649 lines
23 KiB
C++
649 lines
23 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* planner.h
|
|
*
|
|
* Buffer movement commands and manage the acceleration profile plan
|
|
*
|
|
* Derived from Grbl
|
|
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
*/
|
|
|
|
#ifndef PLANNER_H
|
|
#define PLANNER_H
|
|
|
|
#include "../Marlin.h"
|
|
|
|
#include "motion.h"
|
|
|
|
#if ENABLED(DELTA)
|
|
#include "delta.h"
|
|
#endif
|
|
|
|
#if HAS_ABL
|
|
#include "../libs/vector_3.h"
|
|
#endif
|
|
|
|
enum BlockFlagBit {
|
|
// Recalculate trapezoids on entry junction. For optimization.
|
|
BLOCK_BIT_RECALCULATE,
|
|
|
|
// Nominal speed always reached.
|
|
// i.e., The segment is long enough, so the nominal speed is reachable if accelerating
|
|
// from a safe speed (in consideration of jerking from zero speed).
|
|
BLOCK_BIT_NOMINAL_LENGTH,
|
|
|
|
// Start from a halt at the start of this block, respecting the maximum allowed jerk.
|
|
BLOCK_BIT_START_FROM_FULL_HALT,
|
|
|
|
// The block is busy
|
|
BLOCK_BIT_BUSY,
|
|
|
|
// The block is segment 2+ of a longer move
|
|
BLOCK_BIT_CONTINUED
|
|
};
|
|
|
|
enum BlockFlag {
|
|
BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
|
|
BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
|
|
BLOCK_FLAG_START_FROM_FULL_HALT = _BV(BLOCK_BIT_START_FROM_FULL_HALT),
|
|
BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY),
|
|
BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED)
|
|
};
|
|
|
|
/**
|
|
* struct block_t
|
|
*
|
|
* A single entry in the planner buffer.
|
|
* Tracks linear movement over multiple axes.
|
|
*
|
|
* The "nominal" values are as-specified by gcode, and
|
|
* may never actually be reached due to acceleration limits.
|
|
*/
|
|
typedef struct {
|
|
|
|
uint8_t flag; // Block flags (See BlockFlag enum above)
|
|
|
|
unsigned char active_extruder; // The extruder to move (if E move)
|
|
|
|
// Fields used by the Bresenham algorithm for tracing the line
|
|
int32_t steps[NUM_AXIS]; // Step count along each axis
|
|
uint32_t step_event_count; // The number of step events required to complete this block
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
|
|
#endif
|
|
|
|
int32_t accelerate_until, // The index of the step event on which to stop acceleration
|
|
decelerate_after, // The index of the step event on which to start decelerating
|
|
acceleration_rate; // The acceleration rate used for acceleration calculation
|
|
|
|
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
|
|
|
// Advance extrusion
|
|
#if ENABLED(LIN_ADVANCE)
|
|
bool use_advance_lead;
|
|
uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
|
|
#endif
|
|
|
|
// Fields used by the motion planner to manage acceleration
|
|
float nominal_speed, // The nominal speed for this block in mm/sec
|
|
entry_speed, // Entry speed at previous-current junction in mm/sec
|
|
max_entry_speed, // Maximum allowable junction entry speed in mm/sec
|
|
millimeters, // The total travel of this block in mm
|
|
acceleration; // acceleration mm/sec^2
|
|
|
|
// Settings for the trapezoid generator
|
|
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
|
|
initial_rate, // The jerk-adjusted step rate at start of block
|
|
final_rate, // The minimal rate at exit
|
|
acceleration_steps_per_s2; // acceleration steps/sec^2
|
|
|
|
#if FAN_COUNT > 0
|
|
uint16_t fan_speed[FAN_COUNT];
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
uint8_t valve_pressure, e_to_p_pressure;
|
|
#endif
|
|
|
|
uint32_t segment_time_us;
|
|
|
|
} block_t;
|
|
|
|
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
|
|
|
|
class Planner {
|
|
public:
|
|
|
|
/**
|
|
* The move buffer, calculated in stepper steps
|
|
*
|
|
* block_buffer is a ring buffer...
