muele-marlin/Marlin/Marlin.pde
Bernhard Kubicek 9980ceb4a3 added a m400, that finished all moves,
and the mechanism so that if an endstop is hit it the ISR, the steps_to_be_taken are stored, and some current_block data that will be deleted in the next move
If the normal loop() then finds such an event, the position is calculated (floats would have taken too long in the ISR) A serial message is generated.
2011-11-13 19:58:09 +01:00

1052 lines
31 KiB
Plaintext

/*
Reprap firmware based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include <EEPROM.h>
#include "EEPROMwrite.h"
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "motion_control.h"
#include "cardreader.h"
#define VERSION_STRING "1.0.0 Alpha 1"
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given
//RepRap M Codes
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Wait for extruder current temp to reach target temp.
// M114 - Display current position
//Custom M Codes
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M30 - Output time since last M109 or SD card start to serial
// M42 - Change pin status via gcode
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M115 - Capabilities string
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M200 - Set filament diameter
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
// M220 - set speed factor override percentage S:factor in percent
// M301 - Set PID parameters P I and D
// M400 - Finish all moves
// M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//Stepper Movement Variables
//===========================================================================
//=============================imported variables============================
//===========================================================================
extern float HeaterPower;
//===========================================================================
//=============================public variables=============================
//===========================================================================
CardReader card;
float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
volatile int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
volatile bool feedmultiplychanged=false;
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
//===========================================================================
//=============================private variables=============================
//===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
static float offset[3] = {0.0, 0.0, 0.0};
static bool home_all_axis = true;
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
static long gcode_N, gcode_LastN;
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
static uint8_t fanpwm=0;
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
static bool fromsd[BUFSIZE];
static int bufindr = 0;
static int bufindw = 0;
static int buflen = 0;
static int i = 0;
static char serial_char;
static int serial_count = 0;
static boolean comment_mode = false;
static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
static float tt = 0, bt = 0;
//Inactivity shutdown variables
static unsigned long previous_millis_cmd = 0;
static unsigned long max_inactive_time = 0;
static unsigned long stepper_inactive_time = 0;
static unsigned long starttime=0;
static unsigned long stoptime=0;
//===========================================================================
//=============================ROUTINES=============================
//===========================================================================
extern "C"{
extern unsigned int __bss_end;
extern unsigned int __heap_start;
extern void *__brkval;
int freeMemory() {
int free_memory;
if((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
//adds an command to the main command buffer
//thats really done in a non-safe way.
//needs overworking someday
void enquecommand(const char *cmd)
{
if(buflen < BUFSIZE)
{
//this is dangerous if a mixing of serial and this happsens
strcpy(&(cmdbuffer[bufindw][0]),cmd);
SERIAL_ECHO_START;
SERIAL_ECHOPGM("enqueing \"");
SERIAL_ECHO(cmdbuffer[bufindw]);
SERIAL_ECHOLNPGM("\"");
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
}
}
void setup()
{
Serial.begin(BAUDRATE);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(VERSION_STRING);
SERIAL_PROTOCOLLNPGM("start");
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Free Memory:");
SERIAL_ECHOLN(freeMemory());
for(int8_t i = 0; i < BUFSIZE; i++)
{
fromsd[i] = false;
}
RetrieveSettings(); // loads data from EEPROM if available
for(int8_t i=0; i < NUM_AXIS; i++)
{
