/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
/**
* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
* Updated with backports of the latest SdFat library from the same author
*
* This file is part of the Arduino Sd2Card Library
*/
#include "../inc/MarlinConfig.h"
#if ENABLED(SDSUPPORT)
/* Enable FAST CRC computations - You can trade speed for FLASH space if
* needed by disabling the following define */
#define FAST_CRC 1
#include "Sd2Card.h"
#include "../Marlin.h"
#if ENABLED(SD_CHECK_AND_RETRY)
static bool crcSupported = true;
#ifdef FAST_CRC
static const uint8_t crctab7[] PROGMEM = {
0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77,
0x19,0x10,0x0b,0x02,0x3d,0x34,0x2f,0x26,0x51,0x58,0x43,0x4a,0x75,0x7c,0x67,0x6e,
0x32,0x3b,0x20,0x29,0x16,0x1f,0x04,0x0d,0x7a,0x73,0x68,0x61,0x5e,0x57,0x4c,0x45,
0x2b,0x22,0x39,0x30,0x0f,0x06,0x1d,0x14,0x63,0x6a,0x71,0x78,0x47,0x4e,0x55,0x5c,
0x64,0x6d,0x76,0x7f,0x40,0x49,0x52,0x5b,0x2c,0x25,0x3e,0x37,0x08,0x01,0x1a,0x13,
0x7d,0x74,0x6f,0x66,0x59,0x50,0x4b,0x42,0x35,0x3c,0x27,0x2e,0x11,0x18,0x03,0x0a,
0x56,0x5f,0x44,0x4d,0x72,0x7b,0x60,0x69,0x1e,0x17,0x0c,0x05,0x3a,0x33,0x28,0x21,
0x4f,0x46,0x5d,0x54,0x6b,0x62,0x79,0x70,0x07,0x0e,0x15,0x1c,0x23,0x2a,0x31,0x38,
0x41,0x48,0x53,0x5a,0x65,0x6c,0x77,0x7e,0x09,0x00,0x1b,0x12,0x2d,0x24,0x3f,0x36,
0x58,0x51,0x4a,0x43,0x7c,0x75,0x6e,0x67,0x10,0x19,0x02,0x0b,0x34,0x3d,0x26,0x2f,
0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,
0x6a,0x63,0x78,0x71,0x4e,0x47,0x5c,0x55,0x22,0x2b,0x30,0x39,0x06,0x0f,0x14,0x1d,
0x25,0x2c,0x37,0x3e,0x01,0x08,0x13,0x1a,0x6d,0x64,0x7f,0x76,0x49,0x40,0x5b,0x52,
0x3c,0x35,0x2e,0x27,0x18,0x11,0x0a,0x03,0x74,0x7d,0x66,0x6f,0x50,0x59,0x42,0x4b,
0x17,0x1e,0x05,0x0c,0x33,0x3a,0x21,0x28,0x5f,0x56,0x4d,0x44,0x7b,0x72,0x69,0x60,
0x0e,0x07,0x1c,0x15,0x2a,0x23,0x38,0x31,0x46,0x4f,0x54,0x5d,0x62,0x6b,0x70,0x79
};
static uint8_t CRC7(const uint8_t* data, uint8_t n) {
uint8_t crc = 0;
while ( n > 0 ) {
crc = pgm_read_byte(&crctab7[ (crc << 1) ^ *data++ ]);
n--;
}
return (crc << 1) | 1;
}
#else
static uint8_t CRC7(const uint8_t* data, uint8_t n) {
uint8_t crc = 0;
for (uint8_t i = 0; i < n; i++) {
uint8_t d = data[i];
d ^= crc << 1;
if (d & 0x80) d ^= 9;
crc = d ^ (crc & 0x78) ^ (crc << 4) ^ ((crc >> 3) & 15);
crc &= 0x7f;
}
crc = (crc << 1) ^ (crc << 4) ^ (crc & 0x70) ^ ((crc >> 3) & 0x0f);
return crc | 1;
}
#endif
#endif
// send command and return error code. Return zero for OK
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
// select card
chipSelect();
// wait up to 300 ms if busy
waitNotBusy( SD_WRITE_TIMEOUT );
uint8_t *pa = (uint8_t *)(&arg);
#if ENABLED(SD_CHECK_AND_RETRY)
// form message
uint8_t d[6] = {(uint8_t) (cmd | 0x40), pa[3], pa[2], pa[1], pa[0] };
// add crc
d[5] = CRC7(d, 5);
// send message
for (uint8_t k = 0; k < 6; k++ )
spiSend( d[k] );
#else
// send command
spiSend(cmd | 0x40);
// send argument
for( int8_t i = 3; i >= 0; i-- )
spiSend( pa[i] );
// send CRC - correct for CMD0 with arg zero or CMD8 with arg 0X1AA
spiSend( cmd == CMD0 ? 0X95 : 0X87 );
#endif
// skip stuff byte for stop read
if (cmd == CMD12) spiRec();
// wait for response
for (uint8_t i = 0; ((status_ = spiRec()) & 0x80) && i != 0xFF; i++) { /* Intentionally left empty */ }
return status_;
}
/**
* Determine the size of an SD flash memory card.
