muele-marlin/Marlin/Marlin.pde
2011-11-05 19:21:36 +01:00

1236 lines
36 KiB
Plaintext

/*
Reprap firmware based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include <EEPROM.h>
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
#include "ultralcd.h"
#include "streaming.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#ifdef SIMPLE_LCD
#include "Simplelcd.h"
#endif
char version_string[] = "1.0.0 Alpha 1";
#ifdef SDSUPPORT
#include "SdFat.h"
#endif //SDSUPPORT
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given
//RepRap M Codes
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Wait for extruder current temp to reach target temp.
// M114 - Display current position
//Custom M Codes
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M42 - Change pin status via gcode
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M115 - Capabilities string
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M200 - Set filament diameter
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
// M220 - set speed factor override percentage S:factor in percent
// M301 - Set PID parameters P I and D
// M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//Stepper Movement Variables
char axis_codes[NUM_AXIS] = {
'X', 'Y', 'Z', 'E'};
float destination[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0};
float current_position[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0};
bool home_all_axis = true;
float feedrate = 1500.0, next_feedrate, saved_feedrate;
long gcode_N, gcode_LastN;
float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
bool relative_mode = false; //Determines Absolute or Relative Coordinates
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
uint8_t fanpwm=0;
volatile int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
volatile bool feedmultiplychanged=false;
// comm variables
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
int bufindr = 0;
int bufindw = 0;
int buflen = 0;
int i = 0;
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
extern float HeaterPower;
#include "EEPROM.h"
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
float tt = 0, bt = 0;
#ifdef WATCHPERIOD
int watch_raw = -1000;
unsigned long watchmillis = 0;
#endif //WATCHPERIOD
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;
unsigned long starttime=0;
unsigned long stoptime=0;
#ifdef SDSUPPORT
Sd2Card card;
SdVolume volume;
SdFile root;
SdFile file;
uint32_t filesize = 0;
uint32_t sdpos = 0;
bool sdmode = false;
bool sdactive = false;
bool savetosd = false;
int16_t n;
long autostart_atmillis=0;
void initsd(){
sdactive = false;
#if SDSS >- 1
if(root.isOpen())
root.close();
if (!card.init(SPI_FULL_SPEED,SDSS)){
//if (!card.init(SPI_HALF_SPEED,SDSS))
Serial.println("SD init fail");
}
else if (!volume.init(&card))
Serial.println("volume.init failed");
else if (!root.openRoot(&volume))
Serial.println("openRoot failed");
else
{
sdactive = true;
Serial.println("SD card ok");
}
#endif //SDSS
}
void quickinitsd(){
sdactive=false;
autostart_atmillis=millis()+5000;
}
inline void write_command(char *buf){
char* begin = buf;
char* npos = 0;
char* end = buf + strlen(buf) - 1;
file.writeError = false;
if((npos = strchr(buf, 'N')) != NULL){
begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1;
}
end[1] = '\r';
end[2] = '\n';
end[3] = '\0';
//Serial.println(begin);
file.write(begin);
if (file.writeError){
Serial.println("error writing to file");
}
}
#endif //SDSUPPORT
///adds an command to the main command buffer
void enquecommand(const char *cmd)
{
if(buflen < BUFSIZE)
{
//this is dangerous if a mixing of serial and this happsens
strcpy(&(cmdbuffer[bufindw][0]),cmd);
Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
}
}
void setup()
{
Serial.begin(BAUDRATE);
ECHOLN("Marlin "<<version_string);
Serial.println("start");
#if defined FANCY_LCD || defined SIMPLE_LCD
lcd_init();
#endif
for(int i = 0; i < BUFSIZE; i++){
fromsd[i] = false;
}
RetrieveSettings(); // loads data from EEPROM if available
for(int i=0; i < NUM_AXIS; i++){
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
#ifdef SDSUPPORT
//power to SD reader
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
#endif //SDPOWER
quickinitsd();
#endif //SDSUPPORT
plan_init(); // Initialize planner;
st_init(); // Initialize stepper;
tp_init(); // Initialize temperature loop
//checkautostart();
}
#ifdef SDSUPPORT
bool autostart_stilltocheck=true;
void checkautostart(bool force)
{
//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
if(!force)
{
