4 bytes SRAM per sensor, plus 4 bytes overhead.
  //#define FILAMENT_RUNOUT_DISTANCE_MM 25

  #ifdef FILAMENT_RUNOUT_DISTANCE_MM
    // Enable this option to use an encoder disc that toggles the runout pin
    // as the filament moves. (Be sure to set FILAMENT_RUNOUT_DISTANCE_MM
    // large enough to avoid false positives.)
    //#define FILAMENT_MOTION_SENSOR
  #endif
#endif

//===========================================================================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section calibrate

/**
 * Choose one of the options below to enable G29 Bed Leveling. The parameters
 * and behavior of G29 will change depending on your selection.
 *
 *  If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
 *
 * - AUTO_BED_LEVELING_3POINT
 *   Probe 3 arbitrary points on the bed (that aren't collinear)
 *   You specify the XY coordinates of all 3 points.
 *   The result is a single tilted plane. Best for a flat bed.
 *
 * - AUTO_BED_LEVELING_LINEAR
 *   Probe several points in a grid.
 *   You specify the rectangle and the density of sample points.
 *   The result is a single tilted plane. Best for a flat bed.
 *
 * - AUTO_BED_LEVELING_BILINEAR
 *   Probe several points in a grid.
 *   You specify the rectangle and the density of sample points.
 *   The result is a mesh, best for large or uneven beds.
 *
 * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
 *   A comprehensive bed leveling system combining the features and benefits
 *   of other systems. UBL also includes integrated Mesh Generation, Mesh
 *   Validation and Mesh Editing systems.
 *
 * - MESH_BED_LEVELING
 *   Probe a grid manually
 *   The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
 *   For machines without a probe, Mesh Bed Leveling provides a method to perform
 *   leveling in steps so you can manually adjust the Z height at each grid-point.
 *   With an LCD controller the process is guided step-by-step.
 */
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
#define AUTO_BED_LEVELING_BILINEAR
//#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING

/**
 * Normally G28 leaves leveling disabled on completion. Enable
 * this option to have G28 restore the prior leveling state.
 */
//#define RESTORE_LEVELING_AFTER_G28

/**
 * Enable detailed logging of G28, G29, M48, etc.
 * Turn on with the command 'M111 S32'.
 * NOTE: Requires a lot of PROGMEM!
 */
//#define DEBUG_LEVELING_FEATURE

#if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, AUTO_BED_LEVELING_UBL)
  // Gradually reduce leveling correction until a set height is reached,
  // at which point movement will be level to the machine's XY plane.
  // The height can be set with M420 Z<height>
  #define ENABLE_LEVELING_FADE_HEIGHT

  // For Cartesian machines, instead of dividing moves on mesh boundaries,
  // split up moves into short segments like a Delta. This follows the
  // contours of the bed more closely than edge-to-edge straight moves.
  #define SEGMENT_LEVELED_MOVES
  #define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one)

  /**
   * Enable the G26 Mesh Validation Pattern tool.
   */
  //#define G26_MESH_VALIDATION
  #if ENABLED(G26_MESH_VALIDATION)
    #define MESH_TEST_NOZZLE_SIZE    0.4  // (mm) Diameter of primary nozzle.
    #define MESH_TEST_LAYER_HEIGHT   0.2  // (mm) Default layer height for the G26 Mesh Validation Tool.
    #define MESH_TEST_HOTEND_TEMP  205    // (°C) Default nozzle temperature for the G26 Mesh Validation Tool.
    #define MESH_TEST_BED_TEMP      60    // (°C) Default bed temperature for the G26 Mesh Validation Tool.
    #define G26_XY_FEEDRATE         20    // (mm/s) Feedrate for XY Moves for the G26 Mesh Validation Tool.
  #endif

#endif

#if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR)

  // Set the number of grid points per dimension.
  #define GRID_MAX_POINTS_X 4
  #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

  // Set the boundaries for probing (where the probe can reach).
  //#define LEFT_PROBE_BED_POSITION 10
  //#define RIGHT_PROBE_BED_POSITION (X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER - 14)
  //#define FRONT_PROBE_BED_POSITION 15
  //#define BACK_PROBE_BED_POSITION (Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER - 25)

  // Probe along the Y axis, advancing X after each column
  //#define PROBE_Y_FIRST

  #if ENABLED(AUTO_BED_LEVELING_BILINEAR)

