muele-marlin/Marlin/endstops.cpp
2017-04-02 01:05:25 -05:00

433 lines
13 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* endstops.cpp - A singleton object to manage endstops
*/
#include "Marlin.h"
#include "cardreader.h"
#include "endstops.h"
#include "temperature.h"
#include "stepper.h"
#include "ultralcd.h"
// TEST_ENDSTOP: test the old and the current status of an endstop
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP))
Endstops endstops;
// public:
bool Endstops::enabled = true,
Endstops::enabled_globally =
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
(true)
#else
(false)
#endif
;
volatile char Endstops::endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
#if ENABLED(Z_DUAL_ENDSTOPS)
uint16_t
#else
byte
#endif
Endstops::current_endstop_bits = 0,
Endstops::old_endstop_bits = 0;
#if HAS_BED_PROBE
volatile bool Endstops::z_probe_enabled = false;
#endif
/**
* Class and Instance Methods
*/
void Endstops::init() {
#if HAS_X_MIN
#if ENABLED(ENDSTOPPULLUP_XMIN)
SET_INPUT_PULLUP(X_MIN_PIN);
#else
SET_INPUT(X_MIN_PIN);
#endif
#endif
#if HAS_Y_MIN
#if ENABLED(ENDSTOPPULLUP_YMIN)
SET_INPUT_PULLUP(Y_MIN_PIN);
#else
SET_INPUT(Y_MIN_PIN);
#endif
#endif
#if HAS_Z_MIN
#if ENABLED(ENDSTOPPULLUP_ZMIN)
SET_INPUT_PULLUP(Z_MIN_PIN);
#else
SET_INPUT(Z_MIN_PIN);
#endif
#endif
#if HAS_Z2_MIN
#if ENABLED(ENDSTOPPULLUP_ZMIN)
SET_INPUT_PULLUP(Z2_MIN_PIN);
#else
SET_INPUT(Z2_MIN_PIN);
#endif
#endif
#if HAS_X_MAX
#if ENABLED(ENDSTOPPULLUP_XMAX)
SET_INPUT_PULLUP(X_MAX_PIN);
#else
SET_INPUT(X_MAX_PIN);
#endif
#endif
#if HAS_Y_MAX
#if ENABLED(ENDSTOPPULLUP_YMAX)
SET_INPUT_PULLUP(Y_MAX_PIN);
#else
SET_INPUT(Y_MAX_PIN);
#endif
#endif
#if HAS_Z_MAX
#if ENABLED(ENDSTOPPULLUP_ZMAX)
SET_INPUT_PULLUP(Z_MAX_PIN);
#else
SET_INPUT(Z_MAX_PIN);
#endif
#endif
#if HAS_Z2_MAX
#if ENABLED(ENDSTOPPULLUP_ZMAX)
SET_INPUT_PULLUP(Z2_MAX_PIN);
#else
SET_INPUT(Z2_MAX_PIN);
#endif
#endif
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
SET_INPUT_PULLUP(Z_MIN_PROBE_PIN);
#else
SET_INPUT(Z_MIN_PROBE_PIN);
#endif
#endif
} // Endstops::init
void Endstops::report_state() {
if (endstop_hit_bits) {
#if ENABLED(ULTRA_LCD)
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
#define _SET_STOP_CHAR(A,C) (chr## A = C)
#else
#define _SET_STOP_CHAR(A,C) ;
#endif
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \
_SET_STOP_CHAR(A,C); }while(0)
#define _ENDSTOP_HIT_TEST(A,C) \
if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
_ENDSTOP_HIT_ECHO(A,C)
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
_ENDSTOP_HIT_TEST(X, 'X');
_ENDSTOP_HIT_TEST(Y, 'Y');
_ENDSTOP_HIT_TEST(Z, 'Z');
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#define P_AXIS Z_AXIS
if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
#endif
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
lcd_status_printf_P(0, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
#endif
hit_on_purpose();
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
if (stepper.abort_on_endstop_hit) {
card.sdprinting = false;
card.closefile();
quickstop_stepper();
thermalManager.disable_all_heaters(); // switch off all heaters.
}
#endif
}
} // Endstops::report_state
void Endstops::M119() {
SERIAL_PROTOCOLLNPGM(MSG_M119_REPORT);
#if HAS_X_MIN
SERIAL_PROTOCOLPGM(MSG_X_MIN);
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_X_MAX
SERIAL_PROTOCOLPGM(MSG_X_MAX);
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Y_MIN
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Y_MAX
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_MIN
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z2_MIN
SERIAL_PROTOCOLPGM(MSG_Z2_MIN);
SERIAL_PROTOCOLLN(((READ(Z2_MIN_PIN)^Z2_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_MAX
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z2_MAX
SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
SERIAL_PROTOCOLPGM(MSG_FILAMENT_RUNOUT_SENSOR);
SERIAL_PROTOCOLLN(((READ(FIL_RUNOUT_PIN)^FIL_RUNOUT_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
} // Endstops::M119
#if ENABLED(Z_DUAL_ENDSTOPS)
// Pass the result of the endstop test
void Endstops::test_dual_z_endstops(const EndstopEnum es1, const EndstopEnum es2) {
byte z_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Z, bit 1 for Z2
if (z_test && stepper.current_block->steps[Z_AXIS] > 0) {
SBI(endstop_hit_bits, Z_MIN);
if (!stepper.performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
stepper.kill_current_block();
}
}
#endif
// Check endstops - Called from ISR!