if(!autostart_stilltocheck)
return;
if(autostart_atmillis<millis())
return;
}
autostart_stilltocheck=false;
if(!sdactive)
{
initsd();
if(!sdactive) //fail
return;
}
static int lastnr=0;
char autoname[30];
sprintf(autoname,"auto%i.g",lastnr);
for(int i=0;i<strlen(autoname);i++)
autoname[i]=tolower(autoname[i]);
dir_t p;
root.rewind();
char filename[11];
int cnt=0;
bool found=false;
while (root.readDir(p) > 0)
{
for(int i=0;i<strlen((char*)p.name);i++)
p.name[i]=tolower(p.name[i]);
//Serial.print((char*)p.name);
//Serial.print(" ");
//Serial.println(autoname);
if(p.name[9]!='~') //skip safety copies
if(strncmp((char*)p.name,autoname,5)==0)
{
char cmd[30];
sprintf(cmd,"M23 %s",autoname);
//sprintf(cmd,"M115");
//enquecommand("G92 Z0");
//enquecommand("G1 Z10 F2000");
//enquecommand("G28 X-105 Y-105");
enquecommand(cmd);
enquecommand("M24");
found=true;
}
}
if(!found)
lastnr=-1;
else
lastnr++;
}
#else
inline void checkautostart(bool x)
{
}
#endif
void loop()
{
if(buflen<3)
get_command();
checkautostart(false);
if(buflen)
{
#ifdef SDSUPPORT
if(savetosd){
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
write_command(cmdbuffer[bufindr]);
Serial.println("ok");
}
else{
file.sync();
file.close();
savetosd = false;
Serial.println("Done saving file.");
}
}
else{
process_commands();
}
#else
process_commands();
#endif //SDSUPPORT
buflen = (buflen-1);
bufindr = (bufindr + 1)%BUFSIZE;
}
//check heater every n milliseconds
manage_heater();
manage_inactivity(1);
LCD_STATUS;
}
inline void get_command()
{
while( Serial.available() > 0 && buflen < BUFSIZE) {
serial_char = Serial.read();
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
{
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = false;
if(strstr(cmdbuffer[bufindw], "N") != NULL)
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
Serial.println(gcode_LastN);
//Serial.println(gcode_N);
FlushSerialRequestResend();
serial_count = 0;
return;
}
if(strstr(cmdbuffer[bufindw], "*") != NULL)
{
byte checksum = 0;
byte count = 0;
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
Serial.print("Error: checksum mismatch, Last Line:");
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
//if no errors, continue parsing
}
else
{
Serial.print("Error: No Checksum with line number, Last Line:");
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
gcode_LastN = gcode_N;
//if no errors, continue parsing
}
else // if we don't receive 'N' but still see '*'
{
if((strstr(cmdbuffer[bufindw], "*") != NULL))
{
Serial.print("Error: No Line Number with checksum, Last Line:");
Serial.println(gcode_LastN);
serial_count = 0;
return;
}
}
if((strstr(cmdbuffer[bufindw], "G") != NULL)){
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
case 0:
case 1:
#ifdef SDSUPPORT
if(savetosd)
break;
#endif //SDSUPPORT
Serial.println("ok");
break;
default:
break;
}
}
bufindw = (bufindw + 1)%BUFSIZE;
buflen += 1;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#ifdef SDSUPPORT
if(!sdmode || serial_count!=0){
return;
}
while( filesize > sdpos && buflen < BUFSIZE) {
n = file.read();
serial_char = (char)n;
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
{
sdpos = file.curPosition();
if(sdpos >= filesize){
sdmode = false;
Serial.println("Done printing file");
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
Serial.println(time);
LCD_MESSAGE(time);
checkautostart(true);
}
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = true;
buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#endif //SDSUPPORT
}
inline float code_value() {
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
}
inline long code_value_long() {
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
}
inline bool code_seen(char code_string[]) {
return (strstr(cmdbuffer[bufindr], code_string) != NULL);
} //Return True if the string was found
inline bool code_seen(char code)
{
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
inline void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
get_coordinates(); // For X Y Z E F
prepare_move();
previous_millis_cmd = millis();
//ClearToSend();
return;
//break;
case 4: // G4 dwell
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
codenum += millis(); // keep track of when we started waiting
while(millis() < codenum ){
manage_heater();
}
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
for(int i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
feedrate = 0.0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
// st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS];
prepare_move();
