nixpkgs/doc/languages-frameworks/haskell.section.md
sternenseemann 0a66465b22 doc/haskell: (re-)init haskell manual section
This restarts a Haskell section in the nixpkgs manual. The content
presented here has been written from scratch, although some parts of it
take inspiration from the existing haskell4nix documentation.

It is by no means complete, the idea is mostly to get the ball rolling
in some way. Upcoming tasks are hinted at in the comments in the
documentation file.
2023-01-14 22:33:35 +01:00

38 KiB
Raw Blame History

Haskell

The Haskell infrastructure in nixpkgs has two main purposes: The primary purpose is to provide a Haskell compiler and build tools as well as infrastructure for packaging Haskell-based packages.

The secondary purpose is to provide support for Haskell development environment including prebuilt Haskell libraries. However, in this area sacrifices have been made due to self-imposed restrictions in nixpkgs, to lessen the maintenance effort and improve performance. Therefore, it may be advantageous to use an alternative to the Haskell infrastructure in nixpkgs for development environments in some cases. The main limitations are that we only provide first-class support for the default compiler (currently GHC 9.2.4) and usually only provide a default and (if different) the latest version of a haskell package.

Available packages

The compiler and most build tools are exposed at the top level:

  • ghc is the default version of GHC
  • Language specific tools: cabal-install, stack, hpack, …

Many “normal” user facing packages written in Haskell, like niv or cachix, are also exposed at the top level, so there is nothing haskell specific to installing and using them.

All of these packages originally lived in the haskellPackages package set and are re-exposed with a reduced dependency closure for convenience.

The haskellPackages set includes at least one version of every package from hackage as well as some manually injected packages. This amounts to a lot of packages, so it is hidden from nix-env -qa by default for performance reasons. You can still list all packages in the set like this, though:

$ nix-env -f '<nixpkgs>' -qaP -A haskellPackages
haskellPackages.a50                                                         a50-0.5
haskellPackages.AAI                                                         AAI-0.2.0.1
haskellPackages.aasam                                                       aasam-0.2.0.0
haskellPackages.abacate                                                     abacate-0.0.0.0
haskellPackages.abc-puzzle                                                  abc-puzzle-0.2.1

The attribute names in haskellPackages always correspond with their name on hackage. Since hackage allows names that are not valid nix without extra escaping, you sometimes need to extra care when handling attribute names like 3dmodels.

For packages that are part of Stackage, we use the version prescribed by a Stackage solver (usually the current LTS one) as the default version. For all other packages we use the latest version from Hackage. Sometimes alternative versions of packages are provided whose attribute names are their normal name with their version appended after an underscore, e.g. Cabal_3_8_1_0.

Roughly half of the 16K packages contained in haskellPackages don't actually build and are marked as broken semi-automatically. Most of those packages are deprecated or unmaintained, but sometimes packages that should, don't build. Very often fixing them is not a lot of work.

haskellPackages is built with our default compiler, but we also provide other releases of GHC and package sets built with them. You can list all available compilers like this:

$ nix-env -f '<nixpkgs>' -qaP -A haskell.compiler
haskell.compiler.ghc810                  ghc-8.10.7
haskell.compiler.ghc88                   ghc-8.8.4
haskell.compiler.ghc90                   ghc-9.0.2
haskell.compiler.ghc92                   ghc-9.2.4
haskell.compiler.ghc925                  ghc-9.2.5
haskell.compiler.ghc942                  ghc-9.4.2
haskell.compiler.ghc943                  ghc-9.4.3
haskell.compiler.ghc94                   ghc-9.4.4
haskell.compiler.ghcHEAD                 ghc-9.7.20221224
haskell.compiler.ghc8102Binary           ghc-binary-8.10.2
haskell.compiler.ghc8102BinaryMinimal    ghc-binary-8.10.2
haskell.compiler.ghc8107BinaryMinimal    ghc-binary-8.10.7
haskell.compiler.ghc8107Binary           ghc-binary-8.10.7
haskell.compiler.ghc865Binary            ghc-binary-8.6.5
haskell.compiler.ghc924Binary            ghc-binary-9.2.4
haskell.compiler.ghc924BinaryMinimal     ghc-binary-9.2.4
haskell.compiler.integer-simple.ghc810   ghc-integer-simple-8.10.7
haskell.compiler.integer-simple.ghc8107  ghc-integer-simple-8.10.7
haskell.compiler.integer-simple.ghc884   ghc-integer-simple-8.8.4
haskell.compiler.integer-simple.ghc88    ghc-integer-simple-8.8.4
haskell.compiler.native-bignum.ghc90     ghc-native-bignum-9.0.2
haskell.compiler.native-bignum.ghc902    ghc-native-bignum-9.0.2
haskell.compiler.native-bignum.ghc92     ghc-native-bignum-9.2.4
haskell.compiler.native-bignum.ghc924    ghc-native-bignum-9.2.4
haskell.compiler.native-bignum.ghc925    ghc-native-bignum-9.2.5
haskell.compiler.native-bignum.ghc942    ghc-native-bignum-9.4.2
haskell.compiler.native-bignum.ghc943    ghc-native-bignum-9.4.3
haskell.compiler.native-bignum.ghc94     ghc-native-bignum-9.4.4
haskell.compiler.native-bignum.ghc944    ghc-native-bignum-9.4.4
haskell.compiler.native-bignum.ghcHEAD   ghc-native-bignum-9.7.20221224
haskell.compiler.ghcjs                   ghcjs-8.10.7

