muele-marlin/Marlin/src/module/stepper.cpp
2021-01-10 21:38:31 -06:00

3487 lines
127 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* stepper.cpp - A singleton object to execute motion plans using stepper motors
* Marlin Firmware
*
* Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see <https://www.gnu.org/licenses/>.
*/
/**
* Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
* and Philipp Tiefenbacher.
*/
/**
* __________________________
* /| |\ _________________ ^
* / | | \ /| |\ |
* / | | \ / | | \ s
* / | | | | | \ p
* / | | | | | \ e
* +-----+------------------------+---+--+---------------+----+ e
* | BLOCK 1 | BLOCK 2 | d
*
* time ----->
*
* The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
* first block->accelerate_until step_events_completed, then keeps going at constant speed until
* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
*/
/**
* Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
* method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
*/
/**
* Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
* Equations based on Synthethos TinyG2 sources, but the fixed-point
* implementation is new, as we are running the ISR with a variable period.
* Also implemented the Bézier velocity curve evaluation in ARM assembler,
* to avoid impacting ISR speed.
*/
#include "stepper.h"
Stepper stepper; // Singleton
#define BABYSTEPPING_EXTRA_DIR_WAIT
#ifdef __AVR__
#include "speed_lookuptable.h"
#endif
#include "endstops.h"
#include "planner.h"
#include "motion.h"
#include "../lcd/marlinui.h"
#include "../gcode/queue.h"
#include "../sd/cardreader.h"
#include "../MarlinCore.h"
#include "../HAL/shared/Delay.h"
#if ENABLED(INTEGRATED_BABYSTEPPING)
#include "../feature/babystep.h"
#endif
#if MB(ALLIGATOR)
#include "../feature/dac/dac_dac084s085.h"
#endif
#if HAS_MOTOR_CURRENT_SPI
#include <SPI.h>
#endif
#if ENABLED(MIXING_EXTRUDER)
#include "../feature/mixing.h"
#endif
#if HAS_FILAMENT_RUNOUT_DISTANCE
#include "../feature/runout.h"
#endif
#if HAS_L64XX
#include "../libs/L64XX/L64XX_Marlin.h"
uint8_t L6470_buf[MAX_L64XX + 1]; // chip command sequence - element 0 not used
bool L64XX_OK_to_power_up = false; // flag to keep L64xx steppers powered down after a reset or power up
#endif
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../feature/powerloss.h"
#endif
#if HAS_CUTTER
#include "../feature/spindle_laser.h"
#endif
// public:
#if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
bool Stepper::separate_multi_axis = false;
#endif
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
bool Stepper::initialized; // = false
uint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
#if HAS_MOTOR_CURRENT_SPI
constexpr uint32_t Stepper::digipot_count[];
#endif
#endif
// private:
block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced
uint8_t Stepper::last_direction_bits, // = 0
Stepper::axis_did_move; // = 0
bool Stepper::abort_current_block;
#if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDER
uint8_t Stepper::last_moved_extruder = 0xFF;
#endif
#if ENABLED(X_DUAL_ENDSTOPS)
bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
#endif
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false
#if NUM_Z_STEPPER_DRIVERS >= 3
, Stepper::locked_Z3_motor = false
#if NUM_Z_STEPPER_DRIVERS >= 4
, Stepper::locked_Z4_motor = false
#endif
#endif
;
#endif
uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
uint8_t Stepper::steps_per_isr;
IF_DISABLED(ADAPTIVE_STEP_SMOOTHING, constexpr) uint8_t Stepper::oversampling_factor;
xyze_long_t Stepper::delta_error{0};
xyze_ulong_t Stepper::advance_dividend{0};
uint32_t Stepper::advance_divisor = 0,
Stepper::step_events_completed = 0, // The number of step events executed in the current block
Stepper::accelerate_until, // The count at which to stop accelerating
Stepper::decelerate_after, // The count at which to start decelerating
Stepper::step_event_count; // The total event count for the current block
#if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
uint8_t Stepper::stepper_extruder;
#else
constexpr uint8_t Stepper::stepper_extruder;
#endif
#if ENABLED(S_CURVE_ACCELERATION)
int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
#ifdef __AVR__
bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
#endif
bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
#endif
#if ENABLED(LIN_ADVANCE)
uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
Stepper::LA_isr_rate = LA_ADV_NEVER;
uint16_t Stepper::LA_current_adv_steps = 0,
Stepper::LA_final_adv_steps,
Stepper::LA_max_adv_steps;
int8_t Stepper::LA_steps = 0;
bool Stepper::LA_use_advance_lead;
#endif // LIN_ADVANCE
#if ENABLED(INTEGRATED_BABYSTEPPING)
uint32_t Stepper::nextBabystepISR = BABYSTEP_NEVER;
#endif
#if ENABLED(DIRECT_STEPPING)
page_step_state_t Stepper::page_step_state;
#endif
int32_t Stepper::ticks_nominal = -1;
#if DISABLED(S_CURVE_ACCELERATION)
uint32_t Stepper::acc_step_rate; // needed for deceleration start point
#endif
xyz_long_t Stepper::endstops_trigsteps;
xyze_long_t Stepper::count_position{0};
xyze_int8_t Stepper::count_direction{0};
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
Stepper::stepper_laser_t Stepper::laser_trap = {
.enabled = false,
.cur_power = 0,
.cruise_set = false,
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
.last_step_count = 0,
.acc_step_count = 0
#else
.till_update = 0
#endif
};
#endif
#define DUAL_ENDSTOP_APPLY_STEP(A,V) \
if (separate_multi_axis) { \
if (A##_HOME_DIR < 0) { \
if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
} \
else { \
if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
} \
} \
else { \
A##_STEP_WRITE(V); \
A##2_STEP_WRITE(V); \
}
#define DUAL_SEPARATE_APPLY_STEP(A,V) \
if (separate_multi_axis) { \
if (!locked_##A##_motor) A##_STEP_WRITE(V); \
if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
} \
else { \
A##_STEP_WRITE(V); \
A##2_STEP_WRITE(V); \
}
#define TRIPLE_ENDSTOP_APPLY_STEP(A,V) \
if (separate_multi_axis) { \
if (A##_HOME_DIR < 0) { \
if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##3_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \
} \
else { \
if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##3_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \
} \
} \
else { \
A##_STEP_WRITE(V); \
A##2_STEP_WRITE(V); \
A##3_STEP_WRITE(V); \
}
#define TRIPLE_SEPARATE_APPLY_STEP(A,V) \
if (separate_multi_axis) { \
if (!locked_##A##_motor) A##_STEP_WRITE(V); \
if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
} \
else { \
A##_STEP_WRITE(V); \
A##2_STEP_WRITE(V); \
A##3_STEP_WRITE(V); \
}
#define QUAD_ENDSTOP_APPLY_STEP(A,V) \
if (separate_multi_axis) { \
if (A##_HOME_DIR < 0) { \
if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##3_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##4_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##4_motor) A##4_STEP_WRITE(V); \
} \
else { \
if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##3_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \
if (!(TEST(endstops.state(), A##4_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##4_motor) A##4_STEP_WRITE(V); \
} \
} \
else { \
A##_STEP_WRITE(V); \
A##2_STEP_WRITE(V); \
A##3_STEP_WRITE(V); \
A##4_STEP_WRITE(V); \
}
#define QUAD_SEPARATE_APPLY_STEP(A,V) \
if (separate_multi_axis) { \
if (!locked_##A##_motor) A##_STEP_WRITE(V); \
if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \
} \
else { \
A##_STEP_WRITE(V); \
A##2_STEP_WRITE(V); \
A##3_STEP_WRITE(V); \
A##4_STEP_WRITE(V); \
}
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
#define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ ENABLED(INVERT_X2_VS_X_DIR)); }while(0)
#if ENABLED(X_DUAL_ENDSTOPS)
#define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
#else
#define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
#endif
#elif ENABLED(DUAL_X_CARRIAGE)
#define X_APPLY_DIR(v,ALWAYS) do{ \
if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ idex_mirrored_mode); } \
else if (last_moved_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
}while(0)
#define X_APPLY_STEP(v,ALWAYS) do{ \
if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(v); X2_STEP_WRITE(v); } \
else if (last_moved_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
}while(0)
#else
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
#endif
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
#define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) ^ ENABLED(INVERT_Y2_VS_Y_DIR)); }while(0)
#if ENABLED(Y_DUAL_ENDSTOPS)
#define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
#else
#define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
#endif
#else
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
#endif
#if NUM_Z_STEPPER_DRIVERS == 4
#define Z_APPLY_DIR(v,Q) do{ \
Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); \
Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); Z4_DIR_WRITE((v) ^ ENABLED(INVERT_Z4_VS_Z_DIR)); \
}while(0)
#if ENABLED(Z_MULTI_ENDSTOPS)
#define Z_APPLY_STEP(v,Q) QUAD_ENDSTOP_APPLY_STEP(Z,v)
#elif ENABLED(Z_STEPPER_AUTO_ALIGN)
#define Z_APPLY_STEP(v,Q) QUAD_SEPARATE_APPLY_STEP(Z,v)
#else
#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); Z4_STEP_WRITE(v); }while(0)
#endif
#elif NUM_Z_STEPPER_DRIVERS == 3
#define Z_APPLY_DIR(v,Q) do{ \
Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); \
}while(0)
#if ENABLED(Z_MULTI_ENDSTOPS)
#define Z_APPLY_STEP(v,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,v)
#elif ENABLED(Z_STEPPER_AUTO_ALIGN)
#define Z_APPLY_STEP(v,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,v)
#else
#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); }while(0)
#endif
#elif NUM_Z_STEPPER_DRIVERS == 2
#define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); }while(0)
#if ENABLED(Z_MULTI_ENDSTOPS)
#define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
#elif ENABLED(Z_STEPPER_AUTO_ALIGN)
#define Z_APPLY_STEP(v,Q) DUAL_SEPARATE_APPLY_STEP(Z,v)
#else
#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
#endif
#else
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
#endif
#if DISABLED(MIXING_EXTRUDER)
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v)
#endif
#define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000))
#define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE))
// Round up when converting from ns to timer ticks
#define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK))
#define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES))
#define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS)))
#define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS)))
#define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0
#define START_TIMED_PULSE(DIR) (start_pulse_count = HAL_timer_get_count(PULSE_TIMER_NUM))
#define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(PULSE_TIMER_NUM) - start_pulse_count) { }
#define START_HIGH_PULSE() START_TIMED_PULSE(HIGH)
#define AWAIT_HIGH_PULSE() AWAIT_TIMED_PULSE(HIGH)
#define START_LOW_PULSE() START_TIMED_PULSE(LOW)
#define AWAIT_LOW_PULSE() AWAIT_TIMED_PULSE(LOW)
#if MINIMUM_STEPPER_PRE_DIR_DELAY > 0
#define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY)
#else
#define DIR_WAIT_BEFORE()
#endif
#if MINIMUM_STEPPER_POST_DIR_DELAY > 0
#define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY)
#else
#define DIR_WAIT_AFTER()
#endif
/**
* Set the stepper direction of each axis
*
* COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
* COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
* COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
*/
void Stepper::set_directions() {
DIR_WAIT_BEFORE();
#define SET_STEP_DIR(A) \
if (motor_direction(_AXIS(A))) { \
A##_APPLY_DIR(INVERT_##A##_DIR, false); \
count_direction[_AXIS(A)] = -1; \
} \
else { \
A##_APPLY_DIR(!INVERT_##A##_DIR, false); \
count_direction[_AXIS(A)] = 1; \
}
#if HAS_X_DIR
SET_STEP_DIR(X); // A
#endif
#if HAS_Y_DIR
SET_STEP_DIR(Y); // B
#endif
#if HAS_Z_DIR
SET_STEP_DIR(Z); // C
#endif
#if DISABLED(LIN_ADVANCE)
#if ENABLED(MIXING_EXTRUDER)
// Because this is valid for the whole block we don't know
// what e-steppers will step. Likely all. Set all.