|
|
*
|
|
* head,tail : indexes for write,read
|
|
* head==tail : the buffer is empty
|
|
* head!=tail : blocks are in the buffer
|
|
* head==(tail-1)%size : the buffer is full
|
|
*
|
|
* Writer of head is Planner::buffer_segment().
|
|
* Reader of tail is Stepper::isr(). Always consider tail busy / read-only
|
|
*/
|
|
static block_t block_buffer[BLOCK_BUFFER_SIZE];
|
|
static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
|
|
block_buffer_tail; // Index of the busy block, if any
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
static uint8_t last_extruder; // Respond to extruder change
|
|
#endif
|
|
|
|
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
|
|
|
|
static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
|
volumetric_area_nominal, // Nominal cross-sectional area
|
|
volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
|
|
// May be auto-adjusted by a filament width sensor
|
|
#endif
|
|
|
|
static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
|
|
axis_steps_per_mm[XYZE_N],
|
|
steps_to_mm[XYZE_N];
|
|
static uint32_t max_acceleration_steps_per_s2[XYZE_N],
|
|
max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override
|
|
|
|
static uint32_t min_segment_time_us; // Use 'M205 B<µs>' to override
|
|
static float min_feedrate_mm_s,
|
|
acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
|
|
retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
|
|
travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
|
|
max_jerk[XYZE], // The largest speed change requiring no acceleration
|
|
min_travel_feedrate_mm_s;
|
|
|
|
#if HAS_LEVELING
|
|
static bool leveling_active; // Flag that bed leveling is enabled
|
|
#if ABL_PLANAR
|
|
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
|
|
#endif
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
static float z_fade_height, inverse_z_fade_height;
|
|
#endif
|
|
#else
|
|
static constexpr bool leveling_active = false;
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
static float extruder_advance_k, advance_ed_ratio,
|
|
position_float[XYZE],
|
|
lin_dist_xy, lin_dist_e;
|
|
#endif
|
|
|
|
#if ENABLED(SKEW_CORRECTION)
|
|
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
static float xy_skew_factor;
|
|
#else
|
|
static constexpr float xy_skew_factor = XY_SKEW_FACTOR;
|
|
#endif
|
|
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
static float xz_skew_factor, yz_skew_factor;
|
|
#else
|
|
static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR;
|
|
#endif
|
|
#else
|
|
static constexpr float xz_skew_factor = 0, yz_skew_factor = 0;
|
|
#endif
|
|
#endif
|
|
|
|
private:
|
|
|
|
/**
|
|
* The current position of the tool in absolute steps
|
|
* Recalculated if any axis_steps_per_mm are changed by gcode
|
|
*/
|
|
static int32_t position[NUM_AXIS];
|
|
|
|
/**
|
|
* Speed of previous path line segment
|
|
*/
|
|
static float previous_speed[NUM_AXIS];
|
|
|
|
/**
|
|
* Nominal speed of previous path line segment
|
|
*/
|
|
static float previous_nominal_speed;
|
|
|
|
/**
|
|
* Limit where 64bit math is necessary for acceleration calculation
|
|
*/
|
|
static uint32_t cutoff_long;
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
static float last_fade_z;
|
|
#endif
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
|
|
/**
|
|
* Counters to manage disabling inactive extruders
|
|
*/
|
|
static uint8_t g_uc_extruder_last_move[EXTRUDERS];
|
|
#endif // DISABLE_INACTIVE_EXTRUDER
|
|
|
|
#ifdef XY_FREQUENCY_LIMIT
|
|
// Used for the frequency limit
|
|
#define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
|
|
// Old direction bits. Used for speed calculations
|
|
static unsigned char old_direction_bits;
|
|
// Segment times (in µs). Used for speed calculations
|
|
static uint32_t axis_segment_time_us[2][3];
|
|
#endif
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
|
|
#endif
|
|
|
|
public:
|
|
|
|
/**
|
|
* Instance Methods
|
|
*/
|
|
|
|
Planner();
|
|
|
|
void init();
|
|
|
|
/**
|
|
* Static (class) Methods
|
|
*/
|
|
|
|
static void reset_acceleration_rates();
|
|
static void refresh_positioning();
|
|
|
|
FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
|
|
e_factor[e] = (flow_percentage[e] * 0.01
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
* volumetric_multiplier[e]
|
|
#endif
|
|
);
|
|
}
|
|
|
|
// Manage fans, paste pressure, etc.