    // Beyond the probed grid, continue the implied tilt?
    // Default is to maintain the height of the nearest edge.
    #define EXTRAPOLATE_BEYOND_GRID

    //
    // Experimental Subdivision of the grid by Catmull-Rom method.
    // Synthesizes intermediate points to produce a more detailed mesh.
    //
    //#define ABL_BILINEAR_SUBDIVISION
    #if ENABLED(ABL_BILINEAR_SUBDIVISION)
      // Number of subdivisions between probe points
      #define BILINEAR_SUBDIVISIONS 3
    #endif

  #endif

#elif ENABLED(AUTO_BED_LEVELING_UBL)

  //===========================================================================
  //========================= Unified Bed Leveling ============================
  //===========================================================================

  //#define MESH_EDIT_GFX_OVERLAY   // Display a graphics overlay while editing the mesh

  #define MESH_INSET 1              // Set Mesh bounds as an inset region of the bed
  #define GRID_MAX_POINTS_X 10      // Don't use more than 15 points per axis, implementation limited.
  #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

  #define UBL_MESH_EDIT_MOVES_Z     // Sophisticated users prefer no movement of nozzle
  #define UBL_SAVE_ACTIVE_ON_M500   // Save the currently active mesh in the current slot on M500

  //#define UBL_Z_RAISE_WHEN_OFF_MESH 2.5 // When the nozzle is off the mesh, this value is used
                                          // as the Z-Height correction value.

#elif ENABLED(MESH_BED_LEVELING)

  //===========================================================================
  //=================================== Mesh ==================================
  //===========================================================================

  #define MESH_INSET 10          // Set Mesh bounds as an inset region of the bed
  #define GRID_MAX_POINTS_X 3    // Don't use more than 7 points per axis, implementation limited.
  #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

  //#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS

#endif // BED_LEVELING

/**
 * Points to probe for all 3-point Leveling procedures.
 * Override if the automatically selected points are inadequate.
 */
#if EITHER(AUTO_BED_LEVELING_3POINT, AUTO_BED_LEVELING_UBL)
  //#define PROBE_PT_1_X 15
  //#define PROBE_PT_1_Y 180
  //#define PROBE_PT_2_X 15
  //#define PROBE_PT_2_Y 20
  //#define PROBE_PT_3_X 170
  //#define PROBE_PT_3_Y 20
#endif

/**
 * Add a bed leveling sub-menu for ABL or MBL.
 * Include a guided procedure if manual probing is enabled.
 */
//#define LCD_BED_LEVELING

#if ENABLED(LCD_BED_LEVELING)
  #define MESH_EDIT_Z_STEP  0.025 // (mm) Step size while manually probing Z axis.
  #define LCD_PROBE_Z_RANGE 4     // (mm) Z Range centered on Z_MIN_POS for LCD Z adjustment
  //#define MESH_EDIT_MENU        // Add a menu to edit mesh points
#endif

// Add a menu item to move between bed corners for manual bed adjustment
#define LEVEL_BED_CORNERS

#if ENABLED(LEVEL_BED_CORNERS)
  #define LEVEL_CORNERS_INSET 30    // (mm) An inset for corner leveling
  #define LEVEL_CORNERS_Z_HOP  4.0  // (mm) Move nozzle up before moving between corners
  #define LEVEL_CORNERS_HEIGHT 0.0  // (mm) Z height of nozzle at leveling points
  //#define LEVEL_CENTER_TOO        // Move to the center after the last corner
#endif

/**
 * Commands to execute at the end of G29 probing.
 * Useful to retract or move the Z probe out of the way.
 */
//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"


// @section homing

// The center of the bed is at (X=0, Y=0)
//#define BED_CENTER_AT_0_0

// Manually set the home position. Leave these undefined for automatic settings.
// For DELTA this is the top-center of the Cartesian print volume.
//#define MANUAL_X_HOME_POS 0
//#define MANUAL_Y_HOME_POS 0
//#define MANUAL_Z_HOME_POS 0

// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
//
// With this feature enabled:
//
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.
// - If stepper drivers time out, it will need X and Y homing again before Z homing.
// - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28).
// - Prevent Z homing when the Z probe is outside bed area.
//
#define Z_SAFE_HOMING

#if ENABLED(Z_SAFE_HOMING)
  #define Z_SAFE_HOMING_X_POINT ((X_BED_SIZE) / 2)    // X point for Z homing when homing all axes (G28).
  #define Z_SAFE_HOMING_Y_POINT ((Y_BED_SIZE) / 2)    // Y point for Z homing when homing all axes (G28).
#endif