if (motor_direction(E_AXIS)) {
MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
count_direction.e = -1;
}
else {
MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
count_direction.e = 1;
}
#else
if (motor_direction(E_AXIS)) {
REV_E_DIR(stepper_extruder);
count_direction.e = -1;
}
else {
NORM_E_DIR(stepper_extruder);
count_direction.e = 1;
}
#endif
#endif // !LIN_ADVANCE
#if HAS_L64XX
if (L64XX_OK_to_power_up) { // OK to send the direction commands (which powers up the L64XX steppers)
if (L64xxManager.spi_active) {
L64xxManager.spi_abort = true; // Interrupted SPI transfer needs to shut down gracefully
for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
L6470_buf[j] = dSPIN_NOP; // Fill buffer with NOOPs
L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // Send enough NOOPs to complete any command
L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
}
// L64xxManager.dir_commands[] is an array that holds direction command for each stepper
// Scan command array, copy matches into L64xxManager.transfer
for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
L6470_buf[j] = L64xxManager.dir_commands[L64XX::chain[j]];
L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // send the command stream to the drivers
}
#endif
DIR_WAIT_AFTER();
}
#if ENABLED(S_CURVE_ACCELERATION)
/**
* This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
* a "linear pop" velocity curve; with pop being the sixth derivative of position:
* velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
*
* The Bézier curve takes the form:
*
* V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
*
* Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
* through B_5(t) are the Bernstein basis as follows:
*
* B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
* B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
* B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
* B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
* B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
* B_5(t) = t^5 = t^5
* ^ ^ ^ ^ ^ ^
* | | | | | |
* A B C D E F
*
* Unfortunately, we cannot use forward-differencing to calculate each position through
* the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
*
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
*
* Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
* through t of the Bézier form of V(t), we can determine that:
*
* A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
* B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
* C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
* D = 10*P_0 - 20*P_1 + 10*P_2
* E = - 5*P_0 + 5*P_1
* F = P_0
*
* Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
* We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
* which, after simplification, resolves to:
*
* A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
* B = 15*P_i - 15*P_t = 15*(P_i - P_t)
* C = -10*P_i + 10*P_t = 10*(P_t - P_i)
* D = 0
* E = 0
* F = P_i
*
* As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
* the Bézier curve at each point:
*
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
*
* Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
* per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
* overflows on the evaluation of the Bézier curve, means we can use
*
* t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
* A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
* B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
* C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
* F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
*
* The trapezoid generator state contains the following information, that we will use to create and evaluate
* the Bézier curve:
*
* blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
* blk->initial_rate [VI] = The initial steps per second (=velocity)
* blk->final_rate [VF] = The ending steps per second (=velocity)
* and the count of events completed (step_events_completed) [CS] (=distance until now)
*
* Note the abbreviations we use in the following formulae are between []s
*
* For Any 32bit CPU:
*
* At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
*
* A = 6*128*(VF - VI) = 768*(VF - VI)
* B = 15*128*(VI - VF) = 1920*(VI - VF)
* C = 10*128*(VF - VI) = 1280*(VF - VI)
* F = 128*VI = 128*VI
* AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
*
* And for each point, evaluate the curve with the following sequence:
*
* void lsrs(uint32_t& d, uint32_t s, int cnt) {
* d = s >> cnt;
* }
* void lsls(uint32_t& d, uint32_t s, int cnt) {
* d = s << cnt;
* }
* void lsrs(int32_t& d, uint32_t s, int cnt) {
* d = uint32_t(s) >> cnt;
* }
* void lsls(int32_t& d, uint32_t s, int cnt) {
* d = uint32_t(s) << cnt;
* }
* void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
* uint64_t res = uint64_t(op1) * op2;
* rlo = uint32_t(res & 0xFFFFFFFF);
* rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
* }
* void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
* int64_t mul = int64_t(op1) * op2;
* int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
* mul += s;
* rlo = int32_t(mul & 0xFFFFFFFF);
* rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
* }
* int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
* uint32_t flo = 0;
* uint32_t fhi = bezier_AV * curr_step;
* uint32_t t = fhi;
* int32_t alo = bezier_F;
* int32_t ahi = 0;
* int32_t A = bezier_A;
* int32_t B = bezier_B;
* int32_t C = bezier_C;
*
* lsrs(ahi, alo, 1); // a = F << 31
* lsls(alo, alo, 31); //
* umull(flo, fhi, fhi, t); // f *= t
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
* lsrs(flo, fhi, 1); //
* smlal(alo, ahi, flo, C); // a+=(f>>33)*C
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
* lsrs(flo, fhi, 1); //
* smlal(alo, ahi, flo, B); // a+=(f>>33)*B
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
* lsrs(flo, fhi, 1); // f>>=33;
* smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
* lsrs(alo, ahi, 6); // a>>=38
*
* return alo;
* }
*
* This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
*
* For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
* Let's reduce precision as much as possible. After some experimentation we found that:
*
* Assume t and AV with 24 bits is enough
* A = 6*(VF - VI)
* B = 15*(VI - VF)
* C = 10*(VF - VI)
* F = VI
* AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
*
* Instead of storing sign for each coefficient, we will store its absolute value,
* and flag the sign of the A coefficient, so we can save to store the sign bit.
* It always holds that sign(A) = - sign(B) = sign(C)
*
* So, the resulting range of the coefficients are:
*
* t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
* A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
* B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
* C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
* F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
*
* And for each curve, estimate its coefficients with:
*
* void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
* // Calculate the Bézier coefficients
* if (v1 < v0) {
* A_negative = true;
* bezier_A = 6 * (v0 - v1);
* bezier_B = 15 * (v0 - v1);
* bezier_C = 10 * (v0 - v1);
* }
* else {
* A_negative = false;
* bezier_A = 6 * (v1 - v0);
* bezier_B = 15 * (v1 - v0);
* bezier_C = 10 * (v1 - v0);
* }
* bezier_F = v0;
* }
*
* And for each point, evaluate the curve with the following sequence:
*
* // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
* void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
* r = (uint64_t(op1) * op2) >> 8;
* }
* // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
* void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
* r = (uint32_t(op1) * op2) >> 16;
* }
* // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
* void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
* r = uint24_t((uint64_t(op1) * op2) >> 16);
* }
*
* int32_t _eval_bezier_curve(uint32_t curr_step) {
* // To save computing, the first step is always the initial speed
* if (!curr_step)
* return bezier_F;
*
* uint16_t t;
* umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
* uint16_t f = t;
* umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
* uint24_t acc = bezier_F; // Range 20 bits (unsigned)
* if (A_negative) {
* uint24_t v;
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
* acc -= v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
* acc += v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
* acc -= v;
* }
* else {
* uint24_t v;
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
* acc += v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
* acc -= v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
* acc += v;
* }
* return acc;
* }
* These functions are translated to assembler for optimal performance.
* Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
*/
#ifdef __AVR__
// For AVR we use assembly to maximize speed
void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
// Store advance
bezier_AV = av;
// Calculate the rest of the coefficients
uint8_t r2 = v0 & 0xFF;
uint8_t r3 = (v0 >> 8) & 0xFF;
uint8_t r12 = (v0 >> 16) & 0xFF;
uint8_t r5 = v1 & 0xFF;
uint8_t r6 = (v1 >> 8) & 0xFF;
uint8_t r7 = (v1 >> 16) & 0xFF;
uint8_t r4,r8,r9,r10,r11;
__asm__ __volatile__(
/* Calculate the Bézier coefficients */
/* %10:%1:%0 = v0*/
/* %5:%4:%3 = v1*/
/* %7:%6:%10 = temporary*/
/* %9 = val (must be high register!)*/
/* %10 (must be high register!)*/
/* Store initial velocity*/
A("sts bezier_F, %0")
A("sts bezier_F+1, %1")
A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
/* Get delta speed */
A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
A("clr %8") /* %8 = 0 */
A("sub %0,%3")
A("sbc %1,%4")
A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
/* Result was negative, get the absolute value*/
A("com %10")
A("com %1")
A("neg %0")
A("sbc %1,%2")
A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
A("clr %2") /* %2 = 0, means A_negative = false */
/* Store negative flag*/
L("1")
A("sts A_negative, %2") /* Store negative flag */
/* Compute coefficients A,B and C [20 cycles worst case]*/
A("ldi %9,6") /* %9 = 6 */
A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
A("sts bezier_A, r0")
A("mov %6,r1")
A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
A("add %6,r0")
A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
A("sts bezier_A+1, %6")
A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
A("ldi %9,15") /* %9 = 15 */
A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
A("sts bezier_B, r0")
A("mov %6,r1")
A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
A("add %6,r0")
A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
A("sts bezier_B+1, %6")
A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
A("ldi %9,10") /* %9 = 10 */
A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
A("sts bezier_C, r0")
A("mov %6,r1")
A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
A("add %6,r0")
A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
A("sts bezier_C+1, %6")
" sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
: "+r" (r2),
"+d" (r3),
"=r" (r4),
"+r" (r5),
"+r" (r6),
"+r" (r7),
"=r" (r8),
"=r" (r9),
"=r" (r10),
"=d" (r11),
"+r" (r12)
:
: "r0", "r1", "cc", "memory"
);
}
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
// If dealing with the first step, save expensive computing and return the initial speed
if (!curr_step)
return bezier_F;
uint8_t r0 = 0; /* Zero register */
uint8_t r2 = (curr_step) & 0xFF;
uint8_t r3 = (curr_step >> 8) & 0xFF;
uint8_t r4 = (curr_step >> 16) & 0xFF;
uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
__asm__ __volatile(
/* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
A("lds %9,bezier_AV") /* %9 = LO(AV)*/
A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
A("add %7,r0")
A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
A("add %7,r0")
A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
/* %8:%7 = t*/
/* uint16_t f = t;*/
A("mov %5,%7") /* %6:%5 = f*/
A("mov %6,%8")
/* %6:%5 = f*/
/* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 = */
A("mov %6,%11") /* f = %10:%11*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* [15 +17*2] = [49]*/
/* %4:%3:%2 will be acc from now on*/
/* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
A("clr %9") /* "decimal place we get for free"*/
A("lds %2,bezier_F")
A("lds %3,bezier_F+1")
A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
/* if (A_negative) {*/
A("lds r0,A_negative")
A("or r0,%0") /* Is flag signalling negative? */
A("brne 3f") /* If yes, Skip next instruction if A was negative*/
A("rjmp 1f") /* Otherwise, jump */
/* uint24_t v; */
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
/* acc -= v; */
L("3")
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
A("sub %9,r1")
A("sbc %2,%0")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
A("sub %3,r0")
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
/* acc += v; */
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
A("add %9,r1")
A("adc %2,%0")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
A("add %3,r0")
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
/* acc -= v; */
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
A("sub %9,r1")
A("sbc %2,%0")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
A("sub %3,r0")
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
A("jmp 2f") /* Done!*/
L("1")
/* uint24_t v; */
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
/* acc += v; */
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
A("add %9,r1")
A("adc %2,%0")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
A("add %3,r0")
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
/* acc -= v;*/
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
A("sub %9,r1")
A("sbc %2,%0")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
A("sub %3,r0")
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
/* acc += v; */
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
A("add %9,r1")
A("adc %2,%0")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
A("add %3,r0")
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
L("2")
" clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
: "+r"(r0),
"+r"(r1),
"+r"(r2),
"+r"(r3),
"+r"(r4),
"+r"(r5),
"+r"(r6),
"+r"(r7),
"+r"(r8),
"+r"(r9),
"+r"(r10),
"+r"(r11)
:
:"cc","r0","r1"
);
return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
}
#else
// For all the other 32bit CPUs
FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
// Calculate the Bézier coefficients
bezier_A = 768 * (v1 - v0);
bezier_B = 1920 * (v0 - v1);
bezier_C = 1280 * (v1 - v0);
bezier_F = 128 * v0;
bezier_AV = av;
}
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
#if defined(__arm__) || defined(__thumb__)
// For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
uint32_t flo = 0;
uint32_t fhi = bezier_AV * curr_step;
uint32_t t = fhi;
int32_t alo = bezier_F;
int32_t ahi = 0;
int32_t A = bezier_A;
int32_t B = bezier_B;
int32_t C = bezier_C;
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
A("lsls %[alo],%[alo],#31") // 1 cycles
A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
: [alo]"+r"( alo ) ,
[flo]"+r"( flo ) ,
[fhi]"+r"( fhi ) ,
[ahi]"+r"( ahi ) ,
[A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
[B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
[C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
[t]"+r"( t ) // we list all registers as input-outputs.
:
: "cc"
);
return alo;
#else
// For non ARM targets, we provide a fallback implementation. Really doubt it
// will be useful, unless the processor is fast and 32bit
uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
uint64_t f = t;
f *= t; // Range 32*2 = 64 bits (unsigned)
f >>= 32; // Range 32 bits (unsigned)
f *= t; // Range 32*2 = 64 bits (unsigned)
f >>= 32; // Range 32 bits : f = t^3 (unsigned)
int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
f *= t; // Range 32*2 = 64 bits
f >>= 32; // Range 32 bits : f = t^3 (unsigned)
acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
f *= t; // Range 32*2 = 64 bits
f >>= 32; // Range 32 bits : f = t^3 (unsigned)
acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
acc >>= (31 + 7); // Range 24bits (plus sign)
return (int32_t) acc;
#endif
}
#endif
#endif // S_CURVE_ACCELERATION
/**
* Stepper Driver Interrupt
*
* Directly pulses the stepper motors at high frequency.
*/
HAL_STEP_TIMER_ISR() {
HAL_timer_isr_prologue(STEP_TIMER_NUM);
Stepper::isr();
HAL_timer_isr_epilogue(STEP_TIMER_NUM);
}
#ifdef CPU_32_BIT
#define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B)
#else
#define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
#endif
void Stepper::isr() {
static uint32_t nextMainISR = 0; // Interval until the next main Stepper Pulse phase (0 = Now)
#ifndef __AVR__
// Disable interrupts, to avoid ISR preemption while we reprogram the period
// (AVR enters the ISR with global interrupts disabled, so no need to do it here)
DISABLE_ISRS();
#endif
// Program timer compare for the maximum period, so it does NOT
// flag an interrupt while this ISR is running - So changes from small
// periods to big periods are respected and the timer does not reset to 0
HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(HAL_TIMER_TYPE_MAX));
// Count of ticks for the next ISR
hal_timer_t next_isr_ticks = 0;
// Limit the amount of iterations
uint8_t max_loops = 10;
// We need this variable here to be able to use it in the following loop
hal_timer_t min_ticks;
do {
// Enable ISRs to reduce USART processing latency
ENABLE_ISRS();
if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses
#if ENABLED(LIN_ADVANCE)
if (!nextAdvanceISR) nextAdvanceISR = advance_isr(); // 0 = Do Linear Advance E Stepper pulses
#endif
#if ENABLED(INTEGRATED_BABYSTEPPING)
const bool is_babystep = (nextBabystepISR == 0); // 0 = Do Babystepping (XY)Z pulses
if (is_babystep) nextBabystepISR = babystepping_isr();
#endif
// ^== Time critical. NOTHING besides pulse generation should be above here!!!
if (!nextMainISR) nextMainISR = block_phase_isr(); // Manage acc/deceleration, get next block
#if ENABLED(INTEGRATED_BABYSTEPPING)
if (is_babystep) // Avoid ANY stepping too soon after baby-stepping
NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step
if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping
NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping
#endif
// Get the interval to the next ISR call
const uint32_t interval = _MIN(
nextMainISR // Time until the next Pulse / Block phase
#if ENABLED(LIN_ADVANCE)
, nextAdvanceISR // Come back early for Linear Advance?
#endif
#if ENABLED(INTEGRATED_BABYSTEPPING)
, nextBabystepISR // Come back early for Babystepping?
#endif
, uint32_t(HAL_TIMER_TYPE_MAX) // Come back in a very long time
);
//
// Compute remaining time for each ISR phase
// NEVER : The phase is idle
// Zero : The phase will occur on the next ISR call
// Non-zero : The phase will occur on a future ISR call
//
nextMainISR -= interval;
#if ENABLED(LIN_ADVANCE)
if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
#endif
#if ENABLED(INTEGRATED_BABYSTEPPING)
if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval;
#endif
/**
* This needs to avoid a race-condition caused by interleaving
* of interrupts required by both the LA and Stepper algorithms.
*
* Assume the following tick times for stepper pulses:
* Stepper ISR (S): 1 1000 2000 3000 4000
* Linear Adv. (E): 10 1010 2010 3010 4010
*
* The current algorithm tries to interleave them, giving:
* 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
*
* Ideal timing would yield these delta periods:
* 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
*
* But, since each event must fire an ISR with a minimum duration, the
* minimum delta might be 900, so deltas under 900 get rounded up:
* 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
*
* It works, but divides the speed of all motors by half, leading to a sudden
* reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
* accounting for double/quad stepping, which makes it even worse).
*/
// Compute the tick count for the next ISR
next_isr_ticks += interval;
/**
* The following section must be done with global interrupts disabled.
* We want nothing to interrupt it, as that could mess the calculations
* we do for the next value to program in the period register of the
* stepper timer and lead to skipped ISRs (if the value we happen to program
* is less than the current count due to something preempting between the
* read and the write of the new period value).
*/
DISABLE_ISRS();
/**
* Get the current tick value + margin
* Assuming at least 6µs between calls to this ISR...
* On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
* On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
*/
min_ticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t(
#ifdef __AVR__
8
#else
1
#endif
* (STEPPER_TIMER_TICKS_PER_US)
);
/**
* NB: If for some reason the stepper monopolizes the MPU, eventually the
* timer will wrap around (and so will 'next_isr_ticks'). So, limit the
* loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
* timing, since the MCU isn't fast enough.
*/
if (!--max_loops) next_isr_ticks = min_ticks;
// Advance pulses if not enough time to wait for the next ISR
} while (next_isr_ticks < min_ticks);
// Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
// sure that the time has not arrived yet - Warrantied by the scheduler
// Set the next ISR to fire at the proper time
HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(next_isr_ticks));
// Don't forget to finally reenable interrupts
ENABLE_ISRS();
}
#if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE
#define ISR_PULSE_CONTROL 1
#endif
#if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM)
#define ISR_MULTI_STEPS 1
#endif
/**
* This phase of the ISR should ONLY create the pulses for the steppers.
* This prevents jitter caused by the interval between the start of the
* interrupt and the start of the pulses. DON'T add any logic ahead of the
* call to this method that might cause variation in the timing. The aim
* is to keep pulse timing as regular as possible.
*/
void Stepper::pulse_phase_isr() {
// If we must abort the current block, do so!
if (abort_current_block) {
abort_current_block = false;
if (current_block) discard_current_block();
}
// If there is no current block, do nothing
if (!current_block) return;
// Count of pending loops and events for this iteration
const uint32_t pending_events = step_event_count - step_events_completed;
uint8_t events_to_do = _MIN(pending_events, steps_per_isr);
// Just update the value we will get at the end of the loop
step_events_completed += events_to_do;
// Take multiple steps per interrupt (For high speed moves)
#if ISR_MULTI_STEPS
bool firstStep = true;
USING_TIMED_PULSE();
#endif
xyze_bool_t step_needed{0};
do {
#define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS)
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
// Determine if a pulse is needed using Bresenham
#define PULSE_PREP(AXIS) do{ \
delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \
if (step_needed[_AXIS(AXIS)]) { \
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
delta_error[_AXIS(AXIS)] -= advance_divisor; \
} \
}while(0)
// Start an active pulse if needed
#define PULSE_START(AXIS) do{ \
if (step_needed[_AXIS(AXIS)]) { \
_APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \
} \
}while(0)
// Stop an active pulse if needed
#define PULSE_STOP(AXIS) do { \
if (step_needed[_AXIS(AXIS)]) { \
_APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), 0); \
} \
}while(0)
// Direct Stepping page?
