muele-marlin/Marlin/src/core/serial.h
Scott Lahteine bc459a76f4 🐛 TM3D fixes and improvements
Co-Authored-By: InsanityAutomation <38436470+InsanityAutomation@users.noreply.github.com>
2021-07-17 01:54:27 -05:00

325 lines
12 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "../inc/MarlinConfig.h"
#include "serial_hook.h"
#if HAS_MEATPACK
#include "../feature/meatpack.h"
#endif
// Commonly-used strings in serial output
extern const char NUL_STR[],
SP_X_STR[], SP_Y_STR[], SP_Z_STR[],
SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_E_STR[],
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[],
SP_I_STR[], SP_J_STR[], SP_K_STR[],
SP_I_LBL[], SP_J_LBL[], SP_K_LBL[],
SP_P_STR[], SP_T_STR[],
X_STR[], Y_STR[], Z_STR[], E_STR[],
X_LBL[], Y_LBL[], Z_LBL[], E_LBL[],
I_LBL[], J_LBL[], K_LBL[];
//
// Debugging flags for use by M111
//
enum MarlinDebugFlags : uint8_t {
MARLIN_DEBUG_NONE = 0,
MARLIN_DEBUG_ECHO = _BV(0), ///< Echo commands in order as they are processed
MARLIN_DEBUG_INFO = _BV(1), ///< Print messages for code that has debug output
MARLIN_DEBUG_ERRORS = _BV(2), ///< Not implemented
MARLIN_DEBUG_DRYRUN = _BV(3), ///< Ignore temperature setting and E movement commands
MARLIN_DEBUG_COMMUNICATION = _BV(4), ///< Not implemented
#if ENABLED(DEBUG_LEVELING_FEATURE)
MARLIN_DEBUG_LEVELING = _BV(5), ///< Print detailed output for homing and leveling
MARLIN_DEBUG_MESH_ADJUST = _BV(6), ///< UBL bed leveling
#else
MARLIN_DEBUG_LEVELING = 0,
MARLIN_DEBUG_MESH_ADJUST = 0,
#endif
MARLIN_DEBUG_ALL = 0xFF
};
extern uint8_t marlin_debug_flags;
#define DEBUGGING(F) (marlin_debug_flags & (MARLIN_DEBUG_## F))
//
// Serial redirection
//
// Step 1: Find out what the first serial leaf is
#if HAS_MULTI_SERIAL && defined(SERIAL_CATCHALL)
#define _SERIAL_LEAF_1 MYSERIAL
#else
#define _SERIAL_LEAF_1 MYSERIAL1
#endif
// Hook Meatpack if it's enabled on the first leaf
#if ENABLED(MEATPACK_ON_SERIAL_PORT_1)
typedef MeatpackSerial<decltype(_SERIAL_LEAF_1)> SerialLeafT1;
extern SerialLeafT1 mpSerial1;
#define SERIAL_LEAF_1 mpSerial1
#else
#define SERIAL_LEAF_1 _SERIAL_LEAF_1
#endif
// Step 2: For multiserial wrap all serial ports in a single
// interface with the ability to output to multiple serial ports.
