482 lines
20 KiB
C++
482 lines
20 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
#include "../../../inc/MarlinConfig.h"
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
#include "../bedlevel.h"
|
|
#include "../../../module/planner.h"
|
|
#include "../../../module/stepper.h"
|
|
#include "../../../module/motion.h"
|
|
|
|
#if ENABLED(DELTA)
|
|
#include "../../../module/delta.h"
|
|
#endif
|
|
|
|
#include "../../../MarlinCore.h"
|
|
#include <math.h>
|
|
|
|
#if !UBL_SEGMENTED
|
|
|
|
void unified_bed_leveling::line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t extruder) {
|
|
/**
|
|
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
|
* as possible to determine if this is the case. If this move is within the same cell, we will
|
|
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
|
*/
|
|
#if HAS_POSITION_MODIFIERS
|
|
xyze_pos_t start = current_position, end = destination;
|
|
planner.apply_modifiers(start);
|
|
planner.apply_modifiers(end);
|
|
#else
|
|
const xyze_pos_t &start = current_position, &end = destination;
|
|
#endif
|
|
|
|
const xy_int8_t istart = cell_indexes(start), iend = cell_indexes(end);
|
|
|
|
// A move within the same cell needs no splitting
|
|
if (istart == iend) {
|
|
|
|
// For a move off the bed, use a constant Z raise
|
|
if (!WITHIN(iend.x, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iend.y, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
|
|
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
|
// a reasonable correction would be. If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH
|
|
// value, that will be used instead of a calculated (Bi-Linear interpolation) correction.
|
|
|
|
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH
|
|
end.z += UBL_Z_RAISE_WHEN_OFF_MESH;
|
|
#endif
|
|
planner.buffer_segment(end, scaled_fr_mm_s, extruder);
|
|
current_position = destination;
|
|
return;
|
|
}
|
|
|
|
FINAL_MOVE:
|
|
|
|
// The distance is always MESH_X_DIST so multiply by the constant reciprocal.
|
|
const float xratio = (end.x - mesh_index_to_xpos(iend.x)) * RECIPROCAL(MESH_X_DIST);
|
|
|
|
float z1, z2;
|
|
if (iend.x >= GRID_MAX_POINTS_X - 1)
|
|
z1 = z2 = 0.0;
|
|
else {
|
|
z1 = z_values[iend.x ][iend.y ] + xratio *
|
|
(z_values[iend.x + 1][iend.y ] - z_values[iend.x][iend.y ]),
|
|
z2 = z_values[iend.x ][iend.y + 1] + xratio *
|
|
(z_values[iend.x + 1][iend.y + 1] - z_values[iend.x][iend.y + 1]);
|
|
}
|
|
|
|
// X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset.
|
|
const float yratio = (end.y - mesh_index_to_ypos(iend.y)) * RECIPROCAL(MESH_Y_DIST),
|
|
z0 = iend.y < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end.z) : 0.0;
|
|
|
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
if (!isnan(z0)) end.z += z0;
|
|
planner.buffer_segment(end, scaled_fr_mm_s, extruder);
|
|
current_position = destination;
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Past this point the move is known to cross one or more mesh lines. Check for the most common
|
|
* case - crossing only one X or Y line - after details are worked out to reduce computation.
|
|
*/
|
|
|
|
const xy_float_t dist = end - start;
|
|
const xy_bool_t neg { dist.x < 0, dist.y < 0 };
|
|
const xy_int8_t ineg { int8_t(neg.x), int8_t(neg.y) };
|
|
const xy_float_t sign { neg.x ? -1.0f : 1.0f, neg.y ? -1.0f : 1.0f };
|
|
const xy_int8_t iadd { int8_t(iend.x == istart.x ? 0 : sign.x), int8_t(iend.y == istart.y ? 0 : sign.y) };
|
|
|
|
/**
|
|
* Compute the extruder scaling factor for each partial move, checking for
|
|
* zero-length moves that would result in an infinite scaling factor.
|
|
* A float divide is required for this, but then it just multiplies.
|
|
* Also select a scaling factor based on the larger of the X and Y
|
|
* components. The larger of the two is used to preserve precision.