const bool is_page = IS_PAGE(current_block);
#if ENABLED(DIRECT_STEPPING)
if (is_page) {
#if STEPPER_PAGE_FORMAT == SP_4x4D_128
#define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
if ((VALUE) < 7) SBI(dm, _AXIS(AXIS)); \
else if ((VALUE) > 7) CBI(dm, _AXIS(AXIS)); \
page_step_state.sd[_AXIS(AXIS)] = VALUE; \
page_step_state.bd[_AXIS(AXIS)] += VALUE; \
}while(0)
#define PAGE_PULSE_PREP(AXIS) do{ \
step_needed[_AXIS(AXIS)] = \
pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7]); \
}while(0)
switch (page_step_state.segment_steps) {
case DirectStepping::Config::SEGMENT_STEPS:
page_step_state.segment_idx += 2;
page_step_state.segment_steps = 0;
// fallthru
case 0: {
const uint8_t low = page_step_state.page[page_step_state.segment_idx],
high = page_step_state.page[page_step_state.segment_idx + 1];
uint8_t dm = last_direction_bits;
PAGE_SEGMENT_UPDATE(X, low >> 4);
PAGE_SEGMENT_UPDATE(Y, low & 0xF);
PAGE_SEGMENT_UPDATE(Z, high >> 4);
PAGE_SEGMENT_UPDATE(E, high & 0xF);
if (dm != last_direction_bits)
set_directions(dm);
} break;
default: break;
}
PAGE_PULSE_PREP(X);
PAGE_PULSE_PREP(Y);
PAGE_PULSE_PREP(Z);
PAGE_PULSE_PREP(E);
page_step_state.segment_steps++;
#elif STEPPER_PAGE_FORMAT == SP_4x2_256
#define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \
page_step_state.sd[_AXIS(AXIS)] = VALUE; \
page_step_state.bd[_AXIS(AXIS)] += VALUE;
#define PAGE_PULSE_PREP(AXIS) do{ \
step_needed[_AXIS(AXIS)] = \
pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3]); \
}while(0)
switch (page_step_state.segment_steps) {
case DirectStepping::Config::SEGMENT_STEPS:
page_step_state.segment_idx++;
page_step_state.segment_steps = 0;
// fallthru
case 0: {
const uint8_t b = page_step_state.page[page_step_state.segment_idx];
PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3);
PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3);
PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3);
PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3);
} break;
default: break;
}
PAGE_PULSE_PREP(X);
PAGE_PULSE_PREP(Y);
PAGE_PULSE_PREP(Z);
PAGE_PULSE_PREP(E);
page_step_state.segment_steps++;
#elif STEPPER_PAGE_FORMAT == SP_4x1_512
#define PAGE_PULSE_PREP(AXIS, BITS) do{ \
step_needed[_AXIS(AXIS)] = (steps >> BITS) & 0x1; \
if (step_needed[_AXIS(AXIS)]) \
page_step_state.bd[_AXIS(AXIS)]++; \
}while(0)
uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1];
if (page_step_state.segment_idx & 0x1) steps >>= 4;
PAGE_PULSE_PREP(X, 3);
PAGE_PULSE_PREP(Y, 2);
PAGE_PULSE_PREP(Z, 1);
PAGE_PULSE_PREP(E, 0);
page_step_state.segment_idx++;
#else
#error "Unknown direct stepping page format!"
#endif
}
#endif // DIRECT_STEPPING
if (!is_page) {
// Determine if pulses are needed
#if HAS_X_STEP
PULSE_PREP(X);
#endif
#if HAS_Y_STEP
PULSE_PREP(Y);
#endif
#if HAS_Z_STEP
PULSE_PREP(Z);
#endif
#if EITHER(LIN_ADVANCE, MIXING_EXTRUDER)
delta_error.e += advance_dividend.e;
if (delta_error.e >= 0) {
count_position.e += count_direction.e;
#if ENABLED(LIN_ADVANCE)
delta_error.e -= advance_divisor;
// Don't step E here - But remember the number of steps to perform
motor_direction(E_AXIS) ? --LA_steps : ++LA_steps;
#else
step_needed.e = true;
#endif
}
#elif HAS_E0_STEP
PULSE_PREP(E);
#endif
}
#if ISR_MULTI_STEPS
if (firstStep)
firstStep = false;
else
AWAIT_LOW_PULSE();
#endif
// Pulse start
#if HAS_X_STEP
PULSE_START(X);
#endif
#if HAS_Y_STEP
PULSE_START(Y);
#endif
#if HAS_Z_STEP
PULSE_START(Z);
#endif
#if DISABLED(LIN_ADVANCE)
#if ENABLED(MIXING_EXTRUDER)
if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
#elif HAS_E0_STEP
PULSE_START(E);
#endif
#endif
#if ENABLED(I2S_STEPPER_STREAM)
i2s_push_sample();
#endif
// TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s
#if ISR_MULTI_STEPS
START_HIGH_PULSE();
AWAIT_HIGH_PULSE();
#endif
// Pulse stop
#if HAS_X_STEP
PULSE_STOP(X);
#endif
#if HAS_Y_STEP
PULSE_STOP(Y);
#endif
#if HAS_Z_STEP
PULSE_STOP(Z);
#endif
#if DISABLED(LIN_ADVANCE)
#if ENABLED(MIXING_EXTRUDER)
if (delta_error.e >= 0) {
delta_error.e -= advance_divisor;
E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
}
#elif HAS_E0_STEP
PULSE_STOP(E);
#endif
#endif
#if ISR_MULTI_STEPS
if (events_to_do) START_LOW_PULSE();
#endif
} while (--events_to_do);
}
// This is the last half of the stepper interrupt: This one processes and
// properly schedules blocks from the planner. This is executed after creating
// the step pulses, so it is not time critical, as pulses are already done.
uint32_t Stepper::block_phase_isr() {
// If no queued movements, just wait 1ms for the next block
uint32_t interval = (STEPPER_TIMER_RATE) / 1000UL;
// If there is a current block
if (current_block) {
// If current block is finished, reset pointer and finalize state
if (step_events_completed >= step_event_count) {
#if ENABLED(DIRECT_STEPPING)
#if STEPPER_PAGE_FORMAT == SP_4x4D_128
#define PAGE_SEGMENT_UPDATE_POS(AXIS) \
count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7;
#elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256
#define PAGE_SEGMENT_UPDATE_POS(AXIS) \
count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)];
#endif
if (IS_PAGE(current_block)) {
PAGE_SEGMENT_UPDATE_POS(X);
PAGE_SEGMENT_UPDATE_POS(Y);
PAGE_SEGMENT_UPDATE_POS(Z);
PAGE_SEGMENT_UPDATE_POS(E);
}
#endif
TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block));
discard_current_block();
}
else {
// Step events not completed yet...
// Are we in acceleration phase ?
if (step_events_completed <= accelerate_until) { // Calculate new timer value
#if ENABLED(S_CURVE_ACCELERATION)
// Get the next speed to use (Jerk limited!)
uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time
? _eval_bezier_curve(acceleration_time)
: current_block->cruise_rate;
#else
acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
NOMORE(acc_step_rate, current_block->nominal_rate);
#endif
// acc_step_rate is in steps/second
// step_rate to timer interval and steps per stepper isr
interval = calc_timer_interval(acc_step_rate, &steps_per_isr);
acceleration_time += interval;
#if ENABLED(LIN_ADVANCE)
if (LA_use_advance_lead) {
// Fire ISR if final adv_rate is reached
if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
}
else if (LA_steps) nextAdvanceISR = 0;
#endif
// Update laser - Accelerating
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
if (laser_trap.enabled) {
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
if (current_block->laser.entry_per) {
laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
laser_trap.last_step_count = step_events_completed;
// Should be faster than a divide, since this should trip just once
if (laser_trap.acc_step_count < 0) {
while (laser_trap.acc_step_count < 0) {
laser_trap.acc_step_count += current_block->laser.entry_per;
if (laser_trap.cur_power < current_block->laser.power) laser_trap.cur_power++;
}
cutter.set_ocr_power(laser_trap.cur_power);
}
}
#else
if (laser_trap.till_update)
laser_trap.till_update--;
else {
laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
laser_trap.cur_power = (current_block->laser.power * acc_step_rate) / current_block->nominal_rate;
cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency is irrelevant it the last line was many cycles
}
#endif
}
#endif
}
// Are we in Deceleration phase ?
else if (step_events_completed > decelerate_after) {
uint32_t step_rate;
#if ENABLED(S_CURVE_ACCELERATION)
// If this is the 1st time we process the 2nd half of the trapezoid...
if (!bezier_2nd_half) {
// Initialize the Bézier speed curve
_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
bezier_2nd_half = true;
// The first point starts at cruise rate. Just save evaluation of the Bézier curve
step_rate = current_block->cruise_rate;
}
else {
// Calculate the next speed to use
step_rate = deceleration_time < current_block->deceleration_time
? _eval_bezier_curve(deceleration_time)
: current_block->final_rate;
}
#else
// Using the old trapezoidal control
step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
if (step_rate < acc_step_rate) { // Still decelerating?
step_rate = acc_step_rate - step_rate;
NOLESS(step_rate, current_block->final_rate);
}
else
step_rate = current_block->final_rate;
#endif
// step_rate is in steps/second
// step_rate to timer interval and steps per stepper isr
interval = calc_timer_interval(step_rate, &steps_per_isr);
deceleration_time += interval;
#if ENABLED(LIN_ADVANCE)
if (LA_use_advance_lead) {
// Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached
if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {
initiateLA();
LA_isr_rate = current_block->advance_speed;
}
}
else if (LA_steps) nextAdvanceISR = 0;
#endif // LIN_ADVANCE
// Update laser - Decelerating
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
if (laser_trap.enabled) {
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
if (current_block->laser.exit_per) {
laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
laser_trap.last_step_count = step_events_completed;
// Should be faster than a divide, since this should trip just once
if (laser_trap.acc_step_count < 0) {
while (laser_trap.acc_step_count < 0) {
laser_trap.acc_step_count += current_block->laser.exit_per;
if (laser_trap.cur_power > current_block->laser.power_exit) laser_trap.cur_power--;
}
cutter.set_ocr_power(laser_trap.cur_power);
}
}
#else
if (laser_trap.till_update)
laser_trap.till_update--;
else {
laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
laser_trap.cur_power = (current_block->laser.power * step_rate) / current_block->nominal_rate;
cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency isn't relevant when the last line was many cycles
}
#endif
}
#endif
}
// Must be in cruise phase otherwise
else {
#if ENABLED(LIN_ADVANCE)
// If there are any esteps, fire the next advance_isr "now"
if (LA_steps && LA_isr_rate != current_block->advance_speed) initiateLA();
#endif
// Calculate the ticks_nominal for this nominal speed, if not done yet
if (ticks_nominal < 0) {
// step_rate to timer interval and loops for the nominal speed
ticks_nominal = calc_timer_interval(current_block->nominal_rate, &steps_per_isr);
}
// The timer interval is just the nominal value for the nominal speed
interval = ticks_nominal;
// Update laser - Cruising
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
if (laser_trap.enabled) {
if (!laser_trap.cruise_set) {
laser_trap.cur_power = current_block->laser.power;
cutter.set_ocr_power(laser_trap.cur_power);
laser_trap.cruise_set = true;
}
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
#else
laser_trap.last_step_count = step_events_completed;
#endif
}
#endif
}
}
}
// If there is no current block at this point, attempt to pop one from the buffer
// and prepare its movement
if (!current_block) {
// Anything in the buffer?
if ((current_block = planner.get_current_block())) {
// Sync block? Sync the stepper counts and return
while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {
_set_position(current_block->position);
discard_current_block();
// Try to get a new block
if (!(current_block = planner.get_current_block()))
return interval; // No more queued movements!