#if HAS_MULTI_SERIAL
#define _PORT_REDIRECT(n,p) REMEMBER(n,multiSerial.portMask,p)
#define _PORT_RESTORE(n,p) RESTORE(n)
#define SERIAL_ASSERT(P) if(multiSerial.portMask!=(P)){ debugger(); }
// If we have a catchall, use that directly
#ifdef SERIAL_CATCHALL
#define _SERIAL_LEAF_2 SERIAL_CATCHALL
#elif HAS_ETHERNET
typedef ConditionalSerial<decltype(MYSERIAL2)> SerialLeafT2; // We need to create an instance here
extern SerialLeafT2 msSerial2;
#define _SERIAL_LEAF_2 msSerial2
#else
#define _SERIAL_LEAF_2 MYSERIAL2 // Don't create a useless instance here, directly use the existing instance
#endif
// Nothing complicated here
#define _SERIAL_LEAF_3 MYSERIAL3
// Hook Meatpack if it's enabled on the second leaf
#if ENABLED(MEATPACK_ON_SERIAL_PORT_2)
typedef MeatpackSerial<decltype(_SERIAL_LEAF_2)> SerialLeafT2;
extern SerialLeafT2 mpSerial2;
#define SERIAL_LEAF_2 mpSerial2
#else
#define SERIAL_LEAF_2 _SERIAL_LEAF_2
#endif
// Hook Meatpack if it's enabled on the third leaf
#if ENABLED(MEATPACK_ON_SERIAL_PORT_3)
typedef MeatpackSerial<decltype(_SERIAL_LEAF_3)> SerialLeafT3;
extern SerialLeafT3 mpSerial3;
#define SERIAL_LEAF_3 mpSerial3
#else
#define SERIAL_LEAF_3 _SERIAL_LEAF_3
#endif
#define __S_MULTI(N) decltype(SERIAL_LEAF_##N),
#define _S_MULTI(N) __S_MULTI(N)
typedef MultiSerial< REPEAT_1(NUM_SERIAL, _S_MULTI) 0> SerialOutputT;
#undef __S_MULTI
#undef _S_MULTI
extern SerialOutputT multiSerial;
#define SERIAL_IMPL multiSerial
#else
#define _PORT_REDIRECT(n,p) NOOP
#define _PORT_RESTORE(n) NOOP
#define SERIAL_ASSERT(P) NOOP
#define SERIAL_IMPL SERIAL_LEAF_1
#endif
#define SERIAL_OUT(WHAT, V...) (void)SERIAL_IMPL.WHAT(V)
#define PORT_REDIRECT(p) _PORT_REDIRECT(1,p)
#define PORT_RESTORE() _PORT_RESTORE(1)
#define SERIAL_PORTMASK(P) SerialMask::from(P)
//
// SERIAL_CHAR - Print one or more individual chars
//
inline void SERIAL_CHAR(char a) { SERIAL_IMPL.write(a); }
template <typename ... Args>
void SERIAL_CHAR(char a, Args ... args) { SERIAL_IMPL.write(a); SERIAL_CHAR(args ...); }
/**
* SERIAL_ECHO - Print a single string or value.
* Any numeric parameter (including char) is printed as a base-10 number.
* A string pointer or literal will be output as a string.
*
* NOTE: Use SERIAL_CHAR to print char as a single character.
*/
template <typename T>
void SERIAL_ECHO(T x) { SERIAL_IMPL.print(x); }
// Wrapper for ECHO commands to interpret a char
typedef struct SerialChar { char c; SerialChar(char n) : c(n) { } } serial_char_t;
inline void SERIAL_ECHO(serial_char_t x) { SERIAL_IMPL.write(x.c); }
#define AS_CHAR(C) serial_char_t(C)
#define AS_DIGIT(C) AS_CHAR('0' + (C))
// SERIAL_ECHO_F prints a floating point value with optional precision
inline void SERIAL_ECHO_F(EnsureDouble x, int digit=2) { SERIAL_IMPL.print(x, digit); }
template <typename T>
void SERIAL_ECHOLN(T x) { SERIAL_IMPL.println(x); }
// SERIAL_PRINT works like SERIAL_ECHO but allow to specify the encoding base of the number printed
template <typename T, typename U>
void SERIAL_PRINT(T x, U y) { SERIAL_IMPL.print(x, y); }
template <typename T, typename U>
void SERIAL_PRINTLN(T x, U y) { SERIAL_IMPL.println(x, y); }
// Flush the serial port
inline void SERIAL_FLUSH() { SERIAL_IMPL.flush(); }
inline void SERIAL_FLUSHTX() { SERIAL_IMPL.flushTX(); }
// Print a single PROGMEM string to serial
void serialprintPGM(PGM_P str);
//
// SERIAL_ECHOPAIR... macros are used to output string-value pairs.
//
// Print up to 20 pairs of values. Odd elements must be literal strings.