|
|
static void check_axes_activity();
|
|
|
|
/**
|
|
* Number of moves currently in the planner
|
|
*/
|
|
FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
|
|
|
|
FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
|
|
|
|
// Update multipliers based on new diameter measurements
|
|
static void calculate_volumetric_multipliers();
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
|
|
#endif
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
|
|
filament_size[e] = v;
|
|
// make sure all extruders have some sane value for the filament size
|
|
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
|
if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
/**
|
|
* Get the Z leveling fade factor based on the given Z height,
|
|
* re-calculating only when needed.
|
|
*
|
|
* Returns 1.0 if planner.z_fade_height is 0.0.
|
|
* Returns 0.0 if Z is past the specified 'Fade Height'.
|
|
*/
|
|
inline static float fade_scaling_factor_for_z(const float &rz) {
|
|
static float z_fade_factor = 1.0;
|
|
if (z_fade_height) {
|
|
if (rz >= z_fade_height) return 0.0;
|
|
if (last_fade_z != rz) {
|
|
last_fade_z = rz;
|
|
z_fade_factor = 1.0 - rz * inverse_z_fade_height;
|
|
}
|
|
return z_fade_factor;
|
|
}
|
|
return 1.0;
|
|
}
|
|
|
|
FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999; }
|
|
|
|
FORCE_INLINE static void set_z_fade_height(const float &zfh) {
|
|
z_fade_height = zfh > 0 ? zfh : 0;
|
|
inverse_z_fade_height = RECIPROCAL(z_fade_height);
|
|
force_fade_recalc();
|
|
}
|
|
|
|
FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
|
|
return !z_fade_height || rz < z_fade_height;
|
|
}
|
|
|
|
#else
|
|
|
|
FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
|
|
UNUSED(rz);
|
|
return 1.0;
|
|
}
|
|
|
|
FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
|
|
|
|
#endif
|
|
|
|
#if ENABLED(SKEW_CORRECTION)
|
|
|
|
FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
|
|
if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
|
|
const float sx = cx - cy * xy_skew_factor - cz * (xz_skew_factor - (xy_skew_factor * yz_skew_factor)),
|
|
sy = cy - cz * yz_skew_factor;
|
|
if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
|
|
cx = sx; cy = sy;
|
|
}
|
|
}
|
|
}
|
|
|
|
FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
|
|
if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
|
|
const float sx = cx + cy * xy_skew_factor + cz * xz_skew_factor,
|
|
sy = cy + cz * yz_skew_factor;
|
|
if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
|
|
cx = sx; cy = sy;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // SKEW_CORRECTION
|
|
|
|
#if PLANNER_LEVELING
|
|
|
|
#define ARG_X float rx
|
|
#define ARG_Y float ry
|
|
#define ARG_Z float rz
|
|
|
|
/**
|
|
* Apply leveling to transform a cartesian position
|
|
* as it will be given to the planner and steppers.
|
|
*/
|
|
static void apply_leveling(float &rx, float &ry, float &rz);
|
|
static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
|
|
static void unapply_leveling(float raw[XYZ]);
|
|
|
|
#else
|
|
|
|
#define ARG_X const float &rx
|
|
#define ARG_Y const float &ry
|
|
#define ARG_Z const float &rz
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Planner::_buffer_steps
|
|
*
|
|
* Add a new linear movement to the buffer (in terms of steps).
