muele-marlin/Marlin/stepper.cpp
alexborro e650d4044e Fix "Stop Print" function in the LCD menu
When one hit "Stop Print" option in LCD menu, the command buffer was not
cleared. The printer keep moving until the buffer has been emptied.
Actually I could not clear the command buffer as well.. I don't know
why, it doesnt work as expected.
I need to implement a routine inside Stepper ISR to handle such
situation.
2015-03-19 14:16:18 -03:00

1184 lines
36 KiB
C++

/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
#include "Marlin.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#include "cardreader.h"
#include "speed_lookuptable.h"
#if HAS_DIGIPOTSS
#include <SPI.h>
#endif
//===========================================================================
//============================= public variables ============================
//===========================================================================
block_t *current_block; // A pointer to the block currently being traced
//===========================================================================
//============================= private variables ===========================
//===========================================================================
//static makes it impossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static unsigned int cleaning_buffer_counter;
// Counter variables for the bresenham line tracer
static long counter_x, counter_y, counter_z, counter_e;
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE
static long advance_rate, advance, final_advance = 0;
static long old_advance = 0;
static long e_steps[4];
#endif
static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point
static char step_loops;
static unsigned short OCR1A_nominal;
static unsigned short step_loops_nominal;
volatile long endstops_trigsteps[3] = { 0 };
volatile long endstops_stepsTotal, endstops_stepsDone;
static volatile bool endstop_x_hit = false;
static volatile bool endstop_y_hit = false;
static volatile bool endstop_z_hit = false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
#endif
static bool old_x_min_endstop = false,
old_x_max_endstop = false,
old_y_min_endstop = false,
old_y_max_endstop = false,
old_z_min_endstop = false,
old_z_max_endstop = false;
static bool check_endstops = true;
volatile long count_position[NUM_AXIS] = { 0 };
volatile signed char count_direction[NUM_AXIS] = { 1 };
//===========================================================================
//================================ functions ================================
//===========================================================================
#ifdef DUAL_X_CARRIAGE
#define X_APPLY_DIR(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_DIR_WRITE(v); \
X2_DIR_WRITE(v); \
} \
else{ \
if (current_block->active_extruder) \
X2_DIR_WRITE(v); \
else \
X_DIR_WRITE(v); \
}
#define X_APPLY_STEP(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_STEP_WRITE(v); \
X2_STEP_WRITE(v); \
} \
else { \
if (current_block->active_extruder != 0) \
X2_STEP_WRITE(v); \
else \
X_STEP_WRITE(v); \
}
#else
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
#endif
#ifdef Y_DUAL_STEPPER_DRIVERS
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v), Y2_STEP_WRITE(v)
#else
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
#endif
#ifdef Z_DUAL_STEPPER_DRIVERS
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v), Z2_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v)
#else
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
#endif
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
// Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
void endstops_hit_on_purpose() {
endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
}
void checkHitEndstops() {
if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
if (endstop_x_hit) {
SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
}
if (endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
}
if (endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
SERIAL_EOL;
endstops_hit_on_purpose();
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit) {
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetHotend3(0);
setTargetBed(0);
}
#endif
}
}
void enable_endstops(bool check) { check_endstops = check; }
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
void st_wake_up() {
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2) & 0x3fff;
step_loops = 4;
}
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1) & 0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
step_rate -= (F_CPU / 500000); // Correct for minimal speed
if (step_rate >= (8 * 256)) { // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
FORCE_INLINE void trapezoid_generator_reset() {
#ifdef ADVANCE
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0);
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) {
if(cleaning_buffer_counter)
{
current_block = NULL;
plan_discard_current_block();
if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
cleaning_buffer_counter--;
OCR1A = 200;
return;
}
// If there is no current block, attempt to pop one from the buffer
if (!current_block) {
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block) {
current_block->busy = true;
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_z = counter_e = counter_x;
step_events_completed = 0;
#ifdef Z_LATE_ENABLE
if (current_block->steps_z > 0) {
enable_z();
OCR1A = 2000; //1ms wait
return;
}
#endif
// #ifdef ADVANCE
// e_steps[current_block->active_extruder] = 0;
// #endif
}
else {
OCR1A = 2000; // 1kHz.
