/** * Marlin 3D Printer Firmware * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE * Copyright (c) 2017 Eduardo José Tagle. All right reserved * Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved. */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #include "MarlinSerial_Due.h" #include "InterruptVectors_Due.h" #include "../../Marlin.h" template typename MarlinSerial::ring_buffer_r MarlinSerial::rx_buffer = { 0, 0, { 0 } }; template typename MarlinSerial::ring_buffer_t MarlinSerial::tx_buffer = { 0 }; template bool MarlinSerial::_written = false; template uint8_t MarlinSerial::xon_xoff_state = MarlinSerial::XON_XOFF_CHAR_SENT | MarlinSerial::XON_CHAR; template uint8_t MarlinSerial::rx_dropped_bytes = 0; template uint8_t MarlinSerial::rx_buffer_overruns = 0; template uint8_t MarlinSerial::rx_framing_errors = 0; template typename MarlinSerial::ring_buffer_pos_t MarlinSerial::rx_max_enqueued = 0; // A SW memory barrier, to ensure GCC does not overoptimize loops #define sw_barrier() asm volatile("": : :"memory"); #include "../../feature/emergency_parser.h" // (called with RX interrupts disabled) template FORCE_INLINE void MarlinSerial::store_rxd_char() { static EmergencyParser::State emergency_state; // = EP_RESET // Get the tail - Nothing can alter its value while we are at this ISR const ring_buffer_pos_t t = rx_buffer.tail; // Get the head pointer ring_buffer_pos_t h = rx_buffer.head; // Get the next element ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART uint8_t c = HWUART->UART_RHR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the RX FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Calculate count of bytes stored into the RX buffer // Keep track of the maximum count of enqueued bytes if (Cfg::MAX_RX_QUEUED) NOLESS(rx_max_enqueued, rx_count); if (Cfg::XONOFF) { // If the last char that was sent was an XON if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { // Bytes stored into the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // If over 12.5% of RX buffer capacity, send XOFF before running out of // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react // and stop sending bytes. This translates to 13mS propagation time. if (rx_count >= (Cfg::RX_SIZE) / 8) { // At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted. // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens // to be in the middle of trying to disable the RX interrupt in the main program, eventually the // enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure // the sending of the XOFF char is to send it HERE AND NOW. // About to send the XOFF char xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; // Wait until the TX register becomes empty and send it - Here there could be a problem // - While waiting for the TX register to empty, the RX register could receive a new // character. This must also handle that situation! uint32_t status; while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) { if (status & UART_SR_RXRDY) { // We received a char while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART c = HWUART->UART_RHR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; } sw_barrier(); } HWUART->UART_THR = XOFF_CHAR; // At this point there could be a race condition between the write() function // and this sending of the XOFF char. This interrupt could happen between the // wait to be empty TX buffer loop and the actual write of the character. Since // the TX buffer is full because it's sending the XOFF char, the only way to be // sure the write() function will succeed is to wait for the XOFF char to be // completely sent. Since an extra character could be received during the wait // it must also be handled! while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) { if (status & UART_SR_RXRDY) { // A char arrived while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART c = HWUART->UART_RHR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; } sw_barrier(); } // At this point everything is ready. The write() function won't // have any issues writing to the UART TX register if it needs to! } } } // Store the new head value rx_buffer.head = h; } template FORCE_INLINE void MarlinSerial::_tx_thr_empty_irq(void) { if (Cfg::TX_SIZE > 0) { // Read positions uint8_t t = tx_buffer.tail; const uint8_t h = tx_buffer.head; if (Cfg::XONOFF) { // If an XON char is pending to be sent, do it now if (xon_xoff_state == XON_CHAR) { // Send the character HWUART->UART_THR = XON_CHAR; // Remember we sent it. xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; // If nothing else to transmit, just disable TX interrupts. if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY; return; } } // If nothing to transmit, just disable TX interrupts. This could // happen as the result of the non atomicity of the disabling of RX // interrupts that could end reenabling TX interrupts as a side effect. if (h == t) { HWUART->UART_IDR = UART_IDR_TXRDY; return; } // There is something to TX, Send the next byte const uint8_t c = tx_buffer.buffer[t]; t = (t + 1) & (Cfg::TX_SIZE - 1); HWUART->UART_THR = c; tx_buffer.tail = t; // Disable interrupts if there is nothing to transmit following this byte if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY; } } template void MarlinSerial::UART_ISR(void) { const uint32_t status = HWUART->UART_SR; // Data received? if (status & UART_SR_RXRDY) store_rxd_char(); if (Cfg::TX_SIZE > 0) { // Something to send, and TX interrupts are enabled (meaning something to send)? if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq(); } // Acknowledge errors if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) { if (Cfg::DROPPED_RX && (status & UART_SR_OVRE) && !++rx_dropped_bytes) --rx_dropped_bytes; if (Cfg::RX_OVERRUNS && (status & UART_SR_OVRE) && !++rx_buffer_overruns) --rx_buffer_overruns; if (Cfg::RX_FRAMING_ERRORS && (status & UART_SR_FRAME) && !++rx_framing_errors) --rx_framing_errors; // TODO: error reporting outside ISR HWUART->UART_CR = UART_CR_RSTSTA; } } // Public Methods template void MarlinSerial::begin(const long baud_setting) { // Disable UART interrupt in NVIC NVIC_DisableIRQ( HWUART_IRQ ); // We NEED memory barriers to ensure Interrupts are actually disabled! // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) __DSB(); __ISB(); // Disable clock pmc_disable_periph_clk( HWUART_IRQ_ID ); // Configure PMC pmc_enable_periph_clk( HWUART_IRQ_ID ); // Disable PDC channel HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS; // Reset and disable receiver and transmitter HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS; // Configure mode: 8bit, No parity, 1 bit stop HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO; // Configure baudrate (asynchronous, no oversampling) HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4)); // Configure interrupts HWUART->UART_IDR = 0xFFFFFFFF; HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME; // Install interrupt handler install_isr(HWUART_IRQ, UART_ISR); // Configure priority. We need a very high priority to avoid losing characters // and we need to be able to preempt the Stepper ISR and everything else! // (this could probably be fixed by using DMA with the Serial port) NVIC_SetPriority(HWUART_IRQ, 1); // Enable UART interrupt in NVIC NVIC_EnableIRQ(HWUART_IRQ); // Enable receiver and transmitter HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN; if (Cfg::TX_SIZE > 0) _written = false; } template void MarlinSerial::end() { // Disable UART interrupt in NVIC NVIC_DisableIRQ( HWUART_IRQ ); // We NEED memory barriers to ensure Interrupts are actually disabled! // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) __DSB(); __ISB(); pmc_disable_periph_clk( HWUART_IRQ_ID ); } template int MarlinSerial::peek(void) { const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail]; return v; } template int MarlinSerial::read(void) { const ring_buffer_pos_t h = rx_buffer.head; ring_buffer_pos_t t = rx_buffer.tail; if (h == t) return -1; int v = rx_buffer.buffer[t]; t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1); // Advance tail rx_buffer.tail = t; if (Cfg::XONOFF) { // If the XOFF char was sent, or about to be sent... if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { // Get count of bytes in the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes if (rx_count < (Cfg::RX_SIZE) / 10) { if (Cfg::TX_SIZE > 0) { // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX isr. HWUART->UART_IER = UART_IER_TXRDY; } else { // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); HWUART->UART_THR = XON_CHAR; } } } } return v; } template typename MarlinSerial::ring_buffer_pos_t MarlinSerial::available(void) { const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail; return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1); } template void MarlinSerial::flush(void) { rx_buffer.tail = rx_buffer.head; if (Cfg::XONOFF) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if (Cfg::TX_SIZE > 0) { // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX isr. HWUART->UART_IER = UART_IER_TXRDY; } else { // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); HWUART->UART_THR = XON_CHAR; } } } } template void MarlinSerial::write(const uint8_t c) { _written = true; if (Cfg::TX_SIZE == 0) { while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); HWUART->UART_THR = c; } else { // If the TX interrupts are disabled and the data register // is empty, just write the byte to the data register and // be done. This shortcut helps significantly improve the // effective datarate at high (>500kbit/s) bitrates, where // interrupt overhead becomes a slowdown. // Yes, there is a race condition between the sending of the // XOFF char at the RX isr, but it is properly handled there if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) { HWUART->UART_THR = c; return; } const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1); // If global interrupts are disabled (as the result of being called from an ISR)... if (!ISRS_ENABLED()) { // Make room by polling if it is possible to transmit, and do so! while (i == tx_buffer.tail) { // If we can transmit another byte, do it. if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq(); // Make sure compiler rereads tx_buffer.tail sw_barrier(); } } else { // Interrupts are enabled, just wait until there is space while (i == tx_buffer.tail) sw_barrier(); } // Store new char. head is always safe to move tx_buffer.buffer[tx_buffer.head] = c; tx_buffer.head = i; // Enable TX isr - Non atomic, but it will eventually enable TX isr HWUART->UART_IER = UART_IER_TXRDY; } } template void MarlinSerial::flushTX(void) { // TX if (Cfg::TX_SIZE == 0) { // No bytes written, no need to flush. This special case is needed since there's // no way to force the TXC (transmit complete) bit to 1 during initialization. if (!_written) return; // Wait until everything was transmitted while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier(); // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } else { // If we have never written a byte, no need to flush. This special // case is needed since there is no way to force the TXC (transmit // complete) bit to 1 during initialization if (!_written) return; // If global interrupts are disabled (as the result of being called from an ISR)... if (!ISRS_ENABLED()) { // Wait until everything was transmitted - We must do polling, as interrupts are disabled while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) { // If there is more space, send an extra character if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq(); sw_barrier(); } } else { // Wait until everything was transmitted while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier(); } // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } } /** * Imports from print.h */ template void MarlinSerial::print(char c, int base) { print((long)c, base); } template void MarlinSerial::print(unsigned char b, int base) { print((unsigned long)b, base); } template void MarlinSerial::print(int n, int base) { print((long)n, base); } template void MarlinSerial::print(unsigned int n, int base) { print((unsigned long)n, base); } template void MarlinSerial::print(long n, int base) { if (base == 0) write(n); else if (base == 10) { if (n < 0) { print('-'); n = -n; } printNumber(n, 10); } else printNumber(n, base); } template void MarlinSerial::print(unsigned long n, int base) { if (base == 0) write(n); else printNumber(n, base); } template void MarlinSerial::print(double n, int digits) { printFloat(n, digits); } template void MarlinSerial::println(void) { print('\r'); print('\n'); } template void MarlinSerial::println(const String& s) { print(s); println(); } template void MarlinSerial::println(const char c[]) { print(c); println(); } template void MarlinSerial::println(char c, int base) { print(c, base); println(); } template void MarlinSerial::println(unsigned char b, int base) { print(b, base); println(); } template void MarlinSerial::println(int n, int base) { print(n, base); println(); } template void MarlinSerial::println(unsigned int n, int base) { print(n, base); println(); } template void MarlinSerial::println(long n, int base) { print(n, base); println(); } template void MarlinSerial::println(unsigned long n, int base) { print(n, base); println(); } template void MarlinSerial::println(double n, int digits) { print(n, digits); println(); } // Private Methods template void MarlinSerial::printNumber(unsigned long n, uint8_t base) { if (n) { unsigned char buf[8 * sizeof(long)]; // Enough space for base 2 int8_t i = 0; while (n) { buf[i++] = n % base; n /= base; } while (i--) print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); } else print('0'); } template void MarlinSerial::printFloat(double number, uint8_t digits) { // Handle negative numbers if (number < 0.0) { print('-'); number = -number; } // Round correctly so that print(1.999, 2) prints as "2.00" double rounding = 0.5; for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1; number += rounding; // Extract the integer part of the number and print it unsigned long int_part = (unsigned long)number; double remainder = number - (double)int_part; print(int_part); // Print the decimal point, but only if there are digits beyond if (digits) { print('.'); // Extract digits from the remainder one at a time while (digits--) { remainder *= 10.0; int toPrint = int(remainder); print(toPrint); remainder -= toPrint; } } } // If not using the USB port as serial port #if SERIAL_PORT >= 0 // Preinstantiate template class MarlinSerial>; // Instantiate MarlinSerial> customizedSerial1; #endif #ifdef SERIAL_PORT_2 // Preinstantiate template class MarlinSerial>; // Instantiate MarlinSerial> customizedSerial2; #endif #endif // ARDUINO_ARCH_SAM