*
* \return The number of 512 byte data blocks in the card
* or zero if an error occurs.
*/
uint32_t Sd2Card::cardSize() {
csd_t csd;
if (!readCSD(&csd)) return 0;
if (csd.v1.csd_ver == 0) {
uint8_t read_bl_len = csd.v1.read_bl_len;
uint16_t c_size = (csd.v1.c_size_high << 10)
| (csd.v1.c_size_mid << 2) | csd.v1.c_size_low;
uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1)
| csd.v1.c_size_mult_low;
return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7);
}
else if (csd.v2.csd_ver == 1) {
uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16)
| (csd.v2.c_size_mid << 8) | csd.v2.c_size_low;
return (c_size + 1) << 10;
}
else {
error(SD_CARD_ERROR_BAD_CSD);
return 0;
}
}
void Sd2Card::chipDeselect() {
digitalWrite(chipSelectPin_, HIGH);
// insure MISO goes high impedance
spiSend( 0xFF );
}
void Sd2Card::chipSelect() {
spiInit(spiRate_);
digitalWrite(chipSelectPin_, LOW);
}
/**
* Erase a range of blocks.
*
* \param[in] firstBlock The address of the first block in the range.
* \param[in] lastBlock The address of the last block in the range.
*
* \note This function requests the SD card to do a flash erase for a
* range of blocks. The data on the card after an erase operation is
* either 0 or 1, depends on the card vendor. The card must support
* single block erase.
*
* \return true for success, false for failure.
*/
bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
csd_t csd;
if (!readCSD(&csd)) goto FAIL;
// check for single block erase
if (!csd.v1.erase_blk_en) {
// erase size mask
uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low;
if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) {
// error card can't erase specified area
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
goto FAIL;
}
}
if (type_ != SD_CARD_TYPE_SDHC) {
firstBlock <<= 9;
lastBlock <<= 9;
}
if (cardCommand(CMD32, firstBlock)
|| cardCommand(CMD33, lastBlock)
|| cardCommand(CMD38, 0)) {
error(SD_CARD_ERROR_ERASE);
goto FAIL;
}
if (!waitNotBusy(SD_ERASE_TIMEOUT)) {
error(SD_CARD_ERROR_ERASE_TIMEOUT);
goto FAIL;
}
chipDeselect();
return true;
FAIL:
chipDeselect();
return false;
}
/**
* Determine if card supports single block erase.
*
* \return true if single block erase is supported.
* false if single block erase is not supported.
*/
bool Sd2Card::eraseSingleBlockEnable() {
csd_t csd;
return readCSD(&csd) ? csd.v1.erase_blk_en : false;
}
/**
* Initialize an SD flash memory card.
*
* \param[in] sckRateID SPI clock rate selector. See setSckRate().
* \param[in] chipSelectPin SD chip select pin number.
*
* \return true for success, false for failure.
* The reason for failure can be determined by calling errorCode() and errorData().
*/
bool Sd2Card::init(uint8_t sckRateID, pin_t chipSelectPin) {
errorCode_ = type_ = 0;
chipSelectPin_ = chipSelectPin;
// 16-bit init start time allows over a minute
uint16_t t0 = (uint16_t)millis();
uint32_t arg;
// If init takes more than 4s it could trigger
// watchdog leading to a reboot loop.
#if ENABLED(USE_WATCHDOG)
watchdog_reset();
#endif
// Set pin modes
digitalWrite(chipSelectPin_, HIGH); // For some CPUs pinMode can write the wrong data so init desired data value first
pinMode(chipSelectPin_, OUTPUT); // Solution for #8746 by @benlye
spiBegin();
// Set SCK rate for initialization commands
spiRate_ = SPI_SD_INIT_RATE;
spiInit(spiRate_);
// Must supply min of 74 clock cycles with CS high.