#define __SEP_N(N,V...) _SEP_##N(V)
#define _SEP_N(N,V...) __SEP_N(N,V)
#define _SEP_N_REF() _SEP_N
#define _SEP_1(s) SERIAL_ECHOPGM(s);
#define _SEP_2(s,v) serial_echopair_PGM(PSTR(s),v);
#define _SEP_3(s,v,V...) _SEP_2(s,v); DEFER2(_SEP_N_REF)()(TWO_ARGS(V),V);
#define SERIAL_ECHOPAIR(V...) do{ EVAL(_SEP_N(TWO_ARGS(V),V)); }while(0)
// Print up to 20 pairs of values followed by newline. Odd elements must be literal strings.
#define __SELP_N(N,V...) _SELP_##N(V)
#define _SELP_N(N,V...) __SELP_N(N,V)
#define _SELP_N_REF() _SELP_N
#define _SELP_1(s) SERIAL_ECHOLNPGM(s);
#define _SELP_2(s,v) serial_echopair_PGM(PSTR(s),v); SERIAL_EOL();
#define _SELP_3(s,v,V...) _SEP_2(s,v); DEFER2(_SELP_N_REF)()(TWO_ARGS(V),V);
#define SERIAL_ECHOLNPAIR(V...) do{ EVAL(_SELP_N(TWO_ARGS(V),V)); }while(0)
// Print up to 20 pairs of values. Odd elements must be PSTR pointers.
#define __SEP_N_P(N,V...) _SEP_##N##_P(V)
#define _SEP_N_P(N,V...) __SEP_N_P(N,V)
#define _SEP_N_P_REF() _SEP_N_P
#define _SEP_1_P(s) serialprintPGM(s);
#define _SEP_2_P(s,v) serial_echopair_PGM(s,v);
#define _SEP_3_P(s,v,V...) _SEP_2_P(s,v); DEFER2(_SEP_N_P_REF)()(TWO_ARGS(V),V);
#define SERIAL_ECHOPAIR_P(V...) do{ EVAL(_SEP_N_P(TWO_ARGS(V),V)); }while(0)
// Print up to 20 pairs of values followed by newline. Odd elements must be PSTR pointers.
#define __SELP_N_P(N,V...) _SELP_##N##_P(V)
#define _SELP_N_P(N,V...) __SELP_N_P(N,V)
#define _SELP_N_P_REF() _SELP_N_P
#define _SELP_1_P(s) { serialprintPGM(s); SERIAL_EOL(); }
#define _SELP_2_P(s,v) { serial_echopair_PGM(s,v); SERIAL_EOL(); }
#define _SELP_3_P(s,v,V...) { _SEP_2_P(s,v); DEFER2(_SELP_N_P_REF)()(TWO_ARGS(V),V); }
#define SERIAL_ECHOLNPAIR_P(V...) do{ EVAL(_SELP_N_P(TWO_ARGS(V),V)); }while(0)
#ifdef AllowDifferentTypeInList
inline void SERIAL_ECHOLIST_IMPL() {}
template <typename T>
void SERIAL_ECHOLIST_IMPL(T && t) { SERIAL_IMPL.print(t); }
template <typename T, typename ... Args>
void SERIAL_ECHOLIST_IMPL(T && t, Args && ... args) {
SERIAL_IMPL.print(t);
serialprintPGM(PSTR(", "));
SERIAL_ECHOLIST_IMPL(args...);
}
template <typename ... Args>
void SERIAL_ECHOLIST(PGM_P const str, Args && ... args) {
SERIAL_IMPL.print(str);
SERIAL_ECHOLIST_IMPL(args...);
}
#else // Optimization if the listed type are all the same (seems to be the case in the codebase so use that instead)
template <typename ... Args>
void SERIAL_ECHOLIST(PGM_P const str, Args && ... args) {
serialprintPGM(str);
typename Private::first_type_of<Args...>::type values[] = { args... };
constexpr size_t argsSize = sizeof...(args);
for (size_t i = 0; i < argsSize; i++) {
if (i) serialprintPGM(PSTR(", "));
SERIAL_IMPL.print(values[i]);
}
}
#endif
#define SERIAL_ECHOPGM_P(P) (serialprintPGM(P))
#define SERIAL_ECHOLNPGM_P(P) do{ serialprintPGM(P); SERIAL_EOL(); }while(0)