// Homing speeds (mm/m)
#define HOMING_FEEDRATE_XY (50*60)
#define HOMING_FEEDRATE_Z  (4*60)

// Validate that endstops are triggered on homing moves
#define VALIDATE_HOMING_ENDSTOPS

// @section calibrate

/**
 * Bed Skew Compensation
 *
 * This feature corrects for misalignment in the XYZ axes.
 *
 * Take the following steps to get the bed skew in the XY plane:
 *  1. Print a test square (e.g., https://www.thingiverse.com/thing:2563185)
 *  2. For XY_DIAG_AC measure the diagonal A to C
 *  3. For XY_DIAG_BD measure the diagonal B to D
 *  4. For XY_SIDE_AD measure the edge A to D
 *
 * Marlin automatically computes skew factors from these measurements.
 * Skew factors may also be computed and set manually:
 *
 *  - Compute AB     : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2
 *  - XY_SKEW_FACTOR : TAN(PI/2-ACOS((AC*AC-AB*AB-AD*AD)/(2*AB*AD)))
 *
 * If desired, follow the same procedure for XZ and YZ.
 * Use these diagrams for reference:
 *
 *    Y                     Z                     Z
 *    ^     B-------C       ^     B-------C       ^     B-------C
 *    |    /       /        |    /       /        |    /       /
 *    |   /       /         |   /       /         |   /       /
 *    |  A-------D          |  A-------D          |  A-------D
 *    +-------------->X     +-------------->X     +-------------->Y
 *     XY_SKEW_FACTOR        XZ_SKEW_FACTOR        YZ_SKEW_FACTOR
 */
#define SKEW_CORRECTION

#if ENABLED(SKEW_CORRECTION)
  // Input all length measurements here:
  #define XY_DIAG_AC 282.8427124746
  #define XY_DIAG_BD 281.8196945719
  #define XY_SIDE_AD 200

  // Or, set the default skew factors directly here
  // to override the above measurements:
  //#define XY_SKEW_FACTOR 0.0

  //#define SKEW_CORRECTION_FOR_Z
  #if ENABLED(SKEW_CORRECTION_FOR_Z)
    #define XZ_DIAG_AC 282.8427124746
    #define XZ_DIAG_BD 282.8427124746
    #define YZ_DIAG_AC 282.8427124746
    #define YZ_DIAG_BD 282.8427124746
    #define YZ_SIDE_AD 200
    #define XZ_SKEW_FACTOR 0.0
    #define YZ_SKEW_FACTOR 0.0
  #endif

  // Enable this option for M852 to set skew at runtime
  #define SKEW_CORRECTION_GCODE
#endif

//=============================================================================
//============================= Additional Features ===========================
//=============================================================================

// @section extras

/**
 * EEPROM
 *
 * Persistent storage to preserve configurable settings across reboots.
 *
 *   M500 - Store settings to EEPROM.
 *   M501 - Read settings from EEPROM. (i.e., Throw away unsaved changes)
 *   M502 - Revert settings to "factory" defaults. (Follow with M500 to init the EEPROM.)
 */
#define EEPROM_SETTINGS       // Persistent storage with M500 and M501
#define DISABLE_M503          // Saves ~2700 bytes of PROGMEM. Disable for release!
#define EEPROM_CHITCHAT       // Give feedback on EEPROM commands. Disable to save PROGMEM.
#if ENABLED(EEPROM_SETTINGS)
  //#define EEPROM_AUTO_INIT  // Init EEPROM automatically on any errors.
#endif

//
// Host Keepalive
//
// When enabled Marlin will send a busy status message to the host
// every couple of seconds when it can't accept commands.
//
#define HOST_KEEPALIVE_FEATURE        // Disable this if your host doesn't like keepalive messages
#define DEFAULT_KEEPALIVE_INTERVAL 2  // Number of seconds between "busy" messages. Set with M113.
#define BUSY_WHILE_HEATING            // Some hosts require "busy" messages even during heating

//
// M100 Free Memory Watcher
//
//#define M100_FREE_MEMORY_WATCHER    // Add M100 (Free Memory Watcher) to debug memory usage