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
plan_init(); // Initialize planner;
st_init(); // Initialize stepper;
tp_init(); // Initialize temperature loop
}
void loop()
{
if(buflen<3)
get_command();
card.checkautostart(false);
if(buflen)
{
#ifdef SDSUPPORT
if(card.saving)
{
if(strstr(cmdbuffer[bufindr],"M29") == NULL)
{
card.write_command(cmdbuffer[bufindr]);
SERIAL_PROTOCOLLNPGM("ok");
}
else
{
card.closefile();
SERIAL_PROTOCOLLNPGM("Done saving file.");
}
}
else
{
process_commands();
}
#else
process_commands();
#endif //SDSUPPORT
buflen = (buflen-1);
bufindr = (bufindr + 1)%BUFSIZE;
}
//check heater every n milliseconds
manage_heater();
manage_inactivity(1);
checkHitEndstops();
LCD_STATUS;
}
inline void get_command()
{
while( Serial.available() > 0 && buflen < BUFSIZE) {
serial_char = Serial.read();
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
{
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = false;
if(strstr(cmdbuffer[bufindw], "N") != NULL)
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
SERIAL_ERRORLN(gcode_LastN);
//Serial.println(gcode_N);
FlushSerialRequestResend();
serial_count = 0;
return;
}
if(strstr(cmdbuffer[bufindw], "*") != NULL)
{
byte checksum = 0;
byte count = 0;
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM("checksum mismatch, Last Line:");
SERIAL_ERRORLN(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
//if no errors, continue parsing
}
else
{
SERIAL_ERROR_START;
SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
SERIAL_ERRORLN(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
gcode_LastN = gcode_N;
//if no errors, continue parsing
}
else // if we don't receive 'N' but still see '*'
{
if((strstr(cmdbuffer[bufindw], "*") != NULL))
{
SERIAL_ERROR_START;
SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
SERIAL_ERRORLN(gcode_LastN);
serial_count = 0;
return;
}
}
if((strstr(cmdbuffer[bufindw], "G") != NULL)){
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
case 0:
case 1:
case 2:
case 3:
#ifdef SDSUPPORT
if(card.saving)
break;
#endif //SDSUPPORT
SERIAL_PROTOCOLLNPGM("ok");
break;
default:
break;
}
}
bufindw = (bufindw + 1)%BUFSIZE;
buflen += 1;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#ifdef SDSUPPORT
if(!card.sdprinting || serial_count!=0){
return;
}
while( !card.eof() && buflen < BUFSIZE) {
int16_t n=card.get();
serial_char = (char)n;
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
{
if(card.eof()){
card.sdprinting = false;
SERIAL_PROTOCOLLNPGM("Done printing file");
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
LCD_MESSAGE(time);
card.checkautostart(true);
}
if(!serial_count)
return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = true;
buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#endif //SDSUPPORT
}
inline float code_value()
{
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
}
inline long code_value_long()
{
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
}
inline bool code_seen(char code_string[]) //Return True if the string was found
{
return (strstr(cmdbuffer[bufindr], code_string) != NULL);
}
inline bool code_seen(char code)
{
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
#define HOMEAXIS(LETTER) \
if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
{ \
current_position[LETTER##_AXIS] = 0; \
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
feedrate = homing_feedrate[LETTER##_AXIS]; \
prepare_move(); \
st_synchronize();\
\
current_position[LETTER##_AXIS] = 0;\
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
destination[LETTER##_AXIS] = -5 * LETTER##_HOME_DIR;\
prepare_move(); \
st_synchronize();\
\
destination[LETTER##_AXIS] = 10 * LETTER##_HOME_DIR;\
feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
prepare_move(); \
st_synchronize();\
\
current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
feedrate = 0.0;\
st_synchronize();\
endstops_hit_on_purpose();\
}
inline void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
get_coordinates(); // For X Y Z E F
prepare_move();
previous_millis_cmd = millis();
//ClearToSend();
return;
//break;
case 2: // G2 - CW ARC
get_arc_coordinates();
prepare_arc_move(true);
previous_millis_cmd = millis();
return;
case 3: // G3 - CCW ARC
get_arc_coordinates();
prepare_arc_move(false);
previous_millis_cmd = millis();
return;
case 4: // G4 dwell
LCD_MESSAGEPGM("DWELL...");
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
codenum += millis(); // keep track of when we started waiting
while(millis() < codenum ){
manage_heater();
}
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
