muele-marlin/Marlin/src/HAL/LPC1768/HAL_SPI.cpp
2020-11-06 21:07:15 -06:00

402 lines
12 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Software SPI functions originally from Arduino Sd2Card Library
* Copyright (c) 2009 by William Greiman
*/
/**
* For TARGET_LPC1768
*/
/**
* Hardware SPI and Software SPI implementations are included in this file.
* The hardware SPI runs faster and has higher throughput but is not compatible
* with some LCD interfaces/adapters.
*
* Control of the slave select pin(s) is handled by the calling routines.
*
* Some of the LCD interfaces/adapters result in the LCD SPI and the SD card
* SPI sharing pins. The SCK, MOSI & MISO pins can NOT be set/cleared with
* WRITE nor digitalWrite when the hardware SPI module within the LPC17xx is
* active. If any of these pins are shared then the software SPI must be used.
*
* A more sophisticated hardware SPI can be found at the following link.
* This implementation has not been fully debugged.
* https://github.com/MarlinFirmware/Marlin/tree/071c7a78f27078fd4aee9a3ef365fcf5e143531e
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
#include <SPI.h>
// Hardware SPI and SPIClass
#include <lpc17xx_pinsel.h>
#include <lpc17xx_clkpwr.h>
// ------------------------
// Public functions
// ------------------------
#if ENABLED(LPC_SOFTWARE_SPI)
#include <SoftwareSPI.h>
// Software SPI
static uint8_t SPI_speed = 0;
static uint8_t spiTransfer(uint8_t b) {
return swSpiTransfer(b, SPI_speed, SCK_PIN, MISO_PIN, MOSI_PIN);
}
void spiBegin() {
swSpiBegin(SCK_PIN, MISO_PIN, MOSI_PIN);
}
void spiInit(uint8_t spiRate) {
SPI_speed = swSpiInit(spiRate, SCK_PIN, MOSI_PIN);
}
uint8_t spiRec() { return spiTransfer(0xFF); }
void spiRead(uint8_t*buf, uint16_t nbyte) {
for (int i = 0; i < nbyte; i++)
buf[i] = spiTransfer(0xFF);
}
void spiSend(uint8_t b) { (void)spiTransfer(b); }
void spiSend(const uint8_t* buf, size_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++)
(void)spiTransfer(buf[i]);
}
void spiSendBlock(uint8_t token, const uint8_t* buf) {
(void)spiTransfer(token);
for (uint16_t i = 0; i < 512; i++)
(void)spiTransfer(buf[i]);
}
#else
void spiBegin() { // setup SCK, MOSI & MISO pins for SSP0
spiInit(SPI_SPEED);
}
void spiInit(uint8_t spiRate) {
#if MISO_PIN == BOARD_SPI1_MISO_PIN
SPI.setModule(1);
#elif MISO_PIN == BOARD_SPI2_MISO_PIN
SPI.setModule(2);
#endif
SPI.setDataSize(DATA_SIZE_8BIT);
SPI.setDataMode(SPI_MODE0);
SPI.setClock(SPISettings::spiRate2Clock(spiRate));
SPI.begin();
}
static uint8_t doio(uint8_t b) {
return SPI.transfer(b & 0x00FF) & 0x00FF;
}
void spiSend(uint8_t b) { doio(b); }
void spiSend(const uint8_t* buf, size_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++) doio(buf[i]);
}
void spiSend(uint32_t chan, byte b) {}
void spiSend(uint32_t chan, const uint8_t* buf, size_t nbyte) {}
// Read single byte from SPI
uint8_t spiRec() { return doio(0xFF); }
uint8_t spiRec(uint32_t chan) { return 0; }
// Read from SPI into buffer
void spiRead(uint8_t *buf, uint16_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++) buf[i] = doio(0xFF);
}
uint8_t spiTransfer(uint8_t b) { return doio(b); }
// Write from buffer to SPI
void spiSendBlock(uint8_t token, const uint8_t* buf) {
(void)spiTransfer(token);
for (uint16_t i = 0; i < 512; i++)
(void)spiTransfer(buf[i]);
}
/** Begin SPI transaction, set clock, bit order, data mode */
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
// TODO: to be implemented
}
#endif // LPC_SOFTWARE_SPI
/**
* @brief Wait until TXE (tx empty) flag is set and BSY (busy) flag unset.
*/
static inline void waitSpiTxEnd(LPC_SSP_TypeDef *spi_d) {
while (SSP_GetStatus(spi_d, SSP_STAT_TXFIFO_EMPTY) == RESET) { /* nada */ } // wait until TXE=1
while (SSP_GetStatus(spi_d, SSP_STAT_BUSY) == SET) { /* nada */ } // wait until BSY=0
}
// Retain the pin init state of the SPI, to avoid init more than once,
// even if more instances of SPIClass exist
static bool spiInitialised[BOARD_NR_SPI] = { false };
SPIClass::SPIClass(uint8_t device) {
// Init things specific to each SPI device
// clock divider setup is a bit of hack, and needs to be improved at a later date.