//
// G20/G21 Inch mode support
//
//#define INCH_MODE_SUPPORT

//
// M149 Set temperature units support
//
//#define TEMPERATURE_UNITS_SUPPORT

// @section temperature

// Preheat Constants
#define PREHEAT_1_LABEL       "PLA"
#define PREHEAT_1_TEMP_HOTEND 200
#define PREHEAT_1_TEMP_BED     60
#define PREHEAT_1_FAN_SPEED   170 // Value from 0 to 255

#define PREHEAT_2_LABEL       "ABS"
#define PREHEAT_2_TEMP_HOTEND 240
#define PREHEAT_2_TEMP_BED    110
#define PREHEAT_2_FAN_SPEED   170 // Value from 0 to 255

/**
 * Nozzle Park
 *
 * Park the nozzle at the given XYZ position on idle or G27.
 *
 * The "P" parameter controls the action applied to the Z axis:
 *
 *    P0  (Default) If Z is below park Z raise the nozzle.
 *    P1  Raise the nozzle always to Z-park height.
 *    P2  Raise the nozzle by Z-park amount, limited to Z_MAX_POS.
 */
//#define NOZZLE_PARK_FEATURE

#if ENABLED(NOZZLE_PARK_FEATURE)
  // Specify a park position as { X, Y, Z_raise }
  #define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }
  #define NOZZLE_PARK_XY_FEEDRATE 100   // (mm/s) X and Y axes feedrate (also used for delta Z axis)
  #define NOZZLE_PARK_Z_FEEDRATE 5      // (mm/s) Z axis feedrate (not used for delta printers)
#endif

/**
 * Clean Nozzle Feature -- EXPERIMENTAL
 *
 * Adds the G12 command to perform a nozzle cleaning process.
 *
 * Parameters:
 *   P  Pattern
 *   S  Strokes / Repetitions
 *   T  Triangles (P1 only)
 *
 * Patterns:
 *   P0  Straight line (default). This process requires a sponge type material
 *       at a fixed bed location. "S" specifies strokes (i.e. back-forth motions)
 *       between the start / end points.
 *
 *   P1  Zig-zag pattern between (X0, Y0) and (X1, Y1), "T" specifies the
 *       number of zig-zag triangles to do. "S" defines the number of strokes.
 *       Zig-zags are done in whichever is the narrower dimension.
 *       For example, "G12 P1 S1 T3" will execute:
 *
 *          --
 *         |  (X0, Y1) |     /\        /\        /\     | (X1, Y1)
 *         |           |    /  \      /  \      /  \    |
 *       A |           |   /    \    /    \    /    \   |
 *         |           |  /      \  /      \  /      \  |
 *         |  (X0, Y0) | /        \/        \/        \ | (X1, Y0)
 *          --         +--------------------------------+
 *                       |________|_________|_________|
 *                           T1        T2        T3
 *
 *   P2  Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE.
 *       "R" specifies the radius. "S" specifies the stroke count.
 *       Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT.
 *
 *   Caveats: The ending Z should be the same as starting Z.
 * Attention: EXPERIMENTAL. G-code arguments may change.
 *
 */
//#define NOZZLE_CLEAN_FEATURE

#if ENABLED(NOZZLE_CLEAN_FEATURE)
  // Default number of pattern repetitions
  #define NOZZLE_CLEAN_STROKES  12

  // Default number of triangles
  #define NOZZLE_CLEAN_TRIANGLES  3

  // Specify positions as { X, Y, Z }
  #define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1)}
  #define NOZZLE_CLEAN_END_POINT   { 100, 60, (Z_MIN_POS + 1) }

  // Circular pattern radius
  #define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5
  // Circular pattern circle fragments number
  #define NOZZLE_CLEAN_CIRCLE_FN 10
  // Middle point of circle
  #define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT

  // Moves the nozzle to the initial position
  #define NOZZLE_CLEAN_GOBACK
#endif

/**
 * Print Job Timer
 *
 * Automatically start and stop the print job timer on M104/M109/M190.
 *
 *   M104 (hotend, no wait) - high temp = none,        low temp = stop timer
 *   M109 (hotend, wait)    - high temp = start timer, low temp = stop timer
 *   M190 (bed, wait)       - high temp = start timer, low temp = none
 *
 * The timer can also be controlled with the following commands:
 *
 *   M75 - Start the print job timer
 *   M76 - Pause the print job timer
 *   M77 - Stop the print job timer
 */
#define PRINTJOB_TIMER_AUTOSTART