for (uint8_t i = 0; i < 10; i++) spiSend(0xFF);
// Initialization can cause the watchdog to timeout, so reinit it here
#if ENABLED(USE_WATCHDOG)
watchdog_reset();
#endif
// Command to go idle in SPI mode
while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_CMD0);
goto FAIL;
}
}
#if ENABLED(SD_CHECK_AND_RETRY)
crcSupported = (cardCommand(CMD59, 1) == R1_IDLE_STATE);
#endif
// Initialization can cause the watchdog to timeout, so reinit it here
#if ENABLED(USE_WATCHDOG)
watchdog_reset();
#endif
// check SD version
for (;;) {
if (cardCommand(CMD8, 0x1AA) == (R1_ILLEGAL_COMMAND | R1_IDLE_STATE)) {
type(SD_CARD_TYPE_SD1);
break;
}
// Get the last byte of r7 response
for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
if (status_ == 0xAA) {
type(SD_CARD_TYPE_SD2);
break;
}
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_CMD8);
goto FAIL;
}
}
// Initialization can cause the watchdog to timeout, so reinit it here
#if ENABLED(USE_WATCHDOG)
watchdog_reset();
#endif
// initialize card and send host supports SDHC if SD2
arg = type() == SD_CARD_TYPE_SD2 ? 0x40000000 : 0;
while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
// check for timeout
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_ACMD41);
goto FAIL;
}
}
// if SD2 read OCR register to check for SDHC card
if (type() == SD_CARD_TYPE_SD2) {
if (cardCommand(CMD58, 0)) {
error(SD_CARD_ERROR_CMD58);
goto FAIL;
}
if ((spiRec() & 0xC0) == 0xC0) type(SD_CARD_TYPE_SDHC);
// discard rest of ocr - contains allowed voltage range
for (uint8_t i = 0; i < 3; i++) spiRec();
}
chipDeselect();
return setSckRate(sckRateID);
FAIL:
chipDeselect();
return false;
}
/**
* Read a 512 byte block from an SD card.
*
* \param[in] blockNumber Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return true for success, false for failure.
*/
bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
#if ENABLED(SD_CHECK_AND_RETRY)
uint8_t retryCnt = 3;
for(;;) {
if (cardCommand(CMD17, blockNumber))
error(SD_CARD_ERROR_CMD17);
else if (readData(dst, 512))
return true;
chipDeselect();
if (!--retryCnt) break;
cardCommand(CMD12, 0); // Try sending a stop command, ignore the result.
errorCode_ = 0;
}
return false;
#else
if (cardCommand(CMD17, blockNumber)) {
error(SD_CARD_ERROR_CMD17);
chipDeselect();
return false;
}
else
return readData(dst, 512);
#endif
}
/**
* Read one data block in a multiple block read sequence
*
* \param[in] dst Pointer to the location for the data to be read.
*
* \return true for success, false for failure.
*/
bool Sd2Card::readData(uint8_t* dst) {
chipSelect();
return readData(dst, 512);
}
#if ENABLED(SD_CHECK_AND_RETRY)
#ifdef FAST_CRC
static const uint16_t crctab16[] PROGMEM = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};
// faster CRC-CCITT
// uses the x^16,x^12,x^5,x^1 polynomial.
static uint16_t CRC_CCITT(const uint8_t* data, size_t n) {
uint16_t crc = 0;
for (size_t i = 0; i < n; i++) {
crc = pgm_read_word(&crctab16[(crc >> 8 ^ data[i]) & 0xFF]) ^ (crc << 8);
}
return crc;
}
#else
// slower CRC-CCITT
// uses the x^16,x^12,x^5,x^1 polynomial.
static uint16_t CRC_CCITT(const uint8_t* data, size_t n) {
uint16_t crc = 0;
for (size_t i = 0; i < n; i++) {
crc = (uint8_t)(crc >> 8) | (crc << 8);
crc ^= data[i];
crc ^= (uint8_t)(crc & 0xff) >> 4;
crc ^= crc << 12;
crc ^= (crc & 0xff) << 5;
}
return crc;
}
#endif
#endif // SD_CHECK_AND_RETRY
bool Sd2Card::readData(uint8_t* dst, uint16_t count) {
// wait for start block token
uint16_t t0 = millis();
while ((status_ = spiRec()) == 0xFF) {
if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) {
error(SD_CARD_ERROR_READ_TIMEOUT);
goto FAIL;
}
}
if (status_ != DATA_START_BLOCK) {
error(SD_CARD_ERROR_READ);
goto FAIL;
}
// transfer data
spiRead(dst, count);
#if ENABLED(SD_CHECK_AND_RETRY)
{
uint16_t recvCrc = (spiRec() << 8) | spiRec();
if (crcSupported && recvCrc != CRC_CCITT(dst, count)) {
error(SD_CARD_ERROR_READ_CRC);
goto FAIL;
}
}
#else
// discard CRC
spiRec();
spiRec();
#endif
chipDeselect();
return true;
FAIL:
chipDeselect();
return false;
}
/** read CID or CSR register */
bool Sd2Card::readRegister(uint8_t cmd, void* buf) {
uint8_t* dst = reinterpret_cast(buf);
if (cardCommand(cmd, 0)) {
error(SD_CARD_ERROR_READ_REG);
chipDeselect();
return false;
}
return readData(dst, 16);
}
/**
* Start a read multiple blocks sequence.