void Endstops::update() {
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
// UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
#define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
// COPY_BIT: copy the value of SRC_BIT to DST_BIT in DST
#define COPY_BIT(DST, SRC_BIT, DST_BIT) SET_BIT(DST, DST_BIT, TEST(DST, SRC_BIT))
#define _UPDATE_ENDSTOP(AXIS,MINMAX,CODE) do { \
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
_ENDSTOP_HIT(AXIS); \
stepper.endstop_triggered(_AXIS(AXIS)); \
CODE; \
} \
} while(0)
#if ENABLED(G38_PROBE_TARGET) && PIN_EXISTS(Z_MIN) // If G38 command then check Z_MIN for every axis and every direction
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
_UPDATE_ENDSTOP(AXIS,MINMAX,NOOP); \
if (G38_move) _UPDATE_ENDSTOP(Z, MIN, G38_endstop_hit = true); \
} while(0)
#else
#define UPDATE_ENDSTOP(AXIS,MINMAX) _UPDATE_ENDSTOP(AXIS,MINMAX,NOOP)
#endif
#if CORE_IS_XY || CORE_IS_XZ
#if ENABLED(COREYX) || ENABLED(COREZX)
#define CORE_X_CMP !=
#define CORE_X_NOT !
#else
#define CORE_X_CMP ==
#define CORE_X_NOT
#endif
// Head direction in -X axis for CoreXY and CoreXZ bots.
// If steps differ, both axes are moving.
// If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
// If DeltaA == DeltaB, the movement is only in the 1st axis (X)
if (stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2] || stepper.motor_direction(CORE_AXIS_1) CORE_X_CMP stepper.motor_direction(CORE_AXIS_2)) {
if (CORE_X_NOT stepper.motor_direction(X_HEAD))
#else
if (stepper.motor_direction(X_AXIS)) // stepping along -X axis (regular Cartesian bot)
#endif
{ // -direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR < 0) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR < 0))
#endif
{
#if HAS_X_MIN
UPDATE_ENDSTOP(X, MIN);
#endif
}
}
else { // +direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR > 0) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR > 0))
#endif
{
#if HAS_X_MAX
UPDATE_ENDSTOP(X, MAX);
#endif
}
}
#if CORE_IS_XY || CORE_IS_XZ
}
#endif
// Handle swapped vs. typical Core axis order
#if ENABLED(COREYX) || ENABLED(COREZY) || ENABLED(COREZX)
#define CORE_YZ_CMP ==
#define CORE_YZ_NOT !
#elif CORE_IS_XY || CORE_IS_YZ || CORE_IS_XZ
#define CORE_YZ_CMP !=
#define CORE_YZ_NOT
#endif
#if CORE_IS_XY || CORE_IS_YZ
// Head direction in -Y axis for CoreXY / CoreYZ bots.
// If steps differ, both axes are moving
// If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
// If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
if (stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2] || stepper.motor_direction(CORE_AXIS_1) CORE_YZ_CMP stepper.motor_direction(CORE_AXIS_2)) {
if (CORE_YZ_NOT stepper.motor_direction(Y_HEAD))
#else
if (stepper.motor_direction(Y_AXIS)) // -direction
#endif
{ // -direction
#if HAS_Y_MIN
UPDATE_ENDSTOP(Y, MIN);
#endif
}
else { // +direction
#if HAS_Y_MAX
UPDATE_ENDSTOP(Y, MAX);
#endif
}
#if CORE_IS_XY || CORE_IS_YZ
}
#endif
#if CORE_IS_XZ || CORE_IS_YZ
// Head direction in -Z axis for CoreXZ or CoreYZ bots.
// If steps differ, both axes are moving
// If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
// If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
if (stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2] || stepper.motor_direction(CORE_AXIS_1) CORE_YZ_CMP stepper.motor_direction(CORE_AXIS_2)) {
if (CORE_YZ_NOT stepper.motor_direction(Z_HEAD))
#else
if (stepper.motor_direction(Z_AXIS))
#endif
{ // Z -direction. Gantry down, bed up.
#if HAS_Z_MIN
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Z, MIN);
#if HAS_Z2_MIN
UPDATE_ENDSTOP_BIT(Z2, MIN);
#else
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
#endif
test_dual_z_endstops(Z_MIN, Z2_MIN);
#else // !Z_DUAL_ENDSTOPS
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN);
#else
UPDATE_ENDSTOP(Z, MIN);
#endif
#endif // !Z_DUAL_ENDSTOPS
#endif // HAS_Z_MIN
// When closing the gap check the enabled probe
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
if (z_probe_enabled) {
UPDATE_ENDSTOP(Z, MIN_PROBE);
if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
}
#endif
}
else { // Z +direction. Gantry up, bed down.
#if HAS_Z_MAX
// Check both Z dual endstops
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Z, MAX);
#if HAS_Z2_MAX
UPDATE_ENDSTOP_BIT(Z2, MAX);
#else
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
#endif
test_dual_z_endstops(Z_MAX, Z2_MAX);
// If this pin is not hijacked for the bed probe
// then it belongs to the Z endstop
#elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN
UPDATE_ENDSTOP(Z, MAX);
#endif // !Z_MIN_PROBE_PIN...
#endif // Z_MAX_PIN
}
#if CORE_IS_XZ || CORE_IS_YZ
}
#endif
old_endstop_bits = current_endstop_bits;
} // Endstops::update()