/**
 * Print Counter
 *
 * Track statistical data such as:
 *
 *  - Total print jobs
 *  - Total successful print jobs
 *  - Total failed print jobs
 *  - Total time printing
 *
 * View the current statistics with M78.
 */
#define PRINTCOUNTER

//=============================================================================
//============================= LCD and SD support ============================
//=============================================================================

// @section lcd

/**
 * LCD LANGUAGE
 *
 * Select the language to display on the LCD. These languages are available:
 *
 *    en, an, bg, ca, cz, da, de, el, el-gr, es, eu, fi, fr, gl, hr, it,
 *    jp-kana, ko_KR, nl, pl, pt, pt-br, ru, sk, tr, uk, zh_CN, zh_TW, test
 *
 * :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cz':'Czech', 'da':'Danish', 'de':'German', 'el':'Greek', 'el-gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'jp-kana':'Japanese', 'ko_KR':'Korean (South Korea)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt-br':'Portuguese (Brazilian)', 'ru':'Russian', 'sk':'Slovak', 'tr':'Turkish', 'uk':'Ukrainian', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Traditional)', 'test':'TEST' }
 */
#define LCD_LANGUAGE en

/**
 * LCD Character Set
 *
 * Note: This option is NOT applicable to Graphical Displays.
 *
 * All character-based LCDs provide ASCII plus one of these
 * language extensions:
 *
 *  - JAPANESE ... the most common
 *  - WESTERN  ... with more accented characters
 *  - CYRILLIC ... for the Russian language
 *
 * To determine the language extension installed on your controller:
 *
 *  - Compile and upload with LCD_LANGUAGE set to 'test'
 *  - Click the controller to view the LCD menu
 *  - The LCD will display Japanese, Western, or Cyrillic text
 *
 * See http://marlinfw.org/docs/development/lcd_language.html
 *
 * :['JAPANESE', 'WESTERN', 'CYRILLIC']
 */
#define DISPLAY_CHARSET_HD44780 JAPANESE

/**
 * Info Screen Style (0:Classic, 1:Prusa)
 *
 * :[0:'Classic', 1:'Prusa']
 */
#define LCD_INFO_SCREEN_STYLE 0

/**
 * SD CARD
 *
 * SD Card support is disabled by default. If your controller has an SD slot,
 * you must uncomment the following option or it won't work.
 *
 */
#define SDSUPPORT

/**
 * SD CARD: SPI SPEED
 *
 * Enable one of the following items for a slower SPI transfer speed.
 * This may be required to resolve "volume init" errors.
 */
//#define SPI_SPEED SPI_HALF_SPEED
//#define SPI_SPEED SPI_QUARTER_SPEED
//#define SPI_SPEED SPI_EIGHTH_SPEED

/**
 * SD CARD: ENABLE CRC
 *
 * Use CRC checks and retries on the SD communication.
 */
#define SD_CHECK_AND_RETRY

/**
 * LCD Menu Items
 *
 * Disable all menus and only display the Status Screen, or
 * just remove some extraneous menu items to recover space.
 */
//#define NO_LCD_MENUS
//#define SLIM_LCD_MENUS

//
// ENCODER SETTINGS
//
// This option overrides the default number of encoder pulses needed to
// produce one step. Should be increased for high-resolution encoders.
//
//#define ENCODER_PULSES_PER_STEP 4

//
// Use this option to override the number of step signals required to
// move between next/prev menu items.
//
//#define ENCODER_STEPS_PER_MENU_ITEM 1

/**
 * Encoder Direction Options
 *
 * Test your encoder's behavior first with both options disabled.
 *
 *  Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.
 *  Reversed Menu Navigation only?    Enable REVERSE_MENU_DIRECTION.
 *  Reversed Value Editing only?      Enable BOTH options.
 */

//
// This option reverses the encoder direction everywhere.
//
//  Set this option if CLOCKWISE causes values to DECREASE
//
//#define REVERSE_ENCODER_DIRECTION

//
// This option reverses the encoder direction for navigating LCD menus.
//
//  If CLOCKWISE normally moves DOWN this makes it go UP.
//  If CLOCKWISE normally moves UP this makes it go DOWN.
//
//#define REVERSE_MENU_DIRECTION

//
// Individual Axis Homing
//
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.
//
#define INDIVIDUAL_AXIS_HOMING_MENU

//
// SPEAKER/BUZZER
//
// If you have a speaker that can produce tones, enable it here.
// By default Marlin assumes you have a buzzer with a fixed frequency.
//
#define SPEAKER