}
}
if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if (TEST(out_bits, X_AXIS)) {
X_APPLY_DIR(INVERT_X_DIR,0);
count_direction[X_AXIS] = -1;
}
else {
X_APPLY_DIR(!INVERT_X_DIR,0);
count_direction[X_AXIS] = 1;
}
if (TEST(out_bits, Y_AXIS)) {
Y_APPLY_DIR(INVERT_Y_DIR,0);
count_direction[Y_AXIS] = -1;
}
else {
Y_APPLY_DIR(!INVERT_Y_DIR,0);
count_direction[Y_AXIS] = 1;
}
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
endstop_## axis ##_hit = true; \
step_events_completed = current_block->step_event_count; \
} \
old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
// Check X and Y endstops
if (check_endstops) {
#ifndef COREXY
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
#else
// Head direction in -X axis for CoreXY bots.
// If DeltaX == -DeltaY, the movement is only in Y axis
if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS)))
if (TEST(out_bits, X_HEAD))
#endif
{ // -direction
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
UPDATE_ENDSTOP(x, X, min, MIN);
#endif
}
}
else { // +direction
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
UPDATE_ENDSTOP(x, X, max, MAX);
#endif
}
}
#ifndef COREXY
if (TEST(out_bits, Y_AXIS)) // -direction
#else
// Head direction in -Y axis for CoreXY bots.
// If DeltaX == DeltaY, the movement is only in X axis
if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS)))
if (TEST(out_bits, Y_HEAD))
#endif
{ // -direction
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
UPDATE_ENDSTOP(y, Y, min, MIN);
#endif
}
else { // +direction
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
UPDATE_ENDSTOP(y, Y, max, MAX);
#endif
}
}
if (TEST(out_bits, Z_AXIS)) { // -direction
Z_DIR_WRITE(INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(INVERT_Z_DIR);
#endif
count_direction[Z_AXIS] = -1;
if (check_endstops) {
#if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
UPDATE_ENDSTOP(z, Z, min, MIN);
#endif
}
}
else { // +direction
Z_DIR_WRITE(!INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(!INVERT_Z_DIR);
#endif
count_direction[Z_AXIS] = 1;
if (check_endstops) {
#if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
UPDATE_ENDSTOP(z, Z, max, MAX);
#endif
}
}
#ifndef ADVANCE
if (TEST(out_bits, E_AXIS)) { // -direction
REV_E_DIR();
count_direction[E_AXIS]=-1;
}
else { // +direction
NORM_E_DIR();
count_direction[E_AXIS]=1;
}
#endif //!ADVANCE
// Take multiple steps per interrupt (For high speed moves)
for (int8_t i=0; i < step_loops; i++) {
#ifndef AT90USB
MSerial.checkRx(); // Check for serial chars.
#endif
#ifdef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
}
#endif //ADVANCE
#ifdef CONFIG_STEPPERS_TOSHIBA
/**
* The Toshiba stepper controller require much longer pulses.
