/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(M100_FREE_MEMORY_WATCHER)
#include "../gcode.h"
#include "../queue.h"
#include "../../libs/hex_print_routines.h"
#include "../../Marlin.h" // for idle()
/**
* M100 Free Memory Watcher
*
* This code watches the free memory block between the bottom of the heap and the top of the stack.
* This memory block is initialized and watched via the M100 command.
*
* M100 I Initializes the free memory block and prints vitals statistics about the area
*
* M100 F Identifies how much of the free memory block remains free and unused. It also
* detects and reports any corruption within the free memory block that may have
* happened due to errant firmware.
*
* M100 D Does a hex display of the free memory block along with a flag for any errant
* data that does not match the expected value.
*
* M100 C x Corrupts x locations within the free memory block. This is useful to check the
* correctness of the M100 F and M100 D commands.
*
* Also, there are two support functions that can be called from a developer's C code.
*
* uint16_t check_for_free_memory_corruption(PGM_P const free_memory_start);
* void M100_dump_routine(PGM_P const title, char *start, char *end);
*
* Initial version by Roxy-3D
*/
#define M100_FREE_MEMORY_DUMPER // Enable for the `M100 D` Dump sub-command
#define M100_FREE_MEMORY_CORRUPTOR // Enable for the `M100 C` Corrupt sub-command
#define TEST_BYTE ((char) 0xE5)
#if defined(__AVR__) || IS_32BIT_TEENSY
extern char __bss_end;
char *end_bss = &__bss_end,
*free_memory_start = end_bss, *free_memory_end = 0,
*stacklimit = 0, *heaplimit = 0;
#define MEMORY_END_CORRECTION 0
#elif defined(TARGET_LPC1768)
extern char __bss_end__, __StackLimit, __HeapLimit;
char *end_bss = &__bss_end__,
*stacklimit = &__StackLimit,
*heaplimit = &__HeapLimit ;
#define MEMORY_END_CORRECTION 0x200
char *free_memory_start = heaplimit,
*free_memory_end = stacklimit - MEMORY_END_CORRECTION;
#elif defined(__SAM3X8E__)
extern char _ebss;
char *end_bss = &_ebss,
*free_memory_start = end_bss,
*free_memory_end = 0,
*stacklimit = 0,
*heaplimit = 0;
#define MEMORY_END_CORRECTION 0x10000 // need to stay well below 0x20080000 or M100 F crashes
#else
#error "M100 - unsupported CPU"
#endif
//
// Utility functions
//
// Location of a variable on its stack frame. Returns a value above
// the stack (once the function returns to the caller).
char* top_of_stack() {
char x;
return &x + 1; // x is pulled on return;
}
// Count the number of test bytes at the specified location.
inline int32_t count_test_bytes(const char * const start_free_memory) {
for (uint32_t i = 0; i < 32000; i++)
if (char(start_free_memory[i]) != TEST_BYTE)
return i - 1;
return -1;
}
//
// M100 sub-commands
//
#if ENABLED(M100_FREE_MEMORY_DUMPER)
/**
* M100 D
* Dump the free memory block from brkval to the stack pointer.
* malloc() eats memory from the start of the block and the stack grows
* up from the bottom of the block. Solid test bytes indicate nothing has
* used that memory yet. There should not be anything but test bytes within
* the block. If so, it may indicate memory corruption due to a bad pointer.
* Unexpected bytes are flagged in the right column.
*/
inline void dump_free_memory(char *start_free_memory, char *end_free_memory) {
//
// Start and end the dump on a nice 16 byte boundary
// (even though the values are not 16-byte aligned).