//
// The duration and frequency for the UI feedback sound.
// Set these to 0 to disable audio feedback in the LCD menus.
//
// Note: Test audio output with the G-Code:
//  M300 S<frequency Hz> P<duration ms>
//
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
#define LCD_FEEDBACK_FREQUENCY_HZ 5000

//=============================================================================
//======================== LCD / Controller Selection =========================
//========================   (Character-based LCDs)   =========================
//=============================================================================

//
// RepRapDiscount Smart Controller.
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//
// Note: Usually sold with a white PCB.
//
#define REPRAP_DISCOUNT_SMART_CONTROLLER

//
// Original RADDS LCD Display+Encoder+SDCardReader
// http://doku.radds.org/dokumentation/lcd-display/
//
//#define RADDS_DISPLAY

//
// ULTIMAKER Controller.
//
//#define ULTIMAKERCONTROLLER

//
// ULTIPANEL as seen on Thingiverse.
//
//#define ULTIPANEL

//
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//
//#define PANEL_ONE

//
// GADGETS3D G3D LCD/SD Controller
// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//
// Note: Usually sold with a blue PCB.
//
//#define G3D_PANEL

//
// RigidBot Panel V1.0
// http://www.inventapart.com/
//
//#define RIGIDBOT_PANEL

//
// Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller
// https://www.aliexpress.com/item/Micromake-Makeboard-3D-Printer-Parts-3D-Printer-Mini-Display-1602-Mini-Controller-Compatible-with-Ramps-1/32765887917.html
//
//#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602

//
// ANET and Tronxy 20x4 Controller
//
//#define ZONESTAR_LCD            // Requires ADC_KEYPAD_PIN to be assigned to an analog pin.
                                  // This LCD is known to be susceptible to electrical interference
                                  // which scrambles the display.  Pressing any button clears it up.
                                  // This is a LCD2004 display with 5 analog buttons.

//
// Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD.
//
#define ULTRA_LCD

//=============================================================================
//======================== LCD / Controller Selection =========================
//=====================   (I2C and Shift-Register LCDs)   =====================
//=============================================================================

//
// CONTROLLER TYPE: I2C
//
// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C
// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//

//
// Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
//
//#define RA_CONTROL_PANEL

//
// Sainsmart (YwRobot) LCD Displays
//
// These require F.Malpartida's LiquidCrystal_I2C library
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home
//
//#define LCD_SAINSMART_I2C_1602
//#define LCD_SAINSMART_I2C_2004

//
// Generic LCM1602 LCD adapter
//
//#define LCM1602

//
// PANELOLU2 LCD with status LEDs,
// separate encoder and click inputs.
//
// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.
// For more info: https://github.com/lincomatic/LiquidTWI2
//
// Note: The PANELOLU2 encoder click input can either be directly connected to
// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
//
//#define LCD_I2C_PANELOLU2

//
// Panucatt VIKI LCD with status LEDs,
// integrated click & L/R/U/D buttons, separate encoder inputs.
//
//#define LCD_I2C_VIKI

//
// CONTROLLER TYPE: Shift register panels
//

//
// 2-wire Non-latching LCD SR from https://goo.gl/aJJ4sH
// LCD configuration: http://reprap.org/wiki/SAV_3D_LCD
//
//#define SAV_3DLCD

//
// 3-wire SR LCD with strobe using 74HC4094
// https://github.com/mikeshub/SailfishLCD
// Uses the code directly from Sailfish
//
//#define FF_INTERFACEBOARD

//=============================================================================
//=======================   LCD / Controller Selection  =======================
//=========================      (Graphical LCDs)      ========================
//=============================================================================

//
// CONTROLLER TYPE: Graphical 128x64 (DOGM)
//
// IMPORTANT: The U8glib library is required for Graphical Display!
//            https://github.com/olikraus/U8glib_Arduino
//

//
// RepRapDiscount FULL GRAPHIC Smart Controller
// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER

//
// ReprapWorld Graphical LCD
// https://reprapworld.com/?products_details&products_id/1218
//
//#define REPRAPWORLD_GRAPHICAL_LCD

//
// Activate one of these if you have a Panucatt Devices
// Viki 2.0 or mini Viki with Graphic LCD
// http://panucatt.com
//
//#define VIKI2
//#define miniVIKI

//
// MakerLab Mini Panel with graphic
// controller and SD support - http://reprap.org/wiki/Mini_panel
//
//#define MINIPANEL