|
|
*/
|
|
|
|
const xy_float_t ad = sign * dist;
|
|
const bool use_x_dist = ad.x > ad.y;
|
|
|
|
float on_axis_distance = use_x_dist ? dist.x : dist.y,
|
|
e_position = end.e - start.e,
|
|
z_position = end.z - start.z;
|
|
|
|
const float e_normalized_dist = e_position / on_axis_distance, // Allow divide by zero
|
|
z_normalized_dist = z_position / on_axis_distance;
|
|
|
|
xy_int8_t icell = istart;
|
|
|
|
const float ratio = dist.y / dist.x, // Allow divide by zero
|
|
c = start.y - ratio * start.x;
|
|
|
|
const bool inf_normalized_flag = isinf(e_normalized_dist),
|
|
inf_ratio_flag = isinf(ratio);
|
|
|
|
/**
|
|
* Handle vertical lines that stay within one column.
|
|
* These need not be perfectly vertical.
|
|
*/
|
|
if (iadd.x == 0) { // Vertical line?
|
|
icell.y += ineg.y; // Line going down? Just go to the bottom.
|
|
while (icell.y != iend.y + ineg.y) {
|
|
icell.y += iadd.y;
|
|
const float next_mesh_line_y = mesh_index_to_ypos(icell.y);
|
|
|
|
/**
|
|
* Skip the calculations for an infinite slope.
|
|
* For others the next X is the same so this can continue.
|
|
* Calculate X at the next Y mesh line.
|
|
*/
|
|
const float rx = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio;
|
|
|
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x, icell.y)
|
|
* planner.fade_scaling_factor_for_z(end.z);
|
|
|
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
const float ry = mesh_index_to_ypos(icell.y);
|
|
|
|
/**
|
|
* Without this check, it's possible to generate a zero length move, as in the case where
|
|
* the line is heading down, starting exactly on a mesh line boundary. Since this is rare
|
|
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
|
*/
|
|
if (ry != start.y) {
|
|
if (!inf_normalized_flag) { // fall-through faster than branch
|
|
on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
|
|
e_position = start.e + on_axis_distance * e_normalized_dist;
|
|
z_position = start.z + on_axis_distance * z_normalized_dist;
|
|
}
|
|
else {
|
|
e_position = end.e;
|
|
z_position = end.z;
|
|
}
|
|
|
|
planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder);
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
}
|
|
|
|
// At the final destination? Usually not, but when on a Y Mesh Line it's completed.
|
|
if (xy_pos_t(current_position) != xy_pos_t(end))
|
|
goto FINAL_MOVE;
|
|
|
|
current_position = destination;
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Handle horizontal lines that stay within one row.
|
|
* These need not be perfectly horizontal.
|
|
*/
|
|
if (iadd.y == 0) { // Horizontal line?
|
|
icell.x += ineg.x; // Heading left? Just go to the left edge of the cell for the first move.
|
|
while (icell.x != iend.x + ineg.x) {
|
|
icell.x += iadd.x;
|
|
const float rx = mesh_index_to_xpos(icell.x);
|
|
const float ry = ratio * rx + c; // Calculate Y at the next X mesh line
|
|
|
|
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x, icell.y)
|
|
* planner.fade_scaling_factor_for_z(end.z);
|
|
|
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
/**
|
|
* Without this check, it's possible to generate a zero length move, as in the case where
|
|
* the line is heading left, starting exactly on a mesh line boundary. Since this is rare
|
|
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
|
*/
|
|
if (rx != start.x) {
|
|
if (!inf_normalized_flag) {
|
|
on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
|
|
e_position = start.e + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
|
z_position = start.z + on_axis_distance * z_normalized_dist;
|
|
}
|
|
else {
|
|
e_position = end.e;
|
|
z_position = end.z;
|
|
}
|
|
|
|
if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
|
|
break;
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
}
|
|
|
|
if (xy_pos_t(current_position) != xy_pos_t(end))
|
|
goto FINAL_MOVE;
|
|
|
|
current_position = destination;
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Generic case of a line crossing both X and Y Mesh lines.
|
|
*/
|
|
|
|
xy_int8_t cnt = (istart - iend).ABS();
|
|
|
|
icell += ineg;
|
|
|
|
while (cnt) {
|
|
|
|
const float next_mesh_line_x = mesh_index_to_xpos(icell.x + iadd.x),
|
|
next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y),
|
|
ry = ratio * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
|
rx = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line
|
|
// (No need to worry about ratio == 0.
|
|
// In that case, it was already detected
|
|
// as a vertical line move above.)