//
start_free_memory = (char*)((ptr_int_t)((uint32_t)start_free_memory & 0xFFFFFFF0)); // Align to 16-byte boundary
end_free_memory = (char*)((ptr_int_t)((uint32_t)end_free_memory | 0x0000000F)); // Align end_free_memory to the 15th byte (at or above end_free_memory)
// Dump command main loop
while (start_free_memory < end_free_memory) {
print_hex_address(start_free_memory); // Print the address
SERIAL_CHAR(':');
for (uint8_t i = 0; i < 16; i++) { // and 16 data bytes
if (i == 8) SERIAL_CHAR('-');
print_hex_byte(start_free_memory[i]);
SERIAL_CHAR(' ');
}
serial_delay(25);
SERIAL_CHAR('|'); // Point out non test bytes
for (uint8_t i = 0; i < 16; i++) {
char ccc = (char)start_free_memory[i]; // cast to char before automatically casting to char on assignment, in case the compiler is broken
ccc = (ccc == TEST_BYTE) ? ' ' : '?';
SERIAL_CHAR(ccc);
}
SERIAL_EOL();
start_free_memory += 16;
serial_delay(25);
idle();
}
}
void M100_dump_routine(PGM_P const title, char *start, char *end) {
serialprintPGM(title);
SERIAL_EOL();
//
// Round the start and end locations to produce full lines of output
//
start = (char*)((ptr_int_t)((uint32_t)start & 0xFFFFFFF0)); // Align to 16-byte boundary
end = (char*)((ptr_int_t)((uint32_t)end | 0x0000000F)); // Align end_free_memory to the 15th byte (at or above end_free_memory)
dump_free_memory(start, end);
}
#endif // M100_FREE_MEMORY_DUMPER
inline int check_for_free_memory_corruption(PGM_P const title) {
serialprintPGM(title);
char *start_free_memory = free_memory_start, *end_free_memory = free_memory_end;
int n = end_free_memory - start_free_memory;
SERIAL_ECHOPAIR("\nfmc() n=", n);
SERIAL_ECHOPAIR("\nfree_memory_start=", hex_address(free_memory_start));
SERIAL_ECHOLNPAIR(" end_free_memory=", hex_address(end_free_memory));
if (end_free_memory < start_free_memory) {
SERIAL_ECHOPGM(" end_free_memory < Heap ");
// SET_INPUT_PULLUP(63); // if the developer has a switch wired up to their controller board
// safe_delay(5); // this code can be enabled to pause the display as soon as the
// while ( READ(63)) // malfunction is detected. It is currently defaulting to a switch
// idle(); // being on pin-63 which is unassigend and available on most controller
// safe_delay(20); // boards.
// while ( !READ(63))
// idle();
serial_delay(20);
#if ENABLED(M100_FREE_MEMORY_DUMPER)
M100_dump_routine(PSTR(" Memory corruption detected with end_free_memory 8) {
// SERIAL_ECHOPAIR("Found ", j);
// SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(start_free_memory + i));
i += j;
block_cnt++;
SERIAL_ECHOPAIR(" (", block_cnt);
SERIAL_ECHOPAIR(") found=", j);
SERIAL_ECHOLNPGM(" ");
}
}
}
SERIAL_ECHOPAIR(" block_found=", block_cnt);
if (block_cnt != 1)
SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
if (block_cnt == 0) // Make sure the special case of no free blocks shows up as an
block_cnt = -1; // error to the calling code!
SERIAL_ECHOPGM(" return=");
if (block_cnt == 1) {
SERIAL_CHAR('0'); // if the block_cnt is 1, nothing has broken up the free memory
SERIAL_EOL(); // area and it is appropriate to say 'no corruption'.
return 0;
}
SERIAL_ECHOLNPGM("true");
return block_cnt;
}
/**
* M100 F
* Return the number of free bytes in the memory pool,
* with other vital statistics defining the pool.