//
// MaKr3d Makr-Panel with graphic controller and SD support.
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//
//#define MAKRPANEL

//
// Adafruit ST7565 Full Graphic Controller.
// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/
//
//#define ELB_FULL_GRAPHIC_CONTROLLER

//
// BQ LCD Smart Controller shipped by
// default with the BQ Hephestos 2 and Witbox 2.
//
//#define BQ_LCD_SMART_CONTROLLER

//
// Cartesio UI
// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface
//
//#define CARTESIO_UI

//
// LCD for Melzi Card with Graphical LCD
//
//#define LCD_FOR_MELZI

//
// Original Ulticontroller from Ultimaker 2 printer with SSD1309 I2C display and encoder
// https://github.com/Ultimaker/Ultimaker2/tree/master/1249_Ulticontroller_Board_(x1)
//
//#define ULTI_CONTROLLER

//
// MKS MINI12864 with graphic controller and SD support
// https://reprap.org/wiki/MKS_MINI_12864
//
//#define MKS_MINI_12864

//
// FYSETC variant of the MINI12864 graphic controller with SD support
// https://wiki.fysetc.com/Mini12864_Panel/
//
//#define FYSETC_MINI_12864_X_X  // Type C/D/E/F. No tunable RGB Backlight by default
//#define FYSETC_MINI_12864_1_2  // Type C/D/E/F. Simple RGB Backlight (always on)
//#define FYSETC_MINI_12864_2_0  // Type A/B. Discreet RGB Backlight
//#define FYSETC_MINI_12864_2_1  // Type A/B. Neopixel RGB Backlight

//
// Factory display for Creality CR-10
// https://www.aliexpress.com/item/Universal-LCD-12864-3D-Printer-Display-Screen-With-Encoder-For-CR-10-CR-7-Model/32833148327.html
//
// This is RAMPS-compatible using a single 10-pin connector.
// (For CR-10 owners who want to replace the Melzi Creality board but retain the display)
//
//#define CR10_STOCKDISPLAY

//
// ANET and Tronxy Graphical Controller
//
// Anet 128x64 full graphics lcd with rotary encoder as used on Anet A6
// A clone of the RepRapDiscount full graphics display but with
// different pins/wiring (see pins_ANET_10.h).
//
//#define ANET_FULL_GRAPHICS_LCD

//
// AZSMZ 12864 LCD with SD
// https://www.aliexpress.com/store/product/3D-printer-smart-controller-SMART-RAMPS-OR-RAMPS-1-4-LCD-12864-LCD-control-panel-green/2179173_32213636460.html
//
//#define AZSMZ_12864

//
// Silvergate GLCD controller
// http://github.com/android444/Silvergate
//
//#define SILVER_GATE_GLCD_CONTROLLER

//=============================================================================
//==============================  OLED Displays  ==============================
//=============================================================================

//
// SSD1306 OLED full graphics generic display
//
//#define U8GLIB_SSD1306

//
// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules
//
//#define SAV_3DGLCD
#if ENABLED(SAV_3DGLCD)
  #define U8GLIB_SSD1306
  //#define U8GLIB_SH1106
#endif

//
// TinyBoy2 128x64 OLED / Encoder Panel
//
//#define OLED_PANEL_TINYBOY2

//
// MKS OLED 1.3" 128 × 64 FULL GRAPHICS CONTROLLER
// http://reprap.org/wiki/MKS_12864OLED
//
// Tiny, but very sharp OLED display
//
//#define MKS_12864OLED          // Uses the SH1106 controller (default)
//#define MKS_12864OLED_SSD1306  // Uses the SSD1306 controller

//
// Einstart S OLED SSD1306
//
//#define U8GLIB_SH1106_EINSTART

//=============================================================================
//========================== Extensible UI Displays ===========================
//=============================================================================

//
// DGUS Touch Display with DWIN OS
//
//#define DGUS_LCD

//
// Touch-screen LCD for Malyan M200 printers
//
//#define MALYAN_LCD

//
// Third-party or vendor-customized controller interfaces.
// Sources should be installed in 'src/lcd/extensible_ui'.
//
//#define EXTENSIBLE_UI

//=============================================================================
//=============================== Graphical TFTs ==============================
//=============================================================================

//
// MKS Robin 320x240 color display
//
//#define MKS_ROBIN_TFT

//=============================================================================
//============================  Other Controllers  ============================
//=============================================================================