}
// For non-inline cutter, grossly apply power
#if ENABLED(LASER_FEATURE) && DISABLED(LASER_POWER_INLINE)
cutter.apply_power(current_block->cutter_power);
#endif
TERN_(POWER_LOSS_RECOVERY, recovery.info.sdpos = current_block->sdpos);
#if ENABLED(DIRECT_STEPPING)
if (IS_PAGE(current_block)) {
page_step_state.segment_steps = 0;
page_step_state.segment_idx = 0;
page_step_state.page = page_manager.get_page(current_block->page_idx);
page_step_state.bd.reset();
if (DirectStepping::Config::DIRECTIONAL)
current_block->direction_bits = last_direction_bits;
if (!page_step_state.page) {
discard_current_block();
return interval;
}
}
#endif
// Flag all moving axes for proper endstop handling
#if IS_CORE
// Define conditions for checking endstops
#define S_(N) current_block->steps[CORE_AXIS_##N]
#define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
#endif
#if CORE_IS_XY || CORE_IS_XZ
/**
* Head direction in -X axis for CoreXY and CoreXZ bots.
*
* If steps differ, both axes are moving.
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
* If DeltaA == DeltaB, the movement is only in the 1st axis (X)
*/
#if EITHER(COREXY, COREXZ)
#define X_CMP(A,B) ((A)==(B))
#else
#define X_CMP(A,B) ((A)!=(B))
#endif
#define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) )
#elif ENABLED(MARKFORGED_XY)
#define X_MOVE_TEST (current_block->steps.a != current_block->steps.b)
#else
#define X_MOVE_TEST !!current_block->steps.a
#endif
#if CORE_IS_XY || CORE_IS_YZ
/**
* Head direction in -Y axis for CoreXY / CoreYZ bots.
*
* If steps differ, both axes are moving
* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
*/
#if EITHER(COREYX, COREYZ)
#define Y_CMP(A,B) ((A)==(B))
#else
#define Y_CMP(A,B) ((A)!=(B))
#endif
#define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) )
#else
#define Y_MOVE_TEST !!current_block->steps.b
#endif
#if CORE_IS_XZ || CORE_IS_YZ
/**
* Head direction in -Z axis for CoreXZ or CoreYZ bots.
*
* If steps differ, both axes are moving
* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
*/
#if EITHER(COREZX, COREZY)
#define Z_CMP(A,B) ((A)==(B))
#else
#define Z_CMP(A,B) ((A)!=(B))
#endif
#define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) )
#else
#define Z_MOVE_TEST !!current_block->steps.c
#endif
uint8_t axis_bits = 0;
if (X_MOVE_TEST) SBI(axis_bits, A_AXIS);
if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS);
if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS);
//if (!!current_block->steps.e) SBI(axis_bits, E_AXIS);
//if (!!current_block->steps.a) SBI(axis_bits, X_HEAD);
//if (!!current_block->steps.b) SBI(axis_bits, Y_HEAD);
//if (!!current_block->steps.c) SBI(axis_bits, Z_HEAD);
axis_did_move = axis_bits;
// No acceleration / deceleration time elapsed so far
acceleration_time = deceleration_time = 0;
#if ENABLED(ADAPTIVE_STEP_SMOOTHING)
uint8_t oversampling = 0; // Assume no axis smoothing (via oversampling)
// Decide if axis smoothing is possible
uint32_t max_rate = current_block->nominal_rate; // Get the step event rate
while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible...
max_rate <<= 1; // Try to double the rate
if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit
++oversampling; // Increase the oversampling (used for left-shift)
}
oversampling_factor = oversampling; // For all timer interval calculations
#else
constexpr uint8_t oversampling = 0;
#endif
// Based on the oversampling factor, do the calculations
step_event_count = current_block->step_event_count << oversampling;
// Initialize Bresenham delta errors to 1/2
delta_error = -int32_t(step_event_count);
// Calculate Bresenham dividends and divisors
advance_dividend = current_block->steps << 1;
advance_divisor = step_event_count << 1;
// No step events completed so far
step_events_completed = 0;
// Compute the acceleration and deceleration points
accelerate_until = current_block->accelerate_until << oversampling;
decelerate_after = current_block->decelerate_after << oversampling;
#if ENABLED(MIXING_EXTRUDER)
MIXER_STEPPER_SETUP();
#endif
TERN_(HAS_MULTI_EXTRUDER, stepper_extruder = current_block->extruder);
// Initialize the trapezoid generator from the current block.
#if ENABLED(LIN_ADVANCE)
#if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
// If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
if (stepper_extruder != last_moved_extruder) LA_current_adv_steps = 0;
#endif
if ((LA_use_advance_lead = current_block->use_advance_lead)) {
LA_final_adv_steps = current_block->final_adv_steps;
LA_max_adv_steps = current_block->max_adv_steps;
initiateLA(); // Start the ISR
LA_isr_rate = current_block->advance_speed;
}
else LA_isr_rate = LA_ADV_NEVER;
#endif
if ( ENABLED(HAS_L64XX) // Always set direction for L64xx (Also enables the chips)
|| ENABLED(DUAL_X_CARRIAGE) // TODO: Find out why this fixes "jittery" small circles
|| current_block->direction_bits != last_direction_bits
|| TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)
) {
TERN_(HAS_MULTI_EXTRUDER, last_moved_extruder = stepper_extruder);
TERN_(HAS_L64XX, L64XX_OK_to_power_up = true);
set_directions(current_block->direction_bits);
}
#if ENABLED(LASER_POWER_INLINE)
const power_status_t stat = current_block->laser.status;
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
laser_trap.enabled = stat.isPlanned && stat.isEnabled;
laser_trap.cur_power = current_block->laser.power_entry; // RESET STATE
laser_trap.cruise_set = false;
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
laser_trap.last_step_count = 0;
laser_trap.acc_step_count = current_block->laser.entry_per / 2;
#else
laser_trap.till_update = 0;
#endif
// Always have PWM in this case
if (stat.isPlanned) { // Planner controls the laser
cutter.set_ocr_power(
stat.isEnabled ? laser_trap.cur_power : 0 // ON with power or OFF
);
}
#else
if (stat.isPlanned) { // Planner controls the laser
#if ENABLED(SPINDLE_LASER_PWM)
cutter.set_ocr_power(
stat.isEnabled ? current_block->laser.power : 0 // ON with power or OFF
);
#else
cutter.set_enabled(stat.isEnabled);
#endif
}
#endif
#endif // LASER_POWER_INLINE
// At this point, we must ensure the movement about to execute isn't
// trying to force the head against a limit switch. If using interrupt-
// driven change detection, and already against a limit then no call to
// the endstop_triggered method will be done and the movement will be
// done against the endstop. So, check the limits here: If the movement
// is against the limits, the block will be marked as to be killed, and
// on the next call to this ISR, will be discarded.
endstops.update();
#if ENABLED(Z_LATE_ENABLE)
// If delayed Z enable, enable it now. This option will severely interfere with
// timing between pulses when chaining motion between blocks, and it could lead
// to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
if (current_block->steps.z) ENABLE_AXIS_Z();
#endif
// Mark the time_nominal as not calculated yet
ticks_nominal = -1;
#if ENABLED(S_CURVE_ACCELERATION)
// Initialize the Bézier speed curve
_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
// We haven't started the 2nd half of the trapezoid
bezier_2nd_half = false;
#else
// Set as deceleration point the initial rate of the block
acc_step_rate = current_block->initial_rate;
#endif
// Calculate the initial timer interval
interval = calc_timer_interval(current_block->initial_rate, &steps_per_isr);
}
#if ENABLED(LASER_POWER_INLINE_CONTINUOUS)
else { // No new block found; so apply inline laser parameters
// This should mean ending file with 'M5 I' will stop the laser; thus the inline flag isn't needed
const power_status_t stat = planner.laser_inline.status;
if (stat.isPlanned) { // Planner controls the laser
#if ENABLED(SPINDLE_LASER_PWM)
cutter.set_ocr_power(
stat.isEnabled ? planner.laser_inline.power : 0 // ON with power or OFF
);
#else
cutter.set_enabled(stat.isEnabled);
#endif
}
}
#endif
}
// Return the interval to wait
return interval;
}
#if ENABLED(LIN_ADVANCE)
// Timer interrupt for E. LA_steps is set in the main routine
uint32_t Stepper::advance_isr() {
uint32_t interval;
if (LA_use_advance_lead) {
if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {
LA_steps--;
LA_current_adv_steps--;
interval = LA_isr_rate;
}
else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {
LA_steps++;
LA_current_adv_steps++;
interval = LA_isr_rate;
}
else
interval = LA_isr_rate = LA_ADV_NEVER;
}
else
interval = LA_ADV_NEVER;
if (!LA_steps) return interval; // Leave pins alone if there are no steps!
DIR_WAIT_BEFORE();
#if ENABLED(MIXING_EXTRUDER)
// We don't know which steppers will be stepped because LA loop follows,
// with potentially multiple steps. Set all.
if (LA_steps > 0)
MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
else if (LA_steps < 0)
MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
#else
if (LA_steps > 0)
NORM_E_DIR(stepper_extruder);
else if (LA_steps < 0)
REV_E_DIR(stepper_extruder);
#endif
DIR_WAIT_AFTER();
//const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
// Step E stepper if we have steps
#if ISR_MULTI_STEPS
bool firstStep = true;
USING_TIMED_PULSE();
#endif
while (LA_steps) {
#if ISR_MULTI_STEPS
if (firstStep)
firstStep = false;
else
AWAIT_LOW_PULSE();
#endif
// Set the STEP pulse ON
#if ENABLED(MIXING_EXTRUDER)
E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
#else
E_STEP_WRITE(stepper_extruder, !INVERT_E_STEP_PIN);
#endif
// Enforce a minimum duration for STEP pulse ON
#if ISR_PULSE_CONTROL
START_HIGH_PULSE();
#endif
LA_steps < 0 ? ++LA_steps : --LA_steps;
#if ISR_PULSE_CONTROL
AWAIT_HIGH_PULSE();
#endif
// Set the STEP pulse OFF
#if ENABLED(MIXING_EXTRUDER)
E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
#else
E_STEP_WRITE(stepper_extruder, INVERT_E_STEP_PIN);
#endif
// For minimum pulse time wait before looping
// Just wait for the requested pulse duration
#if ISR_PULSE_CONTROL
if (LA_steps) START_LOW_PULSE();
#endif
} // LA_steps
return interval;
}
#endif // LIN_ADVANCE
#if ENABLED(INTEGRATED_BABYSTEPPING)
// Timer interrupt for baby-stepping
uint32_t Stepper::babystepping_isr() {
babystep.task();
return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER;
}
#endif
// Check if the given block is busy or not - Must not be called from ISR contexts
// The current_block could change in the middle of the read by an Stepper ISR, so
// we must explicitly prevent that!
bool Stepper::is_block_busy(const block_t* const block) {
#ifdef __AVR__
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory");
// Keep reading until 2 consecutive reads return the same value,
// meaning there was no update in-between caused by an interrupt.