* So we 'stage' decompose the pulses between high and low
* instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs
*/
counter_x += current_block->steps_x;
if (counter_x > 0) X_STEP_WRITE(HIGH);
counter_y += current_block->steps_y;
if (counter_y > 0) Y_STEP_WRITE(HIGH);
counter_z += current_block->steps_z;
if (counter_z > 0) Z_STEP_WRITE(HIGH);
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) E_STEP_WRITE(HIGH);
#endif
#define STEP_IF_COUNTER(axis, AXIS) \
if (counter_## axis > 0) { \
counter_## axis -= current_block->step_event_count; \
count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
AXIS ##_STEP_WRITE(LOW); \
}
STEP_IF_COUNTER(x, X);
STEP_IF_COUNTER(y, Y);
STEP_IF_COUNTER(z, Z);
#ifndef ADVANCE
STEP_IF_COUNTER(e, E);
#endif
#else // !CONFIG_STEPPERS_TOSHIBA
#define APPLY_MOVEMENT(axis, AXIS) \
counter_## axis += current_block->steps_## axis; \
if (counter_## axis > 0) { \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
counter_## axis -= current_block->step_event_count; \
count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
}
APPLY_MOVEMENT(x, X);
APPLY_MOVEMENT(y, Y);
APPLY_MOVEMENT(z, Z);
#ifndef ADVANCE
APPLY_MOVEMENT(e, E);
#endif
#endif // CONFIG_STEPPERS_TOSHIBA
step_events_completed++;
if (step_events_completed >= current_block->step_event_count) break;
}
// Calculare new timer value
unsigned short timer;
unsigned short step_rate;
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate;
// upper limit
if (acc_step_rate > current_block->nominal_rate)
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
timer = calc_timer(acc_step_rate);
OCR1A = timer;
acceleration_time += timer;
#ifdef ADVANCE
for(int8_t i=0; i < step_loops; i++) {
advance += advance_rate;
}
//if (advance > current_block->advance) advance = current_block->advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
}
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if (step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate;
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
}
// lower limit
if (step_rate < current_block->final_rate)
step_rate = current_block->final_rate;
// step_rate to timer interval
timer = calc_timer(step_rate);
OCR1A = timer;
deceleration_time += timer;
#ifdef ADVANCE
for(int8_t i=0; i < step_loops; i++) {
advance -= advance_rate;
}
if (advance < final_advance) advance = final_advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif //ADVANCE
}
else {
OCR1A = OCR1A_nominal;
// ensure we're running at the correct step rate, even if we just came off an acceleration
step_loops = step_loops_nominal;
}
// If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) {
current_block = NULL;
plan_discard_current_block();
}
}
}
#ifdef ADVANCE
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect)
{
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
OCR0A = old_OCR0A;
// Set E direction (Depends on E direction + advance)
for(unsigned char i=0; i<4;i++) {
if (e_steps[0] != 0) {
E0_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[0] < 0) {
E0_DIR_WRITE(INVERT_E0_DIR);
e_steps[0]++;
E0_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[0] > 0) {
E0_DIR_WRITE(!INVERT_E0_DIR);
e_steps[0]--;
E0_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#if EXTRUDERS > 1
if (e_steps[1] != 0) {
E1_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[1] < 0) {
E1_DIR_WRITE(INVERT_E1_DIR);
e_steps[1]++;
E1_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[1] > 0) {
E1_DIR_WRITE(!INVERT_E1_DIR);
e_steps[1]--;
E1_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#endif
#if EXTRUDERS > 2
if (e_steps[2] != 0) {
E2_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[2] < 0) {
E2_DIR_WRITE(INVERT_E2_DIR);
e_steps[2]++;
E2_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[2] > 0) {
E2_DIR_WRITE(!INVERT_E2_DIR);
e_steps[2]--;
E2_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#endif
#if EXTRUDERS > 3
if (e_steps[3] != 0) {
E3_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[3] < 0) {
E3_DIR_WRITE(INVERT_E3_DIR);
e_steps[3]++;
E3_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[3] > 0) {
E3_DIR_WRITE(!INVERT_E3_DIR);
e_steps[3]--;
E3_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#endif
}
}
#endif // ADVANCE
void st_init() {
digipot_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins
// initialise TMC Steppers
#ifdef HAVE_TMCDRIVER
tmc_init();
#endif
// initialise L6470 Steppers
#ifdef HAVE_L6470DRIVER
L6470_init();
#endif
// Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN >= 0
X_DIR_INIT;
#endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
X2_DIR_INIT;
#endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
