muele-marlin/Marlin/src/core/serial_hook.h
2022-01-09 04:33:17 -06:00

307 lines
12 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "serial_base.h"
// A mask containing a bitmap of the serial port to act upon
// This is written to ensure a serial index is never used as a serial mask
class SerialMask {
uint8_t mask;
// This constructor is private to ensure you can't convert an index to a mask
// The compiler will stop here if you are mixing index and mask in your code.
// If you need to, you'll have to use the explicit static "from" method here
SerialMask(const serial_index_t);
public:
inline constexpr bool enabled(const SerialMask PortMask) const { return mask & PortMask.mask; }
inline constexpr SerialMask combine(const SerialMask other) const { return SerialMask(mask | other.mask); }
inline constexpr SerialMask operator<< (const int offset) const { return SerialMask(mask << offset); }
static SerialMask from(const serial_index_t index) {
if (index.valid()) return SerialMask(_BV(index.index));
return SerialMask(0); // A invalid index mean no output
}
constexpr SerialMask(const uint8_t mask) : mask(mask) {}
constexpr SerialMask(const SerialMask & other) : mask(other.mask) {} // Can't use = default here since not all framework support this
static constexpr uint8_t All = 0xFF;
};
// The most basic serial class: it dispatch to the base serial class with no hook whatsoever. This will compile to nothing but the base serial class
template <class SerialT>
struct BaseSerial : public SerialBase< BaseSerial<SerialT> >, public SerialT {
typedef SerialBase< BaseSerial<SerialT> > BaseClassT;
// It's required to implement a write method here to help compiler disambiguate what method to call
using SerialT::write;
using SerialT::flush;
void msgDone() {}
// We don't care about indices here, since if one can call us, it's the right index anyway
int available(serial_index_t) { return (int)SerialT::available(); }
int read(serial_index_t) { return (int)SerialT::read(); }
bool connected() { return CALL_IF_EXISTS(bool, static_cast<SerialT*>(this), connected);; }
void flushTX() { CALL_IF_EXISTS(void, static_cast<SerialT*>(this), flushTX); }
SerialFeature features(serial_index_t index) const { return CALL_IF_EXISTS(SerialFeature, static_cast<const SerialT*>(this), features, index); }
// Two implementations of the same method exist in both base classes so indicate the right one
using SerialT::available;
using SerialT::read;
using SerialT::begin;
using SerialT::end;
using BaseClassT::print;
using BaseClassT::println;
BaseSerial(const bool e) : BaseClassT(e) {}
// Forward constructor
template <typename... Args>
BaseSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...) {}
};
// A serial with a condition checked at runtime for its output
// A bit less efficient than static dispatching but since it's only used for ethernet's serial output right now, it's ok.
template <class SerialT>
struct ConditionalSerial : public SerialBase< ConditionalSerial<SerialT> > {
typedef SerialBase< ConditionalSerial<SerialT> > BaseClassT;
bool & condition;
SerialT & out;
NO_INLINE size_t write(uint8_t c) { if (condition) return out.write(c); return 0; }
void flush() { if (condition) out.flush(); }
void begin(long br) { out.begin(br); }
void end() { out.end(); }
void msgDone() {}
bool connected() { return CALL_IF_EXISTS(bool, &out, connected); }
void flushTX() { CALL_IF_EXISTS(void, &out, flushTX); }
int available(serial_index_t) { return (int)out.available(); }
int read(serial_index_t) { return (int)out.read(); }
int available() { return (int)out.available(); }