// This works because stepper ISRs happen at a slower rate than
// successive reads of a variable, so 2 consecutive reads with
// the same value means no interrupt updated it.
block_t* vold, *vnew = current_block;
sw_barrier();
do {
vold = vnew;
vnew = current_block;
sw_barrier();
} while (vold != vnew);
#else
block_t *vnew = current_block;
#endif
// Return if the block is busy or not
return block == vnew;
}
void Stepper::init() {
#if MB(ALLIGATOR)
const float motor_current[] = MOTOR_CURRENT;
unsigned int digipot_motor = 0;
LOOP_L_N(i, 3 + EXTRUDERS) {
digipot_motor = 255 * (motor_current[i] / 2.5);
dac084s085::setValue(i, digipot_motor);
}
#endif
// Init Microstepping Pins
TERN_(HAS_MICROSTEPS, microstep_init());
// Init Dir Pins
TERN_(HAS_X_DIR, X_DIR_INIT());
TERN_(HAS_X2_DIR, X2_DIR_INIT());
#if HAS_Y_DIR
Y_DIR_INIT();
#if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_DIR)
Y2_DIR_INIT();
#endif
#endif
#if HAS_Z_DIR
Z_DIR_INIT();
#if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_DIR
Z2_DIR_INIT();
#endif
#if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_DIR
Z3_DIR_INIT();
#endif
#if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_DIR
Z4_DIR_INIT();
#endif
#endif
#if HAS_E0_DIR
E0_DIR_INIT();
#endif
#if HAS_E1_DIR
E1_DIR_INIT();
#endif
#if HAS_E2_DIR
E2_DIR_INIT();
#endif
#if HAS_E3_DIR
E3_DIR_INIT();
#endif
#if HAS_E4_DIR
E4_DIR_INIT();
#endif
#if HAS_E5_DIR
E5_DIR_INIT();
#endif
#if HAS_E6_DIR
E6_DIR_INIT();
#endif
#if HAS_E7_DIR
E7_DIR_INIT();
#endif
// Init Enable Pins - steppers default to disabled.
#if HAS_X_ENABLE
X_ENABLE_INIT();
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
#if EITHER(DUAL_X_CARRIAGE, X_DUAL_STEPPER_DRIVERS) && HAS_X2_ENABLE
X2_ENABLE_INIT();
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
#endif
#endif
#if HAS_Y_ENABLE
Y_ENABLE_INIT();
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
#if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_ENABLE)
Y2_ENABLE_INIT();
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
#endif
#endif
#if HAS_Z_ENABLE
Z_ENABLE_INIT();
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
#if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_ENABLE
Z2_ENABLE_INIT();
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
#endif
#if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_ENABLE
Z3_ENABLE_INIT();
if (!Z_ENABLE_ON) Z3_ENABLE_WRITE(HIGH);
#endif
#if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_ENABLE
Z4_ENABLE_INIT();
if (!Z_ENABLE_ON) Z4_ENABLE_WRITE(HIGH);
#endif
#endif
#if HAS_E0_ENABLE
E0_ENABLE_INIT();
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
#endif
#if HAS_E1_ENABLE
E1_ENABLE_INIT();
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
#endif
#if HAS_E2_ENABLE
E2_ENABLE_INIT();
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
#endif
#if HAS_E3_ENABLE
E3_ENABLE_INIT();
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
#endif
#if HAS_E4_ENABLE
E4_ENABLE_INIT();
if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
#endif
#if HAS_E5_ENABLE
E5_ENABLE_INIT();
if (!E_ENABLE_ON) E5_ENABLE_WRITE(HIGH);
#endif
#if HAS_E6_ENABLE
E6_ENABLE_INIT();
if (!E_ENABLE_ON) E6_ENABLE_WRITE(HIGH);
#endif
#if HAS_E7_ENABLE
E7_ENABLE_INIT();
if (!E_ENABLE_ON) E7_ENABLE_WRITE(HIGH);
#endif
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT()
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
#define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS()
#define AXIS_INIT(AXIS, PIN) \
_STEP_INIT(AXIS); \
_WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
_DISABLE_AXIS(AXIS)
#define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
// Init Step Pins
#if HAS_X_STEP
#if EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE)
X2_STEP_INIT();
X2_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
AXIS_INIT(X, X);
#endif
#if HAS_Y_STEP
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
Y2_STEP_INIT();
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
AXIS_INIT(Y, Y);
#endif
#if HAS_Z_STEP
#if NUM_Z_STEPPER_DRIVERS >= 2
Z2_STEP_INIT();
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
#if NUM_Z_STEPPER_DRIVERS >= 3
Z3_STEP_INIT();
Z3_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
#if NUM_Z_STEPPER_DRIVERS >= 4
Z4_STEP_INIT();
Z4_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
AXIS_INIT(Z, Z);
#endif
#if E_STEPPERS && HAS_E0_STEP
E_AXIS_INIT(0);
#endif
#if E_STEPPERS > 1 && HAS_E1_STEP
E_AXIS_INIT(1);
#endif
#if E_STEPPERS > 2 && HAS_E2_STEP
E_AXIS_INIT(2);
#endif
#if E_STEPPERS > 3 && HAS_E3_STEP
E_AXIS_INIT(3);
#endif
#if E_STEPPERS > 4 && HAS_E4_STEP
E_AXIS_INIT(4);
#endif
#if E_STEPPERS > 5 && HAS_E5_STEP
E_AXIS_INIT(5);
#endif
#if E_STEPPERS > 6 && HAS_E6_STEP
E_AXIS_INIT(6);
#endif
#if E_STEPPERS > 7 && HAS_E7_STEP
E_AXIS_INIT(7);
#endif
#if DISABLED(I2S_STEPPER_STREAM)
HAL_timer_start(STEP_TIMER_NUM, 122); // Init Stepper ISR to 122 Hz for quick starting
wake_up();
sei();
#endif
// Init direction bits for first moves
set_directions((INVERT_X_DIR ? _BV(X_AXIS) : 0)
| (INVERT_Y_DIR ? _BV(Y_AXIS) : 0)
| (INVERT_Z_DIR ? _BV(Z_AXIS) : 0));
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
initialized = true;
digipot_init();
#endif
}
/**
* Set the stepper positions directly in steps
*
* The input is based on the typical per-axis XYZ steps.
* For CORE machines XYZ needs to be translated to ABC.
*
* This allows get_axis_position_mm to correctly
* derive the current XYZ position later on.
*/
void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
#if CORE_IS_XY
// corexy positioning
// these equations follow the form of the dA and dB equations on https://www.corexy.com/theory.html
count_position.set(a + b, CORESIGN(a - b), c);
#elif CORE_IS_XZ
// corexz planning
count_position.set(a + c, b, CORESIGN(a - c));
#elif CORE_IS_YZ
// coreyz planning
count_position.set(a, b + c, CORESIGN(b - c));
#elif ENABLED(MARKFORGED_XY)
count_position.set(a - b, b, c);
#else
// default non-h-bot planning
count_position.set(a, b, c);
#endif
count_position.e = e;
}
/**
* Get a stepper's position in steps.
*/
int32_t Stepper::position(const AxisEnum axis) {
#ifdef __AVR__
// Protect the access to the position. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
const bool was_enabled = suspend();
#endif
const int32_t v = count_position[axis];
#ifdef __AVR__
// Reenable Stepper ISR
if (was_enabled) wake_up();
#endif
return v;
}
// Set the current position in steps
void Stepper::set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
planner.synchronize();
const bool was_enabled = suspend();
_set_position(a, b, c, e);
if (was_enabled) wake_up();
}
void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) {
planner.synchronize();
#ifdef __AVR__
// Protect the access to the position. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
const bool was_enabled = suspend();
#endif
count_position[a] = v;
#ifdef __AVR__
// Reenable Stepper ISR
if (was_enabled) wake_up();
#endif
}
// Signal endstops were triggered - This function can be called from
// an ISR context (Temperature, Stepper or limits ISR), so we must
// be very careful here. If the interrupt being preempted was the
// Stepper ISR (this CAN happen with the endstop limits ISR) then
// when the stepper ISR resumes, we must be very sure that the movement
// is properly canceled
void Stepper::endstop_triggered(const AxisEnum axis) {
const bool was_enabled = suspend();
endstops_trigsteps[axis] = (
#if IS_CORE
(axis == CORE_AXIS_2
? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
: count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
) * double(0.5)
#elif ENABLED(MARKFORGED_XY)
axis == CORE_AXIS_1
? count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]
: count_position[CORE_AXIS_2]
#else // !IS_CORE
count_position[axis]
#endif
);
// Discard the rest of the move if there is a current block
quick_stop();
if (was_enabled) wake_up();
}
int32_t Stepper::triggered_position(const AxisEnum axis) {
#ifdef __AVR__
// Protect the access to the position. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
const bool was_enabled = suspend();
#endif
const int32_t v = endstops_trigsteps[axis];
#ifdef __AVR__
// Reenable Stepper ISR
if (was_enabled) wake_up();
#endif
return v;
}
void Stepper::report_a_position(const xyz_long_t &pos) {
#if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, DELTA, IS_SCARA)
SERIAL_ECHOPAIR(STR_COUNT_A, pos.x, " B:", pos.y);
#else
SERIAL_ECHOPAIR_P(PSTR(STR_COUNT_X), pos.x, SP_Y_LBL, pos.y);
#endif
#if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA)
SERIAL_ECHOLNPAIR(" C:", pos.z);
#else
SERIAL_ECHOLNPAIR_P(SP_Z_LBL, pos.z);
#endif
}
void Stepper::report_positions() {
#ifdef __AVR__
// Protect the access to the position.