Y_DIR_INIT;
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
Y2_DIR_INIT;
#endif
#endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
Z_DIR_INIT;
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
Z2_DIR_INIT;
#endif
#endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
E0_DIR_INIT;
#endif
#if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
E1_DIR_INIT;
#endif
#if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
E2_DIR_INIT;
#endif
#if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
E3_DIR_INIT;
#endif
//Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
X_ENABLE_INIT;
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
#endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
X2_ENABLE_INIT;
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
Y_ENABLE_INIT;
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
Y2_ENABLE_INIT;
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
#endif
#endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
Z_ENABLE_INIT;
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
Z2_ENABLE_INIT;
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
#endif
#endif
#if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
E0_ENABLE_INIT;
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
#endif
#if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
E1_ENABLE_INIT;
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
#endif
#if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
E2_ENABLE_INIT;
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
#endif
#if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
E3_ENABLE_INIT;
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
#endif
//endstops and pullups
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH);
#endif
#endif
#define AXIS_INIT(axis, AXIS, PIN) \
AXIS ##_STEP_INIT; \
AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
disable_## axis()
#define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
// Initialize Step Pins
#if defined(X_STEP_PIN) && X_STEP_PIN >= 0
AXIS_INIT(x, X, X);
#endif
#if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
AXIS_INIT(x, X2, X);
#endif
#if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
Y2_STEP_INIT;
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
AXIS_INIT(y, Y, Y);
#endif
#if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
Z2_STEP_INIT;
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
AXIS_INIT(z, Z, Z);
#endif
#if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
E_AXIS_INIT(0);
#endif
#if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
E_AXIS_INIT(1);
#endif
#if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
E_AXIS_INIT(2);
#endif
#if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
E_AXIS_INIT(3);
#endif
// waveform generation = 0100 = CTC
TCCR1B &= ~BIT(WGM13);
TCCR1B |= BIT(WGM12);
TCCR1A &= ~BIT(WGM11);
TCCR1A &= ~BIT(WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
OCR1A = 0x4000;
TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE
#if defined(TCCR0A) && defined(WGM01)
TCCR0A &= ~BIT(WGM01);
TCCR0A &= ~BIT(WGM00);
#endif
e_steps[0] = 0;
e_steps[1] = 0;
e_steps[2] = 0;
e_steps[3] = 0;
TIMSK0 |= BIT(OCIE0A);
#endif //ADVANCE
enable_endstops(true); // Start with endstops active. After homing they can be disabled
sei();
}
// Block until all buffered steps are executed
void st_synchronize() {
while (blocks_queued()) {
manage_heater();
manage_inactivity();
lcd_update();
}
}
void st_set_position(const long &x, const long &y, const long &z, const long &e) {
CRITICAL_SECTION_START;
count_position[X_AXIS] = x;
count_position[Y_AXIS] = y;
count_position[Z_AXIS] = z;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
void st_set_e_position(const long &e) {
CRITICAL_SECTION_START;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
long st_get_position(uint8_t axis) {
long count_pos;
CRITICAL_SECTION_START;
count_pos = count_position[axis];
CRITICAL_SECTION_END;
return count_pos;
}
#ifdef ENABLE_AUTO_BED_LEVELING
float st_get_position_mm(uint8_t axis) {
float steper_position_in_steps = st_get_position(axis);
return steper_position_in_steps / axis_steps_per_unit[axis];
}
#endif // ENABLE_AUTO_BED_LEVELING
void finishAndDisableSteppers() {
st_synchronize();
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
void quickStop() {
cleaning_buffer_counter = 5000;
DISABLE_STEPPER_DRIVER_INTERRUPT();
while (blocks_queued()) plan_discard_current_block();
current_block = NULL;
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
#ifdef BABYSTEPPING
// MUST ONLY BE CALLED BY AN ISR,
// No other ISR should ever interrupt this!