// st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = -5 * X_HOME_DIR;
prepare_move();
// st_synchronize();
destination[X_AXIS] = 10 * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS]/2 ;
prepare_move();
// st_synchronize();
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS];
feedrate = 0.0;
}
}
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS];
prepare_move();
// st_synchronize();
current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = -5 * Y_HOME_DIR;
prepare_move();
// st_synchronize();
destination[Y_AXIS] = 10 * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS]/2;
prepare_move();
// st_synchronize();
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = current_position[Y_AXIS];
feedrate = 0.0;
}
}
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS];
prepare_move();
// st_synchronize();
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = -2 * Z_HOME_DIR;
prepare_move();
// st_synchronize();
destination[Z_AXIS] = 3 * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS]/2;
prepare_move();
// st_synchronize();
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = current_position[Z_AXIS];
feedrate = 0.0;
}
}
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
break;
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) current_position[i] = code_value();
}
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break;
}
}
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef SDSUPPORT
case 20: // M20 - list SD card
Serial.println("Begin file list");
root.ls();
Serial.println("End file list");
break;
case 21: // M21 - init SD card
sdmode = false;
initsd();
break;
case 22: //M22 - release SD card
sdmode = false;
sdactive = false;
break;
case 23: //M23 - Select file
if(sdactive){
sdmode = false;
file.close();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos-1)='\0';
if (file.open(&root, strchr_pointer + 4, O_READ)) {
Serial.print("File opened:");
Serial.print(strchr_pointer + 4);
Serial.print(" Size:");
Serial.println(file.fileSize());
sdpos = 0;
filesize = file.fileSize();
Serial.println("File selected");
}
else{
Serial.println("file.open failed");
}
}
break;
case 24: //M24 - Start SD print
if(sdactive){
sdmode = true;
starttime=millis();
}
break;
case 25: //M25 - Pause SD print
if(sdmode){
sdmode = false;
}
break;
case 26: //M26 - Set SD index
if(sdactive && code_seen('S')){
sdpos = code_value_long();
file.seekSet(sdpos);
}
break;
case 27: //M27 - Get SD status
if(sdactive){
Serial.print("SD printing byte ");
Serial.print(sdpos);
Serial.print("/");
Serial.println(filesize);
}
else{
Serial.println("Not SD printing");
}
break;
case 28: //M28 - Start SD write
if(sdactive){
char* npos = 0;
file.close();
sdmode = false;
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
Serial.print("open failed, File: ");
Serial.print(strchr_pointer + 4);
Serial.print(".");
}
else{
savetosd = true;
Serial.print("Writing to file: ");
Serial.println(strchr_pointer + 4);
}
}
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//savetosd = false;
break;
case 30:
{
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
Serial.println(time);
LCD_MESSAGE(time);
}
break;
#endif //SDSUPPORT
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
int pin_status = code_value();
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
{
int pin_number = code_value();
for(int i = 0; i < sizeof(sensitive_pins); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
}
}
break;
case 104: // M104
if (code_seen('S')) target_raw[0] = temp2analog(code_value());
#ifdef PIDTEMP
pid_setpoint = code_value();
#endif //PIDTEM
#ifdef WATCHPERIOD
if(target_raw[0] > current_raw[0]){
watchmillis = max(1,millis());
watch_raw = current_raw[0];
}else{
watchmillis = 0;
}
#endif
break;
case 140: // M140 set bed temp
if (code_seen('S')) target_raw[1] = temp2analogBed(code_value());
break;
case 105: // M105
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
tt = analog2temp(current_raw[0]);
#endif
#if TEMP_1_PIN > -1
bt = analog2tempBed(current_raw[1]);
#endif
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
Serial.print("ok T:");
Serial.print(tt);
// Serial.print(", raw:");
// Serial.print(current_raw);
#if TEMP_1_PIN > -1
#ifdef PIDTEMP
Serial.print(" B:");
#if TEMP_1_PIN > -1
Serial.println(bt);
#else
Serial.println(HeaterPower);
#endif
#else
Serial.println();
#endif
#else
Serial.println();
#endif
#else
Serial.println("No thermistors - no temp");
#endif
return;
//break;
case 109: {// M109 - Wait for extruder heater to reach target.