const bool was_enabled = suspend();
#endif
const xyz_long_t pos = count_position;
#ifdef __AVR__
if (was_enabled) wake_up();
#endif
report_a_position(pos);
}
#if ENABLED(BABYSTEPPING)
#define _ENABLE_AXIS(AXIS) ENABLE_AXIS_## AXIS()
#define _READ_DIR(AXIS) AXIS ##_DIR_READ()
#define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
#if MINIMUM_STEPPER_PULSE
#define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
#else
#define STEP_PULSE_CYCLES 0
#endif
#if ENABLED(DELTA)
#define CYCLES_EATEN_BABYSTEP (2 * 15)
#else
#define CYCLES_EATEN_BABYSTEP 0
#endif
#define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
#if EXTRA_CYCLES_BABYSTEP > 20
#define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM)
#define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
#else
#define _SAVE_START() NOOP
#if EXTRA_CYCLES_BABYSTEP > 0
#define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
#elif ENABLED(DELTA)
#define _PULSE_WAIT() DELAY_US(2);
#elif STEP_PULSE_CYCLES > 0
#define _PULSE_WAIT() NOOP
#else
#define _PULSE_WAIT() DELAY_US(4);
#endif
#endif
#if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT)
#define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE
#define EXTRA_DIR_WAIT_AFTER DIR_WAIT_AFTER
#else
#define EXTRA_DIR_WAIT_BEFORE()
#define EXTRA_DIR_WAIT_AFTER()
#endif
#if DISABLED(DELTA)
#define BABYSTEP_AXIS(AXIS, INV, DIR) do{ \
const uint8_t old_dir = _READ_DIR(AXIS); \
_ENABLE_AXIS(AXIS); \
DIR_WAIT_BEFORE(); \
_APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INV); \
DIR_WAIT_AFTER(); \
_SAVE_START(); \
_APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), true); \
_PULSE_WAIT(); \
_APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), true); \
EXTRA_DIR_WAIT_BEFORE(); \
_APPLY_DIR(AXIS, old_dir); \
EXTRA_DIR_WAIT_AFTER(); \
}while(0)
#endif
#if IS_CORE
#define BABYSTEP_CORE(A, B, INV, DIR, ALT) do{ \
const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \
_ENABLE_AXIS(A); _ENABLE_AXIS(B); \
DIR_WAIT_BEFORE(); \
_APPLY_DIR(A, _INVERT_DIR(A)^DIR^INV); \
_APPLY_DIR(B, _INVERT_DIR(B)^DIR^INV^ALT); \
DIR_WAIT_AFTER(); \
_SAVE_START(); \
_APPLY_STEP(A, !_INVERT_STEP_PIN(A), true); \
_APPLY_STEP(B, !_INVERT_STEP_PIN(B), true); \
_PULSE_WAIT(); \
_APPLY_STEP(A, _INVERT_STEP_PIN(A), true); \
_APPLY_STEP(B, _INVERT_STEP_PIN(B), true); \
EXTRA_DIR_WAIT_BEFORE(); \
_APPLY_DIR(A, old_dir.a); _APPLY_DIR(B, old_dir.b); \
EXTRA_DIR_WAIT_AFTER(); \
}while(0)
#endif
// MUST ONLY BE CALLED BY AN ISR,
// No other ISR should ever interrupt this!
void Stepper::do_babystep(const AxisEnum axis, const bool direction) {
#if DISABLED(INTEGRATED_BABYSTEPPING)
cli();
#endif
switch (axis) {
#if ENABLED(BABYSTEP_XY)
case X_AXIS:
#if CORE_IS_XY
BABYSTEP_CORE(X, Y, 0, direction, 0);
#elif CORE_IS_XZ
BABYSTEP_CORE(X, Z, 0, direction, 0);
#else
BABYSTEP_AXIS(X, 0, direction);
#endif
break;
case Y_AXIS:
#if CORE_IS_XY
BABYSTEP_CORE(X, Y, 1, !direction, (CORESIGN(1)>0));
#elif CORE_IS_YZ
BABYSTEP_CORE(Y, Z, 0, direction, (CORESIGN(1)<0));
#else
BABYSTEP_AXIS(Y, 0, direction);
#endif
break;
#endif
case Z_AXIS: {
#if CORE_IS_XZ
BABYSTEP_CORE(X, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
#elif CORE_IS_YZ
BABYSTEP_CORE(Y, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
#elif DISABLED(DELTA)
BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
#else // DELTA
const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
ENABLE_AXIS_X();
ENABLE_AXIS_Y();
ENABLE_AXIS_Z();
DIR_WAIT_BEFORE();
const xyz_byte_t old_dir = { X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ() };
X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
DIR_WAIT_AFTER();
_SAVE_START();
X_STEP_WRITE(!INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_PULSE_WAIT();
X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
// Restore direction bits
EXTRA_DIR_WAIT_BEFORE();
X_DIR_WRITE(old_dir.x);
Y_DIR_WRITE(old_dir.y);
Z_DIR_WRITE(old_dir.z);
EXTRA_DIR_WAIT_AFTER();
#endif
} break;
default: break;
}
#if DISABLED(INTEGRATED_BABYSTEPPING)
sei();
#endif
}
#endif // BABYSTEPPING
/**
* Software-controlled Stepper Motor Current
*/
#if HAS_MOTOR_CURRENT_SPI
// From Arduino DigitalPotControl example
void Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) {
WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
SPI.transfer(address); // Send the address and value via SPI
SPI.transfer(value);
WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
//delay(10);
}
#endif // HAS_MOTOR_CURRENT_SPI
#if HAS_MOTOR_CURRENT_PWM
void Stepper::refresh_motor_power() {
if (!initialized) return;
LOOP_L_N(i, COUNT(motor_current_setting)) {
switch (i) {
#if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y)
case 0:
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
case 1:
#endif
#if ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_E0, MOTOR_CURRENT_PWM_E1)
case 2:
#endif
set_digipot_current(i, motor_current_setting[i]);
default: break;
}
}
}
#endif // HAS_MOTOR_CURRENT_PWM
#if !MB(PRINTRBOARD_G2)
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {
if (WITHIN(driver, 0, MOTOR_CURRENT_COUNT - 1))
motor_current_setting[driver] = current; // update motor_current_setting
if (!initialized) return;
#if HAS_MOTOR_CURRENT_SPI
//SERIAL_ECHOLNPAIR("Digipotss current ", current);
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
set_digipot_value_spi(digipot_ch[driver], current);
#elif HAS_MOTOR_CURRENT_PWM
#define _WRITE_CURRENT_PWM(P) analogWrite(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
switch (driver) {
case 0:
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
_WRITE_CURRENT_PWM(X);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
_WRITE_CURRENT_PWM(Y);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
_WRITE_CURRENT_PWM(XY);
#endif
break;
case 1:
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
_WRITE_CURRENT_PWM(Z);
#endif
break;
case 2:
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
_WRITE_CURRENT_PWM(E);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
_WRITE_CURRENT_PWM(E0);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
_WRITE_CURRENT_PWM(E1);
#endif
break;
}
#endif
}
void Stepper::digipot_init() {
#if HAS_MOTOR_CURRENT_SPI
SPI.begin();
SET_OUTPUT(DIGIPOTSS_PIN);
LOOP_L_N(i, COUNT(motor_current_setting))
set_digipot_current(i, motor_current_setting[i]);
#elif HAS_MOTOR_CURRENT_PWM
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
SET_PWM(MOTOR_CURRENT_PWM_X_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
SET_PWM(MOTOR_CURRENT_PWM_Y_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
SET_PWM(MOTOR_CURRENT_PWM_XY_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
SET_PWM(MOTOR_CURRENT_PWM_Z_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
SET_PWM(MOTOR_CURRENT_PWM_E_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
SET_PWM(MOTOR_CURRENT_PWM_E0_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
SET_PWM(MOTOR_CURRENT_PWM_E1_PIN);
#endif
refresh_motor_power();
// Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
#ifdef __AVR__
SET_CS5(PRESCALER_1);
#endif
#endif
}
#endif
#else // PRINTRBOARD_G2
#include HAL_PATH(../HAL, fastio/G2_PWM.h)
#endif
#if HAS_MICROSTEPS
/**
* Software-controlled Microstepping
*/
void Stepper::microstep_init() {
#if HAS_X_MS_PINS
SET_OUTPUT(X_MS1_PIN);
SET_OUTPUT(X_MS2_PIN);
#if PIN_EXISTS(X_MS3)
SET_OUTPUT(X_MS3_PIN);
#endif
#endif
#if HAS_X2_MS_PINS
SET_OUTPUT(X2_MS1_PIN);
SET_OUTPUT(X2_MS2_PIN);
#if PIN_EXISTS(X2_MS3)
SET_OUTPUT(X2_MS3_PIN);
#endif
#endif
#if HAS_Y_MS_PINS
SET_OUTPUT(Y_MS1_PIN);
SET_OUTPUT(Y_MS2_PIN);
#if PIN_EXISTS(Y_MS3)
SET_OUTPUT(Y_MS3_PIN);
#endif
#endif
#if HAS_Y2_MS_PINS
SET_OUTPUT(Y2_MS1_PIN);
SET_OUTPUT(Y2_MS2_PIN);
#if PIN_EXISTS(Y2_MS3)
SET_OUTPUT(Y2_MS3_PIN);
#endif