void babystep(const uint8_t axis, const bool direction) {
#define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
enable_## axis(); \
uint8_t old_pin = AXIS ##_DIR_READ; \
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
_delay_us(1U); \
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
AXIS ##_APPLY_DIR(old_pin, true); \
}
switch(axis) {
case X_AXIS:
BABYSTEP_AXIS(x, X, false);
break;
case Y_AXIS:
BABYSTEP_AXIS(y, Y, false);
break;
case Z_AXIS: {
#ifndef DELTA
BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
#else // DELTA
bool z_direction = direction ^ BABYSTEP_INVERT_Z;
enable_x();
enable_y();
enable_z();
uint8_t old_x_dir_pin = X_DIR_READ,
old_y_dir_pin = Y_DIR_READ,
old_z_dir_pin = Z_DIR_READ;
//setup new step
X_DIR_WRITE(INVERT_X_DIR^z_direction);
Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
//perform step
X_STEP_WRITE(!INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_delay_us(1U);
X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
//get old pin state back.
X_DIR_WRITE(old_x_dir_pin);
Y_DIR_WRITE(old_y_dir_pin);
Z_DIR_WRITE(old_z_dir_pin);
#endif
} break;
default: break;
}
}
#endif //BABYSTEPPING
// From Arduino DigitalPotControl example
void digitalPotWrite(int address, int value) {
#if HAS_DIGIPOTSS
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value);
digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
//delay(10);
#endif
}
// Initialize Digipot Motor Current
void digipot_init() {
#if HAS_DIGIPOTSS
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
SPI.begin();
pinMode(DIGIPOTSS_PIN, OUTPUT);
for (int i = 0; i <= 4; i++) {
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current(i,digipot_motor_current[i]);
}
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
digipot_current(0, motor_current_setting[0]);
digipot_current(1, motor_current_setting[1]);
digipot_current(2, motor_current_setting[2]);
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
#endif
}
void digipot_current(uint8_t driver, int current) {
#if HAS_DIGIPOTSS
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current);
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
switch(driver) {
case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
}
#endif
}
void microstep_init() {
const uint8_t microstep_modes[] = MICROSTEP_MODES;
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
pinMode(E1_MS1_PIN,OUTPUT);
pinMode(E1_MS2_PIN,OUTPUT);
#endif
#if defined(X_MS1_PIN) && X_MS1_PIN >= 0
pinMode(X_MS1_PIN,OUTPUT);
pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS1_PIN,OUTPUT);
pinMode(Y_MS2_PIN,OUTPUT);
pinMode(Z_MS1_PIN,OUTPUT);
pinMode(Z_MS2_PIN,OUTPUT);
pinMode(E0_MS1_PIN,OUTPUT);
pinMode(E0_MS2_PIN,OUTPUT);
for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
#endif
}
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
if (ms1 >= 0) switch(driver) {
case 0: digitalWrite(X_MS1_PIN, ms1); break;
case 1: digitalWrite(Y_MS1_PIN, ms1); break;
case 2: digitalWrite(Z_MS1_PIN, ms1); break;
case 3: digitalWrite(E0_MS1_PIN, ms1); break;
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
case 4: digitalWrite(E1_MS1_PIN, ms1); break;
#endif
}
if (ms2 >= 0) switch(driver) {
case 0: digitalWrite(X_MS2_PIN, ms2); break;
case 1: digitalWrite(Y_MS2_PIN, ms2); break;
case 2: digitalWrite(Z_MS2_PIN, ms2); break;
case 3: digitalWrite(E0_MS2_PIN, ms2); break;
#if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
case 4: digitalWrite(E1_MS2_PIN, ms2); break;
#endif
}
}
void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
switch(stepping_mode) {
case 1: microstep_ms(driver,MICROSTEP1); break;
case 2: microstep_ms(driver,MICROSTEP2); break;
case 4: microstep_ms(driver,MICROSTEP4); break;
case 8: microstep_ms(driver,MICROSTEP8); break;
case 16: microstep_ms(driver,MICROSTEP16); break;
}
}
void microstep_readings() {
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
SERIAL_PROTOCOLPGM("Y: ");
SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
SERIAL_PROTOCOLPGM("Z: ");
SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
#endif
}