feedrate = 0.0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
{
HOMEAXIS(X);
}
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
HOMEAXIS(Y);
}
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
HOMEAXIS(Z);
}
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
endstops_hit_on_purpose();
break;
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) current_position[i] = code_value();
}
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break;
}
}
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef SDSUPPORT
case 20: // M20 - list SD card
SERIAL_PROTOCOLLNPGM("Begin file list");
card.ls();
SERIAL_PROTOCOLLNPGM("End file list");
break;
case 21: // M21 - init SD card
card.initsd();
break;
case 22: //M22 - release SD card
card.release();
break;
case 23: //M23 - Select file
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos-1)='\0';
card.selectFile(strchr_pointer + 4);
break;
case 24: //M24 - Start SD print
card.startFileprint();
starttime=millis();
break;
case 25: //M25 - Pause SD print
card.pauseSDPrint();
break;
case 26: //M26 - Set SD index
if(card.cardOK && code_seen('S')){
card.setIndex(code_value_long());
}
break;
case 27: //M27 - Get SD status
card.getStatus();
break;
case 28: //M28 - Start SD write
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
card.startFilewrite(strchr_pointer+4);
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//card,saving = false;
break;
#endif //SDSUPPORT
case 30: //M30 take time since the start of the SD print or an M109 command
{
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
LCD_MESSAGE(time);
}
break;
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
int pin_status = code_value();
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
{
int pin_number = code_value();
for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
}
}
break;
case 104: // M104
if (code_seen('S')) setTargetHotend0(code_value());
setWatch();
break;
case 140: // M140 set bed temp
if (code_seen('S')) setTargetBed(code_value());
break;
case 105: // M105
//SERIAL_ECHOLN(freeMemory());
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL( degHotend0());
#if TEMP_1_PIN > -1
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL(degBed());
#endif //TEMP_1_PIN
#else
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("No thermistors - no temp");
#endif
#ifdef PIDTEMP
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOL( HeaterPower);
#endif
SERIAL_PROTOCOLLN("");
return;
break;
case 109:
{// M109 - Wait for extruder heater to reach target.
LCD_MESSAGEPGM("Heating...");
if (code_seen('S')) setTargetHotend0(code_value());
setWatch();
codenum = millis();
/* See if we are heating up or cooling down */
bool target_direction = isHeatingHotend0(); // true if heating, false if cooling
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ||
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
#else
while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ) {
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000 )
{ //Print Temp Reading every 1 second while heating up/cooling down
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOLLN( degHotend0() );
codenum = millis();
}
manage_heater();
LCD_STATUS;
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) ||
(residencyStart == -1 && !target_direction && !isCoolingHotend0()) ||
(residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) )
{
residencyStart = millis();
}
#endif //TEMP_RESIDENCY_TIME
}
LCD_MESSAGEPGM("Heating done.");
starttime=millis();
}
break;
case 190: // M190 - Wait bed for heater to reach target.
#if TEMP_1_PIN > -1
LCD_MESSAGEPGM("Bed Heating.");
if (code_seen('S')) setTargetBed(code_value());
codenum = millis();
while(isHeatingBed())
{
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
float tt=degHotend0();
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOLLN(tt );
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL(tt );
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOLLN(degBed() );
codenum = millis();
}
manage_heater();
}
LCD_MESSAGEPGM("Bed done.");
#endif
break;
#if FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
WRITE(FAN_PIN,HIGH);
fanpwm=constrain(code_value(),0,255);
analogWrite(FAN_PIN, fanpwm);
}
else {
WRITE(FAN_PIN,HIGH);
fanpwm=255;
analogWrite(FAN_PIN, fanpwm);
}
break;
case 107: //M107 Fan Off
WRITE(FAN_PIN,LOW);
analogWrite(FAN_PIN, 0);
break;
#endif //FAN_PIN
#if (PS_ON_PIN > -1)
case 80: // M80 - ATX Power On
SET_OUTPUT(PS_ON_PIN); //GND
break;
case 81: // M81 - ATX Power Off
SET_INPUT(PS_ON_PIN); //Floating
break;
#endif