//
// CONTROLLER TYPE: Keypad / Add-on
//

//
// RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//
// REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key
// is pressed, a value of 10.0 means 10mm per click.
//
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0

//=============================================================================
//=============================== Extra Features ==============================
//=============================================================================

// @section extras

// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
// :[0,1,2,3,4,5,6,7]
#define SOFT_PWM_SCALE 0

// If SOFT_PWM_SCALE is set to a value higher than 0, dithering can
// be used to mitigate the associated resolution loss. If enabled,
// some of the PWM cycles are stretched so on average the desired
// duty cycle is attained.
//#define SOFT_PWM_DITHER

// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends, bed temperature, and target temperature are under 54C
// then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)
//#define TEMP_STAT_LEDS

// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX

// Support for the BariCUDA Paste Extruder
//#define BARICUDA

// Support for BlinkM/CyzRgb
//#define BLINKM

// Support for PCA9632 PWM LED driver
//#define PCA9632

// Support for PCA9533 PWM LED driver
// https://github.com/mikeshub/SailfishRGB_LED
//#define PCA9533

/**
 * RGB LED / LED Strip Control
 *
 * Enable support for an RGB LED connected to 5V digital pins, or
 * an RGB Strip connected to MOSFETs controlled by digital pins.
 *
 * Adds the M150 command to set the LED (or LED strip) color.
 * If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of
 * luminance values can be set from 0 to 255.
 * For Neopixel LED an overall brightness parameter is also available.
 *
 * *** CAUTION ***
 *  LED Strips require a MOSFET Chip between PWM lines and LEDs,
 *  as the Arduino cannot handle the current the LEDs will require.
 *  Failure to follow this precaution can destroy your Arduino!
 *  NOTE: A separate 5V power supply is required! The Neopixel LED needs
 *  more current than the Arduino 5V linear regulator can produce.
 * *** CAUTION ***
 *
 * LED Type. Enable only one of the following two options.
 *
 */
//#define RGB_LED
//#define RGBW_LED

#if EITHER(RGB_LED, RGBW_LED)
  //#define RGB_LED_R_PIN 34
  //#define RGB_LED_G_PIN 43
  //#define RGB_LED_B_PIN 35
  //#define RGB_LED_W_PIN -1
#endif

// Support for Adafruit Neopixel LED driver
//#define NEOPIXEL_LED
#if ENABLED(NEOPIXEL_LED)
  #define NEOPIXEL_TYPE   NEO_GRBW // NEO_GRBW / NEO_GRB - four/three channel driver type (defined in Adafruit_NeoPixel.h)
  #define NEOPIXEL_PIN    4        // LED driving pin
  #define NEOPIXEL_PIXELS 30       // Number of LEDs in the strip
  #define NEOPIXEL_IS_SEQUENTIAL   // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once.
  #define NEOPIXEL_BRIGHTNESS 127  // Initial brightness (0-255)
  //#define NEOPIXEL_STARTUP_TEST  // Cycle through colors at startup

  // Use a single Neopixel LED for static (background) lighting
  //#define NEOPIXEL_BKGD_LED_INDEX  0               // Index of the LED to use
  //#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 } // R, G, B, W
#endif

/**
 * Printer Event LEDs
 *
 * During printing, the LEDs will reflect the printer status:
 *
 *  - Gradually change from blue to violet as the heated bed gets to target temp
 *  - Gradually change from violet to red as the hotend gets to temperature
 *  - Change to white to illuminate work surface
 *  - Change to green once print has finished
 *  - Turn off after the print has finished and the user has pushed a button
 */
#if ANY(BLINKM, RGB_LED, RGBW_LED, PCA9632, PCA9533, NEOPIXEL_LED)
  #define PRINTER_EVENT_LEDS
#endif

/**
 * R/C SERVO support
 * Sponsored by TrinityLabs, Reworked by codexmas
 */

/**
 * Number of servos
 *
 * For some servo-related options NUM_SERVOS will be set automatically.
 * Set this manually if there are extra servos needing manual control.
 * Leave undefined or set to 0 to entirely disable the servo subsystem.
 */
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

// Delay (in milliseconds) before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.
// If the servo can't reach the requested position, increase it.
#define SERVO_DELAY { 300 }

// Only power servos during movement, otherwise leave off to prevent jitter
//#define DEACTIVATE_SERVOS_AFTER_MOVE

// Allow servo angle to be edited and saved to EEPROM
//#define EDITABLE_SERVO_ANGLES