int read() { return (int)out.read(); }
SerialFeature features(serial_index_t index) const { return CALL_IF_EXISTS(SerialFeature, &out, features, index); }
ConditionalSerial(bool & conditionVariable, SerialT & out, const bool e) : BaseClassT(e), condition(conditionVariable), out(out) {}
};
// A simple forward class that taking a reference to an existing serial instance (likely created in their respective framework)
template <class SerialT>
struct ForwardSerial : public SerialBase< ForwardSerial<SerialT> > {
typedef SerialBase< ForwardSerial<SerialT> > BaseClassT;
SerialT & out;
NO_INLINE size_t write(uint8_t c) { return out.write(c); }
void flush() { out.flush(); }
void begin(long br) { out.begin(br); }
void end() { out.end(); }
void msgDone() {}
// Existing instances implement Arduino's operator bool, so use that if it's available
bool connected() { return Private::HasMember_connected<SerialT>::value ? CALL_IF_EXISTS(bool, &out, connected) : (bool)out; }
void flushTX() { CALL_IF_EXISTS(void, &out, flushTX); }
int available(serial_index_t) { return (int)out.available(); }
int read(serial_index_t) { return (int)out.read(); }
int available() { return (int)out.available(); }
int read() { return (int)out.read(); }
SerialFeature features(serial_index_t index) const { return CALL_IF_EXISTS(SerialFeature, &out, features, index); }
ForwardSerial(const bool e, SerialT & out) : BaseClassT(e), out(out) {}
};
// A class that can be hooked and unhooked at runtime, useful to capture the output of the serial interface
template <class SerialT>
struct RuntimeSerial : public SerialBase< RuntimeSerial<SerialT> >, public SerialT {
typedef SerialBase< RuntimeSerial<SerialT> > BaseClassT;
typedef void (*WriteHook)(void * userPointer, uint8_t c);
typedef void (*EndOfMessageHook)(void * userPointer);
WriteHook writeHook;
EndOfMessageHook eofHook;
void * userPointer;
NO_INLINE size_t write(uint8_t c) {
if (writeHook) writeHook(userPointer, c);
return SerialT::write(c);
}
NO_INLINE void msgDone() {
if (eofHook) eofHook(userPointer);
}
int available(serial_index_t) { return (int)SerialT::available(); }
int read(serial_index_t) { return (int)SerialT::read(); }
using SerialT::available;
using SerialT::read;
using SerialT::flush;
using SerialT::begin;
using SerialT::end;
using BaseClassT::print;
using BaseClassT::println;
// Underlying implementation might use Arduino's bool operator
bool connected() {
return Private::HasMember_connected<SerialT>::value
? CALL_IF_EXISTS(bool, static_cast<SerialT*>(this), connected)
: static_cast<SerialT*>(this)->operator bool();
}
void flushTX() { CALL_IF_EXISTS(void, static_cast<SerialT*>(this), flushTX); }
// Append Hookable for this class
SerialFeature features(serial_index_t index) const { return SerialFeature::Hookable | CALL_IF_EXISTS(SerialFeature, static_cast<const SerialT*>(this), features, index); }
void setHook(WriteHook writeHook = 0, EndOfMessageHook eofHook = 0, void * userPointer = 0) {
// Order is important here as serial code can be called inside interrupts
// When setting a hook, the user pointer must be set first so if writeHook is called as soon as it's set, it'll be valid
if (userPointer) this->userPointer = userPointer;
this->writeHook = writeHook;
this->eofHook = eofHook;
// Order is important here because of asynchronous access here
// When unsetting a hook, the user pointer must be unset last so that any pending writeHook is still using the old pointer
if (!userPointer) this->userPointer = 0;
}
RuntimeSerial(const bool e) : BaseClassT(e), writeHook(0), eofHook(0), userPointer(0) {}