*
* \param[in] blockNumber Address of first block in sequence.
*
* \note This function is used with readData() and readStop() for optimized
* multiple block reads. SPI chipSelect must be low for the entire sequence.
*
* \return true for success, false for failure.
*/
bool Sd2Card::readStart(uint32_t blockNumber) {
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD18, blockNumber)) {
error(SD_CARD_ERROR_CMD18);
chipDeselect();
return false;
}
chipDeselect();
return true;
}
/**
* End a read multiple blocks sequence.
*
* \return true for success, false for failure.
*/
bool Sd2Card::readStop() {
chipSelect();
if (cardCommand(CMD12, 0)) {
error(SD_CARD_ERROR_CMD12);
chipDeselect();
return false;
}
chipDeselect();
return true;
}
/**
* Set the SPI clock rate.
*
* \param[in] sckRateID A value in the range [0, 6].
*
* The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum
* SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128
* for \a scsRateID = 6.
*
* \return The value one, true, is returned for success and the value zero,
* false, is returned for an invalid value of \a sckRateID.
*/
bool Sd2Card::setSckRate(uint8_t sckRateID) {
if (sckRateID > 6) {
error(SD_CARD_ERROR_SCK_RATE);
return false;
}
spiRate_ = sckRateID;
return true;
}
// wait for card to go not busy
bool Sd2Card::waitNotBusy(uint16_t timeoutMillis) {
uint16_t t0 = millis();
while (spiRec() != 0xFF)
if (((uint16_t)millis() - t0) >= timeoutMillis) return false;
return true;
}
/**
* Writes a 512 byte block to an SD card.
*
* \param[in] blockNumber Logical block to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return true for success, false for failure.
*/
bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD24, blockNumber)) {
error(SD_CARD_ERROR_CMD24);
goto FAIL;
}
if (!writeData(DATA_START_BLOCK, src)) goto FAIL;
// wait for flash programming to complete
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
error(SD_CARD_ERROR_WRITE_TIMEOUT);
goto FAIL;
}
// response is r2 so get and check two bytes for nonzero
if (cardCommand(CMD13, 0) || spiRec()) {
error(SD_CARD_ERROR_WRITE_PROGRAMMING);
goto FAIL;
}
chipDeselect();
return true;
FAIL:
chipDeselect();
return false;
}
/**
* Write one data block in a multiple block write sequence
* \param[in] src Pointer to the location of the data to be written.
* \return true for success, false for failure.
*/
bool Sd2Card::writeData(const uint8_t* src) {
chipSelect();
// wait for previous write to finish
if (!waitNotBusy(SD_WRITE_TIMEOUT) || !writeData(WRITE_MULTIPLE_TOKEN, src)) {
error(SD_CARD_ERROR_WRITE_MULTIPLE);
chipDeselect();
return false;
}
chipDeselect();
return true;
}
// send one block of data for write block or write multiple blocks
bool Sd2Card::writeData(uint8_t token, const uint8_t* src) {
#if ENABLED(SD_CHECK_AND_RETRY)
uint16_t crc = CRC_CCITT( src, 512 );
#else // ENABLED(SD_CHECK_AND_RETRY)
uint16_t crc = 0xFFFF;
#endif // ENABLED(SD_CHECK_AND_RETRY)
spiSendBlock( token, src );
spiSend( crc >> 8 );
spiSend( crc & 0XFF );
status_ = spiRec();
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
error(SD_CARD_ERROR_WRITE);
chipDeselect();
return false;
}
return true;
}
/**
* Start a write multiple blocks sequence.
*
* \param[in] blockNumber Address of first block in sequence.
* \param[in] eraseCount The number of blocks to be pre-erased.
*
* \note This function is used with writeData() and writeStop()
* for optimized multiple block writes.
*
* \return true for success, false for failure.
*/
bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
// send pre-erase count
if (cardAcmd(ACMD23, eraseCount)) {
error(SD_CARD_ERROR_ACMD23);
goto FAIL;
}
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD25, blockNumber)) {
error(SD_CARD_ERROR_CMD25);
goto FAIL;
}
chipDeselect();
return true;
FAIL:
chipDeselect();
return false;
}
/**
* End a write multiple blocks sequence.
*
* \return true for success, false for failure.
*/
bool Sd2Card::writeStop() {
chipSelect();
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto FAIL;
spiSend(STOP_TRAN_TOKEN);
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto FAIL;
chipDeselect();
return true;
FAIL:
error(SD_CARD_ERROR_STOP_TRAN);
chipDeselect();
return false;
}
#endif // SDSUPPORT