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 18: //compatibility
case 84:
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
else
{
st_synchronize();
LCD_MESSAGEPGM("Free move.");
disable_x();
disable_y();
disable_z();
disable_e();
}
break;
case 85: // M85
code_seen('S');
max_inactive_time = code_value() * 1000;
break;
case 92: // M92
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
axis_steps_per_unit[i] = code_value();
}
break;
case 115: // M115
SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
break;
case 114: // M114
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM("Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM("Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM("E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
#ifdef DEBUG_STEPS
SERIAL_PROTOCOLPGM(" Count X:");
SERIAL_PROTOCOL(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM("Y:");
SERIAL_PROTOCOL(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
SERIAL_PROTOCOLPGM("Z:");
SERIAL_PROTOCOL(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
#endif
SERIAL_PROTOCOLLN("");
break;
case 119: // M119
#if (X_MIN_PIN > -1)
SERIAL_PROTOCOLPGM("x_min:");
SERIAL_PROTOCOL(((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
#endif
#if (X_MAX_PIN > -1)
SERIAL_PROTOCOLPGM("x_max:");
SERIAL_PROTOCOL(((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
#endif
#if (Y_MIN_PIN > -1)
SERIAL_PROTOCOLPGM("y_min:");
SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
#endif
#if (Y_MAX_PIN > -1)
SERIAL_PROTOCOLPGM("y_max:");
SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
#endif
#if (Z_MIN_PIN > -1)
SERIAL_PROTOCOLPGM("z_min:");
SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
#endif
#if (Z_MAX_PIN > -1)
SERIAL_PROTOCOLPGM("z_max:");
SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
#endif
SERIAL_PROTOCOLLN("");
break;
//TODO: update for all axis, use for loop
case 201: // M201
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
case 203: // M203 max feedrate mm/sec
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ;
if(code_seen('T')) retract_acceleration = code_value() ;
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) minimumfeedrate = code_value()*60 ;
if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_xy_jerk = code_value()*60 ;
if(code_seen('Z')) max_z_jerk = code_value()*60 ;
}
break;
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
feedmultiplychanged=true;
}
}
break;
#ifdef PIDTEMP
case 301: // M301
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = code_value()*PID_dT;
if(code_seen('D')) Kd = code_value()/PID_dT;
#ifdef PID_ADD_EXTRUSION_RATE
if(code_seen('C')) Kc = code_value();
#endif
SERIAL_PROTOCOL("ok p:");
SERIAL_PROTOCOL(Kp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(Ki/PID_dT);
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(Kd*PID_dT);
#ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL(" c:");
SERIAL_PROTOCOL(Kc*PID_dT);
#endif
SERIAL_PROTOCOLLN("");
break;
#endif //PIDTEMP
case 400: // finish all moves
{
st_synchronize();
}
break;
case 500: // Store settings in EEPROM
{
StoreSettings();
}
break;
case 501: // Read settings from EEPROM
{
RetrieveSettings();
}
break;
case 502: // Revert to default settings
{
RetrieveSettings(true);
}
break;
}
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Unknown command:\"");
SERIAL_ECHO(cmdbuffer[bufindr]);
SERIAL_ECHOLNPGM("\"");
}
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
Serial.flush();
SERIAL_PROTOCOLPGM("Resend:");
SERIAL_PROTOCOLLN(gcode_LastN + 1);
ClearToSend();
}
void ClearToSend()
{
previous_millis_cmd = millis();
#ifdef SDSUPPORT
if(fromsd[bufindr])
return;
#endif //SDSUPPORT
SERIAL_PROTOCOLLNPGM("ok");
}
inline void get_coordinates()
{
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F')) {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
inline void get_arc_coordinates()
{
get_coordinates();
if(code_seen('I')) offset[0] = code_value();
if(code_seen('J')) offset[1] = code_value();
}
void prepare_move()
{
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
void manage_inactivity(byte debug)
{
if( (millis()-previous_millis_cmd) > max_inactive_time )
if(max_inactive_time)
kill();
if( (millis()-previous_millis_cmd) > stepper_inactive_time )
if(stepper_inactive_time)
{
disable_x();
disable_y();
disable_z();
disable_e();
}
check_axes_activity();
}
void kill()
{
disable_heater();
disable_x();
disable_y();
disable_z();
disable_e();
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
LCD_MESSAGEPGM("KILLED. ");
while(1); // Wait for reset
}