LCD_MESSAGE("Heating...");
if (code_seen('S')) target_raw[0] = temp2analog(code_value());
#ifdef PIDTEMP
pid_setpoint = code_value();
#endif //PIDTEM
#ifdef WATCHPERIOD
if(target_raw[0]>current_raw[0]) {
watchmillis = max(1,millis());
watch_raw = current_raw[0];
} else {
watchmillis = 0;
}
#endif //WATCHPERIOD
codenum = millis();
/* See if we are heating up or cooling down */
bool target_direction = (current_raw[0] < target_raw[0]); // true if heating, false if cooling
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0])) ||
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
#else
while ( target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0]) ) {
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
Serial.print("T:");
Serial.println( analog2temp(current_raw[0]) );
codenum = millis();
}
manage_heater();
LCD_STATUS;
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ((residencyStart == -1 && target_direction && current_raw[0] >= target_raw[0]) ||
(residencyStart == -1 && !target_direction && current_raw[0] <= target_raw[0]) ||
(residencyStart > -1 && labs(analog2temp(current_raw[0]) - analog2temp(target_raw[0])) > TEMP_HYSTERESIS) ) {
residencyStart = millis();
}
#endif //TEMP_RESIDENCY_TIME
}
LCD_MESSAGE("Marlin ready.");
}
break;
case 190: // M190 - Wait bed for heater to reach target.
#if TEMP_1_PIN > -1
if (code_seen('S')) target_raw[1] = temp2analog(code_value());
codenum = millis();
while(current_raw[1] < target_raw[1])
{
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
float tt=analog2temp(current_raw[0]);
Serial.print("T:");
Serial.println( tt );
Serial.print("ok T:");
Serial.print( tt );
Serial.print(" B:");
Serial.println( analog2temp(current_raw[1]) );
codenum = millis();
}
manage_heater();
}
#endif
break;
#if FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
WRITE(FAN_PIN,HIGH);
fanpwm=constrain(code_value(),0,255);
analogWrite(FAN_PIN, fanpwm);
}
else {
WRITE(FAN_PIN,HIGH);
fanpwm=255;
analogWrite(FAN_PIN, fanpwm);
}
break;
case 107: //M107 Fan Off
WRITE(FAN_PIN,LOW);
analogWrite(FAN_PIN, 0);
break;
#endif
#if (PS_ON_PIN > -1)
case 80: // M80 - ATX Power On
SET_OUTPUT(PS_ON_PIN); //GND
break;
case 81: // M81 - ATX Power Off
SET_INPUT(PS_ON_PIN); //Floating
break;
#endif
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 18:
case 84:
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
else{
st_synchronize();
disable_x();
disable_y();
disable_z();
disable_e();
}
break;
case 85: // M85
code_seen('S');
max_inactive_time = code_value() * 1000;
break;
case 92: // M92
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
}
break;
case 115: // M115
Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
break;
case 114: // M114
Serial.print("X:");
Serial.print(current_position[X_AXIS]);
Serial.print("Y:");
Serial.print(current_position[Y_AXIS]);
Serial.print("Z:");
Serial.print(current_position[Z_AXIS]);
Serial.print("E:");
Serial.print(current_position[E_AXIS]);
#ifdef DEBUG_STEPS
Serial.print(" Count X:");
Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
Serial.print("Y:");
Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
Serial.print("Z:");
Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
#endif
Serial.println("");
break;
case 119: // M119
#if (X_MIN_PIN > -1)
Serial.print("x_min:");
Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (X_MAX_PIN > -1)
Serial.print("x_max:");
Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Y_MIN_PIN > -1)
Serial.print("y_min:");
Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Y_MAX_PIN > -1)
Serial.print("y_max:");
Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Z_MIN_PIN > -1)