#if BOARD_NR_SPI >= 1
_settings[0].spi_d = LPC_SSP0;
_settings[0].dataMode = SPI_MODE0;
_settings[0].dataSize = DATA_SIZE_8BIT;
_settings[0].clock = SPI_CLOCK_MAX;
//_settings[0].clockDivider = determine_baud_rate(_settings[0].spi_d, _settings[0].clock);
#endif
#if BOARD_NR_SPI >= 2
_settings[1].spi_d = LPC_SSP1;
_settings[1].dataMode = SPI_MODE0;
_settings[1].dataSize = DATA_SIZE_8BIT;
_settings[1].clock = SPI_CLOCK_MAX;
//_settings[1].clockDivider = determine_baud_rate(_settings[1].spi_d, _settings[1].clock);
#endif
setModule(device);
// Init the GPDMA controller
// TODO: call once in the constructor? or each time?
GPDMA_Init();
}
SPIClass::SPIClass(pin_t mosi, pin_t miso, pin_t sclk, pin_t ssel) {
#if BOARD_NR_SPI >= 1
if (mosi == BOARD_SPI1_MOSI_PIN) SPIClass(1);
#endif
#if BOARD_NR_SPI >= 2
if (mosi == BOARD_SPI2_MOSI_PIN) SPIClass(2);
#endif
}
void SPIClass::begin() {
// Init the SPI pins in the first begin call
if ((_currentSetting->spi_d == LPC_SSP0 && spiInitialised[0] == false) ||
(_currentSetting->spi_d == LPC_SSP1 && spiInitialised[1] == false)) {
pin_t sck, miso, mosi;
if (_currentSetting->spi_d == LPC_SSP0) {
sck = BOARD_SPI1_SCK_PIN;
miso = BOARD_SPI1_MISO_PIN;
mosi = BOARD_SPI1_MOSI_PIN;
spiInitialised[0] = true;
}
else if (_currentSetting->spi_d == LPC_SSP1) {
sck = BOARD_SPI2_SCK_PIN;
miso = BOARD_SPI2_MISO_PIN;
mosi = BOARD_SPI2_MOSI_PIN;
spiInitialised[1] = true;
}
PINSEL_CFG_Type PinCfg; // data structure to hold init values
PinCfg.Funcnum = 2;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = LPC176x::pin_bit(sck);
PinCfg.Portnum = LPC176x::pin_port(sck);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(sck);
PinCfg.Pinnum = LPC176x::pin_bit(miso);
PinCfg.Portnum = LPC176x::pin_port(miso);
PINSEL_ConfigPin(&PinCfg);
SET_INPUT(miso);
PinCfg.Pinnum = LPC176x::pin_bit(mosi);
PinCfg.Portnum = LPC176x::pin_port(mosi);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(mosi);
}
updateSettings();
SSP_Cmd(_currentSetting->spi_d, ENABLE); // start SSP running
}
void SPIClass::beginTransaction(const SPISettings &cfg) {
setBitOrder(cfg.bitOrder);
setDataMode(cfg.dataMode);
setDataSize(cfg.dataSize);
//setClockDivider(determine_baud_rate(_currentSetting->spi_d, settings.clock));
begin();
}
uint8_t SPIClass::transfer(const uint16_t b) {
// Send and receive a single byte
SSP_ReceiveData(_currentSetting->spi_d); // read any previous data
SSP_SendData(_currentSetting->spi_d, b);
waitSpiTxEnd(_currentSetting->spi_d); // wait for it to finish
return SSP_ReceiveData(_currentSetting->spi_d);
}
uint16_t SPIClass::transfer16(const uint16_t data) {
return (transfer((data >> 8) & 0xFF) << 8) | (transfer(data & 0xFF) & 0xFF);
}
void SPIClass::end() {
// Neither is needed for Marlin
//SSP_Cmd(_currentSetting->spi_d, DISABLE);
//SSP_DeInit(_currentSetting->spi_d);
}
void SPIClass::send(uint8_t data) {
SSP_SendData(_currentSetting->spi_d, data);
}
void SPIClass::dmaSend(void *buf, uint16_t length, bool minc) {
//TODO: LPC dma can only write 0xFFF bytes at once.