|
|
*
|
|
* target - target position in steps units
|
|
* fr_mm_s - (target) speed of the move
|
|
* extruder - target extruder
|
|
*/
|
|
static void _buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder);
|
|
|
|
/**
|
|
* Planner::buffer_segment
|
|
*
|
|
* Add a new linear movement to the buffer in axis units.
|
|
*
|
|
* Leveling and kinematics should be applied ahead of calling this.
|
|
*
|
|
* a,b,c,e - target positions in mm and/or degrees
|
|
* fr_mm_s - (target) speed of the move
|
|
* extruder - target extruder
|
|
*/
|
|
static void buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder);
|
|
|
|
static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
|
|
|
|
/**
|
|
* Add a new linear movement to the buffer.
|
|
* The target is NOT translated to delta/scara
|
|
*
|
|
* Leveling will be applied to input on cartesians.
|
|
* Kinematic machines should call buffer_line_kinematic (for leveled moves).
|
|
* (Cartesians may also call buffer_line_kinematic.)
|
|
*
|
|
* rx,ry,rz,e - target position in mm or degrees
|
|
* fr_mm_s - (target) speed of the move (mm/s)
|
|
* extruder - target extruder
|
|
*/
|
|
FORCE_INLINE static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder) {
|
|
#if PLANNER_LEVELING && IS_CARTESIAN
|
|
apply_leveling(rx, ry, rz);
|
|
#endif
|
|
buffer_segment(rx, ry, rz, e, fr_mm_s, extruder);
|
|
}
|
|
|
|
/**
|
|
* Add a new linear movement to the buffer.
|
|
* The target is cartesian, it's translated to delta/scara if
|
|
* needed.
|
|
*
|
|
* cart - x,y,z,e CARTESIAN target in mm
|
|
* fr_mm_s - (target) speed of the move (mm/s)
|
|
* extruder - target extruder
|
|
*/
|
|
FORCE_INLINE static void buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder) {
|
|
#if PLANNER_LEVELING
|
|
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
|
|
apply_leveling(raw);
|
|
#else
|
|
const float (&raw)[XYZE] = cart;
|
|
#endif
|
|
#if IS_KINEMATIC
|
|
inverse_kinematics(raw);
|
|
buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder);
|
|
#else
|
|
buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Set the planner.position and individual stepper positions.
|
|
* Used by G92, G28, G29, and other procedures.
|
|
*
|
|
* Multiplies by axis_steps_per_mm[] and does necessary conversion
|
|
* for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
|
|
*
|
|
* Clears previous speed values.
|
|
*/
|
|
FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
|
|
#if PLANNER_LEVELING && IS_CARTESIAN
|
|
apply_leveling(rx, ry, rz);
|
|
#endif
|
|
_set_position_mm(rx, ry, rz, e);
|
|
}
|
|
static void set_position_mm_kinematic(const float (&cart)[XYZE]);
|
|
static void set_position_mm(const AxisEnum axis, const float &v);
|
|
FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
|
|
FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(AxisEnum(E_AXIS), e); }
|
|
|
|
/**
|
|
* Sync from the stepper positions. (e.g., after an interrupted move)
|
|
*/
|
|
static void sync_from_steppers();
|
|
|
|
/**
|
|
* Does the buffer have any blocks queued?
|
|
*/
|
|
static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
|
|
|
|
/**
|
|
* "Discard" the block and "release" the memory.
|
|
* Called when the current block is no longer needed.
|
|
*/
|
|
FORCE_INLINE static void discard_current_block() {
|
|
if (blocks_queued())
|
|
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
|
|
}
|
|
|
|
/**
|
|
* "Discard" the next block if it's continued.
|
|
* Called after an interrupted move to throw away the rest of the move.