#endif
#if HAS_Z_MS_PINS
SET_OUTPUT(Z_MS1_PIN);
SET_OUTPUT(Z_MS2_PIN);
#if PIN_EXISTS(Z_MS3)
SET_OUTPUT(Z_MS3_PIN);
#endif
#endif
#if HAS_Z2_MS_PINS
SET_OUTPUT(Z2_MS1_PIN);
SET_OUTPUT(Z2_MS2_PIN);
#if PIN_EXISTS(Z2_MS3)
SET_OUTPUT(Z2_MS3_PIN);
#endif
#endif
#if HAS_Z3_MS_PINS
SET_OUTPUT(Z3_MS1_PIN);
SET_OUTPUT(Z3_MS2_PIN);
#if PIN_EXISTS(Z3_MS3)
SET_OUTPUT(Z3_MS3_PIN);
#endif
#endif
#if HAS_Z4_MS_PINS
SET_OUTPUT(Z4_MS1_PIN);
SET_OUTPUT(Z4_MS2_PIN);
#if PIN_EXISTS(Z4_MS3)
SET_OUTPUT(Z4_MS3_PIN);
#endif
#endif
#if HAS_E0_MS_PINS
SET_OUTPUT(E0_MS1_PIN);
SET_OUTPUT(E0_MS2_PIN);
#if PIN_EXISTS(E0_MS3)
SET_OUTPUT(E0_MS3_PIN);
#endif
#endif
#if HAS_E1_MS_PINS
SET_OUTPUT(E1_MS1_PIN);
SET_OUTPUT(E1_MS2_PIN);
#if PIN_EXISTS(E1_MS3)
SET_OUTPUT(E1_MS3_PIN);
#endif
#endif
#if HAS_E2_MS_PINS
SET_OUTPUT(E2_MS1_PIN);
SET_OUTPUT(E2_MS2_PIN);
#if PIN_EXISTS(E2_MS3)
SET_OUTPUT(E2_MS3_PIN);
#endif
#endif
#if HAS_E3_MS_PINS
SET_OUTPUT(E3_MS1_PIN);
SET_OUTPUT(E3_MS2_PIN);
#if PIN_EXISTS(E3_MS3)
SET_OUTPUT(E3_MS3_PIN);
#endif
#endif
#if HAS_E4_MS_PINS
SET_OUTPUT(E4_MS1_PIN);
SET_OUTPUT(E4_MS2_PIN);
#if PIN_EXISTS(E4_MS3)
SET_OUTPUT(E4_MS3_PIN);
#endif
#endif
#if HAS_E5_MS_PINS
SET_OUTPUT(E5_MS1_PIN);
SET_OUTPUT(E5_MS2_PIN);
#if PIN_EXISTS(E5_MS3)
SET_OUTPUT(E5_MS3_PIN);
#endif
#endif
#if HAS_E6_MS_PINS
SET_OUTPUT(E6_MS1_PIN);
SET_OUTPUT(E6_MS2_PIN);
#if PIN_EXISTS(E6_MS3)
SET_OUTPUT(E6_MS3_PIN);
#endif
#endif
#if HAS_E7_MS_PINS
SET_OUTPUT(E7_MS1_PIN);
SET_OUTPUT(E7_MS2_PIN);
#if PIN_EXISTS(E7_MS3)
SET_OUTPUT(E7_MS3_PIN);
#endif
#endif
static const uint8_t microstep_modes[] = MICROSTEP_MODES;
for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
microstep_mode(i, microstep_modes[i]);
}
void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) {
if (ms1 >= 0) switch (driver) {
#if HAS_X_MS_PINS || HAS_X2_MS_PINS
case 0:
#if HAS_X_MS_PINS
WRITE(X_MS1_PIN, ms1);
#endif
#if HAS_X2_MS_PINS
WRITE(X2_MS1_PIN, ms1);
#endif
break;
#endif
#if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
case 1:
#if HAS_Y_MS_PINS
WRITE(Y_MS1_PIN, ms1);
#endif
#if HAS_Y2_MS_PINS
WRITE(Y2_MS1_PIN, ms1);
#endif
break;
#endif
#if HAS_SOME_Z_MS_PINS
case 2:
#if HAS_Z_MS_PINS
WRITE(Z_MS1_PIN, ms1);
#endif
#if HAS_Z2_MS_PINS
WRITE(Z2_MS1_PIN, ms1);
#endif
#if HAS_Z3_MS_PINS
WRITE(Z3_MS1_PIN, ms1);
#endif
#if HAS_Z4_MS_PINS
WRITE(Z4_MS1_PIN, ms1);
#endif
break;
#endif
#if HAS_E0_MS_PINS
case 3: WRITE(E0_MS1_PIN, ms1); break;
#endif
#if HAS_E1_MS_PINS
case 4: WRITE(E1_MS1_PIN, ms1); break;
#endif
#if HAS_E2_MS_PINS
case 5: WRITE(E2_MS1_PIN, ms1); break;
#endif
#if HAS_E3_MS_PINS
case 6: WRITE(E3_MS1_PIN, ms1); break;
#endif
#if HAS_E4_MS_PINS
case 7: WRITE(E4_MS1_PIN, ms1); break;
#endif
#if HAS_E5_MS_PINS
case 8: WRITE(E5_MS1_PIN, ms1); break;
#endif
#if HAS_E6_MS_PINS
case 9: WRITE(E6_MS1_PIN, ms1); break;
#endif
#if HAS_E7_MS_PINS
case 10: WRITE(E7_MS1_PIN, ms1); break;
#endif
}
if (ms2 >= 0) switch (driver) {
#if HAS_X_MS_PINS || HAS_X2_MS_PINS
case 0:
#if HAS_X_MS_PINS
WRITE(X_MS2_PIN, ms2);
#endif
#if HAS_X2_MS_PINS
WRITE(X2_MS2_PIN, ms2);
#endif
break;
#endif
#if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
case 1:
#if HAS_Y_MS_PINS
WRITE(Y_MS2_PIN, ms2);
#endif
#if HAS_Y2_MS_PINS
WRITE(Y2_MS2_PIN, ms2);
#endif
break;
#endif
#if HAS_SOME_Z_MS_PINS
case 2:
#if HAS_Z_MS_PINS
WRITE(Z_MS2_PIN, ms2);
#endif
#if HAS_Z2_MS_PINS
WRITE(Z2_MS2_PIN, ms2);
#endif
#if HAS_Z3_MS_PINS
WRITE(Z3_MS2_PIN, ms2);
#endif
#if HAS_Z4_MS_PINS
WRITE(Z4_MS2_PIN, ms2);
#endif
break;
#endif
#if HAS_E0_MS_PINS
case 3: WRITE(E0_MS2_PIN, ms2); break;
#endif
#if HAS_E1_MS_PINS
case 4: WRITE(E1_MS2_PIN, ms2); break;
#endif
#if HAS_E2_MS_PINS
case 5: WRITE(E2_MS2_PIN, ms2); break;
#endif
#if HAS_E3_MS_PINS
case 6: WRITE(E3_MS2_PIN, ms2); break;
#endif
#if HAS_E4_MS_PINS
case 7: WRITE(E4_MS2_PIN, ms2); break;
#endif
#if HAS_E5_MS_PINS
case 8: WRITE(E5_MS2_PIN, ms2); break;
#endif
#if HAS_E6_MS_PINS
case 9: WRITE(E6_MS2_PIN, ms2); break;
#endif
#if HAS_E7_MS_PINS
case 10: WRITE(E7_MS2_PIN, ms2); break;
#endif
}
if (ms3 >= 0) switch (driver) {
#if HAS_X_MS_PINS || HAS_X2_MS_PINS
case 0:
#if HAS_X_MS_PINS && PIN_EXISTS(X_MS3)
WRITE(X_MS3_PIN, ms3);
#endif
#if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3)
WRITE(X2_MS3_PIN, ms3);
#endif
break;
#endif
#if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
case 1:
#if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3)
WRITE(Y_MS3_PIN, ms3);
#endif
#if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3)
WRITE(Y2_MS3_PIN, ms3);
#endif
break;
#endif
#if HAS_SOME_Z_MS_PINS
case 2:
#if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3)
WRITE(Z_MS3_PIN, ms3);
#endif
#if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3)
WRITE(Z2_MS3_PIN, ms3);
#endif
#if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3)
WRITE(Z3_MS3_PIN, ms3);
#endif
#if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3)
WRITE(Z4_MS3_PIN, ms3);
#endif
break;
#endif
#if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3)
case 3: WRITE(E0_MS3_PIN, ms3); break;
#endif
#if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3)
case 4: WRITE(E1_MS3_PIN, ms3); break;
#endif
#if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3)
case 5: WRITE(E2_MS3_PIN, ms3); break;
#endif
#if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3)
case 6: WRITE(E3_MS3_PIN, ms3); break;
#endif
#if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3)
case 7: WRITE(E4_MS3_PIN, ms3); break;
#endif
#if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3)
case 8: WRITE(E5_MS3_PIN, ms3); break;
#endif
#if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3)
case 9: WRITE(E6_MS3_PIN, ms3); break;
#endif
#if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3)
case 10: WRITE(E7_MS3_PIN, ms3); break;
#endif
}
}
void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
switch (stepping_mode) {
#if HAS_MICROSTEP1
case 1: microstep_ms(driver, MICROSTEP1); break;
#endif
#if HAS_MICROSTEP2
case 2: microstep_ms(driver, MICROSTEP2); break;
#endif
#if HAS_MICROSTEP4
case 4: microstep_ms(driver, MICROSTEP4); break;
#endif
#if HAS_MICROSTEP8
case 8: microstep_ms(driver, MICROSTEP8); break;
#endif
#if HAS_MICROSTEP16
case 16: microstep_ms(driver, MICROSTEP16); break;
#endif
#if HAS_MICROSTEP32
case 32: microstep_ms(driver, MICROSTEP32); break;
#endif
#if HAS_MICROSTEP64
case 64: microstep_ms(driver, MICROSTEP64); break;
#endif
#if HAS_MICROSTEP128
case 128: microstep_ms(driver, MICROSTEP128); break;
#endif
default: SERIAL_ERROR_MSG("Microsteps unavailable"); break;
}
}
void Stepper::microstep_readings() {
#define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN))
#define MS_LINE(A) do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0)
SERIAL_ECHOPGM("MS1|2|3 Pins");
#if HAS_X_MS_PINS
MS_LINE(X);
#if PIN_EXISTS(X_MS3)
PIN_CHAR(X_MS3);
#endif
#endif
#if HAS_Y_MS_PINS
MS_LINE(Y);
#if PIN_EXISTS(Y_MS3)
PIN_CHAR(Y_MS3);
#endif
#endif
#if HAS_Z_MS_PINS
MS_LINE(Z);
#if PIN_EXISTS(Z_MS3)
PIN_CHAR(Z_MS3);
#endif
#endif
#if HAS_E0_MS_PINS
MS_LINE(E0);
#if PIN_EXISTS(E0_MS3)
PIN_CHAR(E0_MS3);
#endif
#endif
#if HAS_E1_MS_PINS
MS_LINE(E1);
#if PIN_EXISTS(E1_MS3)
PIN_CHAR(E1_MS3);
#endif
#endif
#if HAS_E2_MS_PINS
MS_LINE(E2);
#if PIN_EXISTS(E2_MS3)
PIN_CHAR(E2_MS3);
#endif
#endif
#if HAS_E3_MS_PINS
MS_LINE(E3);
#if PIN_EXISTS(E3_MS3)
PIN_CHAR(E3_MS3);
#endif
#endif
#if HAS_E4_MS_PINS
MS_LINE(E4);
#if PIN_EXISTS(E4_MS3)
PIN_CHAR(E4_MS3);
#endif
#endif
#if HAS_E5_MS_PINS
MS_LINE(E5);
#if PIN_EXISTS(E5_MS3)
PIN_CHAR(E5_MS3);
#endif
#endif
#if HAS_E6_MS_PINS
MS_LINE(E6);
#if PIN_EXISTS(E6_MS3)
PIN_CHAR(E6_MS3);
#endif
#endif
#if HAS_E7_MS_PINS
MS_LINE(E7);
#if PIN_EXISTS(E7_MS3)
PIN_CHAR(E7_MS3);
#endif
#endif
SERIAL_EOL();
}
#endif // HAS_MICROSTEPS