*/
inline void free_memory_pool_report(char * const start_free_memory, const int32_t size) {
int32_t max_cnt = -1, block_cnt = 0;
char *max_addr = nullptr;
// Find the longest block of test bytes in the buffer
for (int32_t i = 0; i < size; i++) {
char *addr = start_free_memory + i;
if (*addr == TEST_BYTE) {
const int32_t j = count_test_bytes(addr);
if (j > 8) {
SERIAL_ECHOPAIR("Found ", j);
SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(addr));
if (j > max_cnt) {
max_cnt = j;
max_addr = addr;
}
i += j;
block_cnt++;
}
}
}
if (block_cnt > 1) {
SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt);
SERIAL_ECHOLNPAIR(" bytes at ", hex_address(max_addr));
}
SERIAL_ECHOLNPAIR("check_for_free_memory_corruption() = ", check_for_free_memory_corruption(PSTR("M100 F ")));
}
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
/**
* M100 C
* Corrupt locations in the free memory pool and report the corrupt addresses.
* This is useful to check the correctness of the M100 D and the M100 F commands.
*/
inline void corrupt_free_memory(char *start_free_memory, const uint32_t size) {
start_free_memory += 8;
const uint32_t near_top = top_of_stack() - start_free_memory - 250, // -250 to avoid interrupt activity that's altered the stack.
j = near_top / (size + 1);
SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
for (uint32_t i = 1; i <= size; i++) {
char * const addr = start_free_memory + i * j;
*addr = i;
SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr));
}
SERIAL_EOL();
}
#endif // M100_FREE_MEMORY_CORRUPTOR
/**
* M100 I
* Init memory for the M100 tests. (Automatically applied on the first M100.)
*/
inline void init_free_memory(char *start_free_memory, int32_t size) {
SERIAL_ECHOLNPGM("Initializing free memory block.\n\n");
size -= 250; // -250 to avoid interrupt activity that's altered the stack.
if (size < 0) {
SERIAL_ECHOLNPGM("Unable to initialize.\n");
return;
}
start_free_memory += 8; // move a few bytes away from the heap just because we don't want
// to be altering memory that close to it.
memset(start_free_memory, TEST_BYTE, size);
SERIAL_ECHO(size);
SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
for (int32_t i = 0; i < size; i++) {
if (start_free_memory[i] != TEST_BYTE) {
SERIAL_ECHOPAIR("? address : ", hex_address(start_free_memory + i));
SERIAL_ECHOLNPAIR("=", hex_byte(start_free_memory[i]));
SERIAL_EOL();
}
}
}
/**
* M100: Free Memory Check
*/
void GcodeSuite::M100() {
char *sp = top_of_stack();
if (!free_memory_end) free_memory_end = sp - MEMORY_END_CORRECTION;
SERIAL_ECHOPAIR("\nbss_end : ", hex_address(end_bss));
if (heaplimit) SERIAL_ECHOPAIR("\n__heaplimit : ", hex_address(heaplimit));
SERIAL_ECHOPAIR("\nfree_memory_start : ", hex_address(free_memory_start));
if (stacklimit) SERIAL_ECHOPAIR("\n__stacklimit : ", hex_address(stacklimit));
SERIAL_ECHOPAIR("\nfree_memory_end : ", hex_address(free_memory_end));
if (MEMORY_END_CORRECTION) SERIAL_ECHOPAIR("\nMEMORY_END_CORRECTION: ", MEMORY_END_CORRECTION);
SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_address(sp));
// Always init on the first invocation of M100
static bool m100_not_initialized = true;
if (m100_not_initialized || parser.seen('I')) {
m100_not_initialized = false;
init_free_memory(free_memory_start, free_memory_end - free_memory_start);
}
#if ENABLED(M100_FREE_MEMORY_DUMPER)
if (parser.seen('D'))
return dump_free_memory(free_memory_start, free_memory_end);
#endif
if (parser.seen('F'))
return free_memory_pool_report(free_memory_start, free_memory_end - free_memory_start);
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
if (parser.seen('C'))
return corrupt_free_memory(free_memory_start, parser.value_int());
#endif
}
#endif // M100_FREE_MEMORY_WATCHER