#define SERIAL_ECHOPGM(S) (serialprintPGM(PSTR(S)))
#define SERIAL_ECHOLNPGM(S) (serialprintPGM(PSTR(S "\n")))
#define SERIAL_ECHOPAIR_F_P(P,V...) do{ serialprintPGM(P); SERIAL_ECHO_F(V); }while(0)
#define SERIAL_ECHOLNPAIR_F_P(V...) do{ SERIAL_ECHOPAIR_F_P(V); SERIAL_EOL(); }while(0)
#define SERIAL_ECHOPAIR_F(S,V...) SERIAL_ECHOPAIR_F_P(PSTR(S),V)
#define SERIAL_ECHOLNPAIR_F(V...) do{ SERIAL_ECHOPAIR_F(V); SERIAL_EOL(); }while(0)
#define SERIAL_ECHO_START() serial_echo_start()
#define SERIAL_ERROR_START() serial_error_start()
#define SERIAL_EOL() SERIAL_CHAR('\n')
#define SERIAL_ECHO_MSG(V...) do{ SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR(V); }while(0)
#define SERIAL_ERROR_MSG(V...) do{ SERIAL_ERROR_START(); SERIAL_ECHOLNPAIR(V); }while(0)
#define SERIAL_ECHO_SP(C) serial_spaces(C)
#define SERIAL_ECHO_TERNARY(TF, PRE, ON, OFF, POST) serial_ternary(TF, PSTR(PRE), PSTR(ON), PSTR(OFF), PSTR(POST))
#if SERIAL_FLOAT_PRECISION
#define SERIAL_DECIMAL(V) SERIAL_PRINT(V, SERIAL_FLOAT_PRECISION)
#else
#define SERIAL_DECIMAL(V) SERIAL_ECHO(V)
#endif
//
// Functions for serial printing from PROGMEM. (Saves loads of SRAM.)
//
void serial_echopair_PGM(PGM_P const s_P, serial_char_t v);
void serial_echopair_PGM(PGM_P const s_P, const char *v);
void serial_echopair_PGM(PGM_P const s_P, char v);
void serial_echopair_PGM(PGM_P const s_P, int v);
void serial_echopair_PGM(PGM_P const s_P, long v);
void serial_echopair_PGM(PGM_P const s_P, float v);
void serial_echopair_PGM(PGM_P const s_P, double v);
void serial_echopair_PGM(PGM_P const s_P, unsigned char v);
void serial_echopair_PGM(PGM_P const s_P, unsigned int v);
void serial_echopair_PGM(PGM_P const s_P, unsigned long v);
inline void serial_echopair_PGM(PGM_P const s_P, bool v) { serial_echopair_PGM(s_P, (int)v); }
inline void serial_echopair_PGM(PGM_P const s_P, void *v) { serial_echopair_PGM(s_P, (uintptr_t)v); }
void serial_echo_start();
void serial_error_start();
void serial_ternary(const bool onoff, PGM_P const pre, PGM_P const on, PGM_P const off, PGM_P const post=nullptr);
void serialprint_onoff(const bool onoff);
void serialprintln_onoff(const bool onoff);
void serialprint_truefalse(const bool tf);
void serial_spaces(uint8_t count);
void print_bin(const uint16_t val);
void print_pos(LINEAR_AXIS_ARGS(const_float_t), PGM_P const prefix=nullptr, PGM_P const suffix=nullptr);
inline void print_pos(const xyz_pos_t &xyz, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr) {
print_pos(LINEAR_AXIS_ELEM(xyz), prefix, suffix);
}
#define SERIAL_POS(SUFFIX,VAR) do { print_pos(VAR, PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n")); }while(0)
#define SERIAL_XYZ(PREFIX,V...) do { print_pos(V, PSTR(PREFIX), nullptr); }while(0)