// Forward constructor
template <typename... Args>
RuntimeSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...), writeHook(0), eofHook(0), userPointer(0) {}
};
#define _S_CLASS(N) class Serial##N##T,
#define _S_NAME(N) Serial##N##T,
template < REPEAT(NUM_SERIAL, _S_CLASS) const uint8_t offset=0, const uint8_t step=1 >
struct MultiSerial : public SerialBase< MultiSerial< REPEAT(NUM_SERIAL, _S_NAME) offset, step > > {
typedef SerialBase< MultiSerial< REPEAT(NUM_SERIAL, _S_NAME) offset, step > > BaseClassT;
#undef _S_CLASS
#undef _S_NAME
SerialMask portMask;
#define _S_DECLARE(N) Serial##N##T & serial##N;
REPEAT(NUM_SERIAL, _S_DECLARE);
#undef _S_DECLARE
static constexpr uint8_t Usage = _BV(step) - 1; // A bit mask containing 'step' bits
#define _OUT_PORT(N) (Usage << (offset + (step * N))),
static constexpr uint8_t output[] = { REPEAT(NUM_SERIAL, _OUT_PORT) };
#undef _OUT_PORT
#define _OUT_MASK(N) | output[N]
static constexpr uint8_t ALL = 0 REPEAT(NUM_SERIAL, _OUT_MASK);
#undef _OUT_MASK
NO_INLINE void write(uint8_t c) {
#define _S_WRITE(N) if (portMask.enabled(output[N])) serial##N.write(c);
REPEAT(NUM_SERIAL, _S_WRITE);
#undef _S_WRITE
}
NO_INLINE void msgDone() {
#define _S_DONE(N) if (portMask.enabled(output[N])) serial##N.msgDone();
REPEAT(NUM_SERIAL, _S_DONE);
#undef _S_DONE
}
int available(serial_index_t index) {
uint8_t pos = offset;
#define _S_AVAILABLE(N) if (index.within(pos, pos + step - 1)) return serial##N.available(index); else pos += step;
REPEAT(NUM_SERIAL, _S_AVAILABLE);
#undef _S_AVAILABLE
return false;
}
int read(serial_index_t index) {
uint8_t pos = offset;
#define _S_READ(N) if (index.within(pos, pos + step - 1)) return serial##N.read(index); else pos += step;
REPEAT(NUM_SERIAL, _S_READ);
#undef _S_READ
return -1;
}
void begin(const long br) {
#define _S_BEGIN(N) if (portMask.enabled(output[N])) serial##N.begin(br);
REPEAT(NUM_SERIAL, _S_BEGIN);
#undef _S_BEGIN
}
void end() {
#define _S_END(N) if (portMask.enabled(output[N])) serial##N.end();
REPEAT(NUM_SERIAL, _S_END);
#undef _S_END
}
bool connected() {
bool ret = true;
#define _S_CONNECTED(N) if (portMask.enabled(output[N]) && !CALL_IF_EXISTS(bool, &serial##N, connected)) ret = false;
REPEAT(NUM_SERIAL, _S_CONNECTED);
#undef _S_CONNECTED
return ret;
}
using BaseClassT::available;
using BaseClassT::read;
// Redirect flush
NO_INLINE void flush() {
#define _S_FLUSH(N) if (portMask.enabled(output[N])) serial##N.flush();
REPEAT(NUM_SERIAL, _S_FLUSH);
#undef _S_FLUSH
}
NO_INLINE void flushTX() {
#define _S_FLUSHTX(N) if (portMask.enabled(output[N])) CALL_IF_EXISTS(void, &serial0, flushTX);
REPEAT(NUM_SERIAL, _S_FLUSHTX);
#undef _S_FLUSHTX
}
// Forward feature queries
SerialFeature features(serial_index_t index) const {
uint8_t pos = offset;
#define _S_FEATURES(N) if (index.within(pos, pos + step - 1)) return serial##N.features(index); else pos += step;
REPEAT(NUM_SERIAL, _S_FEATURES);
#undef _S_FEATURES
return SerialFeature::None;
}
#define _S_REFS(N) Serial##N##T & serial##N,
#define _S_INIT(N) ,serial##N (serial##N)
MultiSerial(REPEAT(NUM_SERIAL, _S_REFS) const SerialMask mask = ALL, const bool e = false)
: BaseClassT(e), portMask(mask) REPEAT(NUM_SERIAL, _S_INIT) {}
};
// Build the actual serial object depending on current configuration
#define Serial1Class TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, BaseSerial)
#define ForwardSerial1Class TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, ForwardSerial)
#ifdef HAS_MULTI_SERIAL
#define Serial2Class ConditionalSerial
#if NUM_SERIAL >= 3
#define Serial3Class ConditionalSerial
#endif
#endif