|
|
|
|
if (neg.x == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
|
|
// Yes! Crossing a Y Mesh Line next
|
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x - ineg.x, icell.y + iadd.y)
|
|
* planner.fade_scaling_factor_for_z(end.z);
|
|
|
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
if (!inf_normalized_flag) {
|
|
on_axis_distance = use_x_dist ? rx - start.x : next_mesh_line_y - start.y;
|
|
e_position = start.e + on_axis_distance * e_normalized_dist;
|
|
z_position = start.z + on_axis_distance * z_normalized_dist;
|
|
}
|
|
else {
|
|
e_position = end.e;
|
|
z_position = end.z;
|
|
}
|
|
if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, scaled_fr_mm_s, extruder))
|
|
break;
|
|
icell.y += iadd.y;
|
|
cnt.y--;
|
|
}
|
|
else {
|
|
// Yes! Crossing a X Mesh Line next
|
|
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x + iadd.x, icell.y - ineg.y)
|
|
* planner.fade_scaling_factor_for_z(end.z);
|
|
|
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
if (!inf_normalized_flag) {
|
|
on_axis_distance = use_x_dist ? next_mesh_line_x - start.x : ry - start.y;
|
|
e_position = start.e + on_axis_distance * e_normalized_dist;
|
|
z_position = start.z + on_axis_distance * z_normalized_dist;
|
|
}
|
|
else {
|
|
e_position = end.e;
|
|
z_position = end.z;
|
|
}
|
|
|
|
if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
|
|
break;
|
|
icell.x += iadd.x;
|
|
cnt.x--;
|
|
}
|
|
|
|
if (cnt.x < 0 || cnt.y < 0) break; // Too far! Exit the loop and go to FINAL_MOVE
|
|
}
|
|
|
|
if (xy_pos_t(current_position) != xy_pos_t(end))
|
|
goto FINAL_MOVE;
|
|
|
|
current_position = destination;
|
|
}
|
|
|
|
#else // UBL_SEGMENTED
|
|
|
|
#if IS_SCARA
|
|
#define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
|
|
#elif ENABLED(DELTA)
|
|
#define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
|
|
#else // CARTESIAN
|
|
#ifdef LEVELED_SEGMENT_LENGTH
|
|
#define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
|
|
#else
|
|
#define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
|
|
* This calls planner.buffer_segment multiple times for small incremental moves.
|
|
* Returns true if did NOT move, false if moved (requires current_position update).
|
|
*/
|
|
|
|
bool _O2 unified_bed_leveling::line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s) {
|
|
|
|
if (!position_is_reachable(destination)) // fail if moving outside reachable boundary
|
|
return true; // did not move, so current_position still accurate
|
|
|
|
const xyze_pos_t total = destination - current_position;
|
|
|
|
const float cart_xy_mm_2 = HYPOT2(total.x, total.y),
|
|
cart_xy_mm = SQRT(cart_xy_mm_2); // Total XY distance
|
|
|
|
#if IS_KINEMATIC
|
|
const float seconds = cart_xy_mm / scaled_fr_mm_s; // Duration of XY move at requested rate
|
|
uint16_t segments = LROUND(delta_segments_per_second * seconds), // Preferred number of segments for distance @ feedrate
|
|
seglimit = LROUND(cart_xy_mm * RECIPROCAL(DELTA_SEGMENT_MIN_LENGTH)); // Number of segments at minimum segment length
|
|
NOMORE(segments, seglimit); // Limit to minimum segment length (fewer segments)
|
|
#else
|
|
uint16_t segments = LROUND(cart_xy_mm * RECIPROCAL(DELTA_SEGMENT_MIN_LENGTH)); // Cartesian fixed segment length
|
|
#endif
|
|
|
|
NOLESS(segments, 1U); // Must have at least one segment
|
|
const float inv_segments = 1.0f / segments, // Reciprocal to save calculation
|
|
segment_xyz_mm = SQRT(cart_xy_mm_2 + sq(total.z)) * inv_segments; // Length of each segment
|
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
const float inv_duration = scaled_fr_mm_s / segment_xyz_mm;
|
|
#endif
|
|
|
|
xyze_float_t diff = total * inv_segments;
|
|
|
|
// Note that E segment distance could vary slightly as z mesh height
|
|
// changes for each segment, but small enough to ignore.
|
|
|
|
xyze_pos_t raw = current_position;
|
|
|
|
// Just do plain segmentation if UBL is inactive or the target is above the fade height
|
|
if (!planner.leveling_active || !planner.leveling_active_at_z(destination.z)) {
|
|
while (--segments) {
|
|
raw += diff;
|
|
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
, inv_duration
|
|
#endif
|
|
);
|
|
}
|
|
planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, segment_xyz_mm
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
, inv_duration
|
|
#endif
|
|
);
|
|
return false; // Did not set current from destination
|
|
}
|
|
|
|
// Otherwise perform per-segment leveling
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(destination.z);
|
|
#endif
|
|
|
|
// Move to first segment destination
|
|
raw += diff;
|
|
|
|
for (;;) { // for each mesh cell encountered during the move
|
|
|
|
// Compute mesh cell invariants that remain constant for all segments within cell.