|
|
*/
|
|
FORCE_INLINE static bool discard_continued_block() {
|
|
const bool discard = blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED);
|
|
if (discard) discard_current_block();
|
|
return discard;
|
|
}
|
|
|
|
/**
|
|
* The current block. NULL if the buffer is empty.
|
|
* This also marks the block as busy.
|
|
* WARNING: Called from Stepper ISR context!
|
|
*/
|
|
static block_t* get_current_block() {
|
|
if (blocks_queued()) {
|
|
block_t * const block = &block_buffer[block_buffer_tail];
|
|
|
|
// If the block has no trapezoid calculated, it's unsafe to execute.
|
|
if (movesplanned() > 1) {
|
|
const block_t * const next = &block_buffer[next_block_index(block_buffer_tail)];
|
|
if (TEST(block->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE))
|
|
return NULL;
|
|
}
|
|
else if (TEST(block->flag, BLOCK_BIT_RECALCULATE))
|
|
return NULL;
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
|
|
#endif
|
|
SBI(block->flag, BLOCK_BIT_BUSY);
|
|
return block;
|
|
}
|
|
else {
|
|
#if ENABLED(ULTRA_LCD)
|
|
clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
|
|
#endif
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
|
|
static uint16_t block_buffer_runtime() {
|
|
CRITICAL_SECTION_START
|
|
millis_t bbru = block_buffer_runtime_us;
|
|
CRITICAL_SECTION_END
|
|
// To translate µs to ms a division by 1000 would be required.
|
|
// We introduce 2.4% error here by dividing by 1024.
|
|
// Doesn't matter because block_buffer_runtime_us is already too small an estimation.
|
|
bbru >>= 10;
|
|
// limit to about a minute.
|
|
NOMORE(bbru, 0xFFFFul);
|
|
return bbru;
|
|
}
|
|
|
|
static void clear_block_buffer_runtime(){
|
|
CRITICAL_SECTION_START
|
|
block_buffer_runtime_us = 0;
|
|
CRITICAL_SECTION_END
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
static float autotemp_min, autotemp_max, autotemp_factor;
|
|
static bool autotemp_enabled;
|
|
static void getHighESpeed();
|
|
static void autotemp_M104_M109();
|
|
#endif
|
|
|
|
private:
|
|
|
|
/**
|
|
* Get the index of the next / previous block in the ring buffer
|
|
*/
|
|
static constexpr int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); }
|
|
static constexpr int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); }
|
|
|
|
/**
|
|
* Calculate the distance (not time) it takes to accelerate
|
|
* from initial_rate to target_rate using the given acceleration:
|
|
*/
|
|
static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
|
|
if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
|
|
return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
|
|
}
|
|
|
|
/**
|
|
* Return the point at which you must start braking (at the rate of -'accel') if
|
|
* you start at 'initial_rate', accelerate (until reaching the point), and want to end at
|
|
* 'final_rate' after traveling 'distance'.
|
|
*
|
|
* This is used to compute the intersection point between acceleration and deceleration
|
|
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
|
|
*/
|
|
static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
|
|
if (accel == 0) return 0; // accel was 0, set intersection distance to 0
|
|
return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
|
|
}
|
|
|
|
/**
|
|
* Calculate the maximum allowable speed at this point, in order
|
|
* to reach 'target_velocity' using 'acceleration' within a given
|
|
* 'distance'.
|
|
*/
|
|
static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
|
|
return SQRT(sq(target_velocity) - 2 * accel * distance);
|
|
}
|
|
|
|
static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
|
|
|
|
static void reverse_pass_kernel(block_t* const current, const block_t * const next);
|
|
static void forward_pass_kernel(const block_t * const previous, block_t* const current);
|
|
|
|
static void reverse_pass();
|
|
static void forward_pass();
|
|
|
|
static void recalculate_trapezoids();
|
|
|
|
static void recalculate();
|
|
|
|
};
|
|
|
|
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
|
|
|
|
extern Planner planner;
|
|
|
|
#endif // PLANNER_H
|