Serial.print("z_min:");
Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Z_MAX_PIN > -1)
Serial.print("z_max:");
Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
Serial.println("");
break;
//TODO: update for all axis, use for loop
case 201: // M201
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
case 203: // M203 max feedrate mm/sec
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ;
if(code_seen('T')) retract_acceleration = code_value() ;
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) minimumfeedrate = code_value()*60 ;
if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_xy_jerk = code_value()*60 ;
if(code_seen('Z')) max_z_jerk = code_value()*60 ;
}
break;
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
feedmultiplychanged=true;
}
}
break;
#ifdef PIDTEMP
case 301: // M301
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = code_value()*PID_dT;
if(code_seen('D')) Kd = code_value()/PID_dT;
// ECHOLN("Kp "<<_FLOAT(Kp,2));
// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
// temp_iState_min = 0.0;
// if (Ki!=0) {
// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
// }
// else temp_iState_max = 1.0e10;
break;
#endif //PIDTEMP
case 500: // Store settings in EEPROM
{
StoreSettings();
}
break;
case 501: // Read settings from EEPROM
{
RetrieveSettings();
}
break;
case 502: // Revert to default settings
{
RetrieveSettings(true);
}
break;
}
}
else{
Serial.println("Unknown command:");
Serial.println(cmdbuffer[bufindr]);
}
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
Serial.flush();
Serial.print("Resend:");
Serial.println(gcode_LastN + 1);
ClearToSend();
}
void ClearToSend()
{
previous_millis_cmd = millis();
#ifdef SDSUPPORT
if(fromsd[bufindr])
return;
#endif //SDSUPPORT
Serial.println("ok");
}
inline void get_coordinates()
{
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F')) {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
void prepare_move()
{
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
for(int i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
#ifdef USE_WATCHDOG
#include <avr/wdt.h>
#include <avr/interrupt.h>
volatile uint8_t timeout_seconds=0;
void(* ctrlaltdelete) (void) = 0;
ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
{
kill();
#ifdef RESET_MANUAL
LCD_MESSAGE("Please Reset!");
ECHOLN("echo_: Something is wrong, please turn off the printer.");
#else
LCD_MESSAGE("Timeout, resetting!");
#endif
//disable watchdog, it will survife reboot.
WDTCSR |= (1<<WDCE) | (1<<WDE);
WDTCSR = 0;
#ifdef RESET_MANUAL
while(1); //wait for user or serial reset
#else
ctrlaltdelete();
#endif
}
}
/// intialise watch dog with a 1 sec interrupt time
void wd_init() {
WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
}
/// reset watchdog. MUST be called every 1s after init or avr will reset.
void wd_reset() {
wdt_reset();
timeout_seconds=0; //reset counter for resets
}
#endif /* USE_WATCHDOG */
inline void kill()
{
#if TEMP_0_PIN > -1
target_raw[0]=0;
#if HEATER_0_PIN > -1
WRITE(HEATER_0_PIN,LOW);
#endif
#endif
#if TEMP_1_PIN > -1
target_raw[1]=0;
#if HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
#if TEMP_2_PIN > -1
target_raw[2]=0;
#if HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
#endif
disable_x();
disable_y();
disable_z();
disable_e();
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
Serial.println("!! Printer halted. kill() called!!");
while(1); // Wait for reset
}
void manage_inactivity(byte debug) {
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
disable_x();
disable_y();
disable_z();
disable_e();
}
check_axes_activity();
}