|
|
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
|
|
// the bilinear interpolation from the adjacent cell within the mesh will still work.
|
|
// Inner loop will exit each time (because out of cell bounds) but will come back
|
|
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
|
// for mesh inset area.
|
|
|
|
xy_int8_t icell = {
|
|
int8_t((raw.x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)),
|
|
int8_t((raw.y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST))
|
|
};
|
|
LIMIT(icell.x, 0, (GRID_MAX_POINTS_X) - 1);
|
|
LIMIT(icell.y, 0, (GRID_MAX_POINTS_Y) - 1);
|
|
|
|
float z_x0y0 = z_values[icell.x ][icell.y ], // z at lower left corner
|
|
z_x1y0 = z_values[icell.x+1][icell.y ], // z at upper left corner
|
|
z_x0y1 = z_values[icell.x ][icell.y+1], // z at lower right corner
|
|
z_x1y1 = z_values[icell.x+1][icell.y+1]; // z at upper right corner
|
|
|
|
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
|
|
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
|
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
|
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
|
|
|
const xy_pos_t pos = { mesh_index_to_xpos(icell.x), mesh_index_to_ypos(icell.y) };
|
|
xy_pos_t cell = raw - pos;
|
|
|
|
const float z_xmy0 = (z_x1y0 - z_x0y0) * RECIPROCAL(MESH_X_DIST), // z slope per x along y0 (lower left to lower right)
|
|
z_xmy1 = (z_x1y1 - z_x0y1) * RECIPROCAL(MESH_X_DIST); // z slope per x along y1 (upper left to upper right)
|
|
|
|
float z_cxy0 = z_x0y0 + z_xmy0 * cell.x; // z height along y0 at cell.x (changes for each cell.x in cell)
|
|
|
|
const float z_cxy1 = z_x0y1 + z_xmy1 * cell.x, // z height along y1 at cell.x
|
|
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cell.x from y0 to y1
|
|
|
|
float z_cxym = z_cxyd * RECIPROCAL(MESH_Y_DIST); // z slope per y along cell.x from pos.y to y1 (changes for each cell.x in cell)
|
|
|
|
// float z_cxcy = z_cxy0 + z_cxym * cell.y; // interpolated mesh z height along cell.x at cell.y (do inside the segment loop)
|
|
|
|
// As subsequent segments step through this cell, the z_cxy0 intercept will change
|
|
// and the z_cxym slope will change, both as a function of cell.x within the cell, and
|
|
// each change by a constant for fixed segment lengths.
|
|
|
|
const float z_sxy0 = z_xmy0 * diff.x, // per-segment adjustment to z_cxy0
|
|
z_sxym = (z_xmy1 - z_xmy0) * RECIPROCAL(MESH_Y_DIST) * diff.x; // per-segment adjustment to z_cxym
|
|
|
|
for (;;) { // for all segments within this mesh cell
|
|
|
|
if (--segments == 0) raw = destination; // if this is last segment, use destination for exact
|
|
|
|
const float z_cxcy = (z_cxy0 + z_cxym * cell.y) // interpolated mesh z height along cell.x at cell.y
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
* fade_scaling_factor // apply fade factor to interpolated mesh height
|
|
#endif
|
|
;
|
|
|
|
planner.buffer_line(raw.x, raw.y, raw.z + z_cxcy, raw.e, scaled_fr_mm_s, active_extruder, segment_xyz_mm
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
, inv_duration
|
|
#endif
|
|
);
|
|
|
|
if (segments == 0) // done with last segment
|
|
return false; // didn't set current from destination
|
|
|
|
raw += diff;
|
|
cell += diff;
|
|
|
|
if (!WITHIN(cell.x, 0, MESH_X_DIST) || !WITHIN(cell.y, 0, MESH_Y_DIST)) // done within this cell, break to next
|
|
break;
|
|
|
|
// Next segment still within same mesh cell, adjust the per-segment
|
|
// slope and intercept to compute next z height.
|
|
|
|
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
|
|
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
|
|
|
|
} // segment loop
|
|
} // cell loop
|
|
|
|
return false; // caller will update current_position
|
|
}
|
|
|
|
#endif // UBL_SEGMENTED
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|