GPDMA_Channel_CFG_Type GPDMACfg;
/* Configure GPDMA channel 0 -------------------------------------------------------------*/
/* DMA Channel 0 */
GPDMACfg.ChannelNum = 0;
// Source memory
GPDMACfg.SrcMemAddr = (uint32_t)buf;
// Destination memory - Not used
GPDMACfg.DstMemAddr = 0;
// Transfer size
GPDMACfg.TransferSize = length;
// Transfer width
GPDMACfg.TransferWidth = (_currentSetting->dataSize == DATA_SIZE_16BIT) ? GPDMA_WIDTH_HALFWORD : GPDMA_WIDTH_BYTE;
// Transfer type
GPDMACfg.TransferType = GPDMA_TRANSFERTYPE_M2P;
// Source connection - unused
GPDMACfg.SrcConn = 0;
// Destination connection
GPDMACfg.DstConn = (_currentSetting->spi_d == LPC_SSP0) ? GPDMA_CONN_SSP0_Tx : GPDMA_CONN_SSP1_Tx;
GPDMACfg.DMALLI = 0;
// Enable dma on SPI
SSP_DMACmd(_currentSetting->spi_d, SSP_DMA_TX, ENABLE);
// Only increase memory if minc is true
GPDMACfg.MemoryIncrease = (minc ? GPDMA_DMACCxControl_SI : 0);
// Setup channel with given parameter
GPDMA_Setup(&GPDMACfg);
// Enable DMA
GPDMA_ChannelCmd(0, ENABLE);
// Wait for data transfer
while (!GPDMA_IntGetStatus(GPDMA_STAT_RAWINTTC, 0) && !GPDMA_IntGetStatus(GPDMA_STAT_RAWINTERR, 0)) { }
// Clear err and int
GPDMA_ClearIntPending (GPDMA_STATCLR_INTTC, 0);
GPDMA_ClearIntPending (GPDMA_STATCLR_INTERR, 0);
// Disable DMA
GPDMA_ChannelCmd(0, DISABLE);
waitSpiTxEnd(_currentSetting->spi_d);
SSP_DMACmd(_currentSetting->spi_d, SSP_DMA_TX, DISABLE);
}
uint16_t SPIClass::read() {
return SSP_ReceiveData(_currentSetting->spi_d);
}
void SPIClass::read(uint8_t *buf, uint32_t len) {
for (uint16_t i = 0; i < len; i++) buf[i] = transfer(0xFF);
}
void SPIClass::setClock(uint32_t clock) { _currentSetting->clock = clock; }
void SPIClass::setModule(uint8_t device) { _currentSetting = &_settings[device - 1]; } // SPI channels are called 1, 2, and 3 but the array is zero-indexed
void SPIClass::setBitOrder(uint8_t bitOrder) { _currentSetting->bitOrder = bitOrder; }
void SPIClass::setDataMode(uint8_t dataMode) { _currentSetting->dataMode = dataMode; }
void SPIClass::setDataSize(uint32_t dataSize) { _currentSetting->dataSize = dataSize; }
/**
* Set up/tear down
*/
void SPIClass::updateSettings() {
//SSP_DeInit(_currentSetting->spi_d); //todo: need force de init?!
// Divide PCLK by 2 for SSP0
//CLKPWR_SetPCLKDiv(_currentSetting->spi_d == LPC_SSP0 ? CLKPWR_PCLKSEL_SSP0 : CLKPWR_PCLKSEL_SSP1, CLKPWR_PCLKSEL_CCLK_DIV_2);
SSP_CFG_Type HW_SPI_init; // data structure to hold init values
SSP_ConfigStructInit(&HW_SPI_init); // set values for SPI mode
HW_SPI_init.ClockRate = _currentSetting->clock;
HW_SPI_init.Databit = _currentSetting->dataSize;
/**
* SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge
* 0 0 0 Falling Rising
* 1 0 1 Rising Falling
* 2 1 0 Rising Falling
* 3 1 1 Falling Rising
*/
switch (_currentSetting->dataMode) {
case SPI_MODE0:
HW_SPI_init.CPHA = SSP_CPHA_FIRST;
HW_SPI_init.CPOL = SSP_CPOL_HI;
break;
case SPI_MODE1:
HW_SPI_init.CPHA = SSP_CPHA_SECOND;
HW_SPI_init.CPOL = SSP_CPOL_HI;
break;
case SPI_MODE2:
HW_SPI_init.CPHA = SSP_CPHA_FIRST;
HW_SPI_init.CPOL = SSP_CPOL_LO;
break;
case SPI_MODE3:
HW_SPI_init.CPHA = SSP_CPHA_SECOND;
HW_SPI_init.CPOL = SSP_CPOL_LO;
break;
default:
break;
}
// TODO: handle bitOrder
SSP_Init(_currentSetting->spi_d, &HW_SPI_init); // puts the values into the proper bits in the SSP0 registers
}
#if MISO_PIN == BOARD_SPI1_MISO_PIN
SPIClass SPI(1);
#elif MISO_PIN == BOARD_SPI2_MISO_PIN
SPIClass SPI(2);
#endif
#endif // TARGET_LPC1768