Every of those compilers has a corresponding attribute set built completely using it. However, the non-standard package sets are not tested regularly and have less working packages as a result. The corresponding package set for GHC 9.4.4 is haskell.packages.ghc944 (in fact haskellPackages is just an alias for haskell.packages.ghc924):

$ nix-env -f '<nixpkgs>' -qaP -A haskell.packages.ghc924
haskell.packages.ghc924.a50                                                         a50-0.5
haskell.packages.ghc924.AAI                                                         AAI-0.2.0.1
haskell.packages.ghc924.aasam                                                       aasam-0.2.0.0
haskell.packages.ghc924.abacate                                                     abacate-0.0.0.0
haskell.packages.ghc924.abc-puzzle                                                  abc-puzzle-0.2.1

Every package set also re-exposes the GHC used to build its packages as haskell.packages.*.ghc.

haskellPackages.mkDerivation

Every haskell package set has its own haskell-aware mkDerivation which is used to build its packages. Generally you won't have to interact with this builder since cabal2nix can generate packages using it for an arbitrary cabal package definition. Still it is useful to know the parameters it takes when you need to override a generated nix expression.

haskellPackages.mkDerivation is a wrapper around stdenv.mkDerivation which re-defines the default phases to be haskell aware and handles dependency specification, test suites, benchmarks etc. by compiling and invoking the package's Setup.hs. It does not use or invoke the cabal-install binary, but uses the underlying Cabal library instead.

General arguments

pname
Package name, assumed to be the same as on hackage (if applicable)
version
Packaged version, assumed to be the same as on hackage (if applicable)
src
Source of the package. If omitted, fetch package corresponding to pname and version from hackage.
sha256
Hash to use for the default case of src.
revision
Revision number of the updated cabal file to fetch from hackage. If null (which is the default value), the one included in src is used.
editedCabalFile
sha256 hash of the cabal file identified by revision or null.
configureFlags
Extra flags passed when executing the configure command of Setup.hs.
buildFlags
Extra flags passed when executing the build command of Setup.hs.
haddockFlags
Extra flags passed to Setup.hs haddock when building the documentation.
doCheck
Whether to execute the package's test suite if it has one. Defaults to true unless cross-compiling.
doBenchmark
Whether to execute the package's benchmark if it has one. Defaults to false.
doHoogle
Whether to generate an index file for hoogle as part of haddockPhase by passing the --hoogle option. Defaults to true.
doHaddockQuickjump
Whether to generate an index for interactive navigation of the HTML documentation. Defaults to true if supported.
enableLibraryProfiling
Whether to enable profiling for libraries contained in the package. Enabled by default if supported.
enableExecutableProfiling
Whether to enable profiling for executables contained in the package. Disabled by default.
profilingDetail
Profiling detail level to set. Defaults to exported-functions.
enableSharedExecutables
Whether to link executables dynamically. By default, executables are linked statically.
enableSharedLibraries
Whether to build shared Haskell libraries. This is enabled by default unless we are using pkgsStatic or shared libraries have been disabled in GHC.
enableStaticLibraries
Whether to build static libraries. Enabled by default if supported.
enableDeadCodeElimination
Whether to enable linker based dead code elimination in GHC. Enabled by default if supported.
enableHsc2hsViaAsm
Whether to pass --via-asm to hsc2hs.
hyperlinkSource
Whether to render the source as well as part of the haddock documentation by passing the --hyperlinked-source flag. Defaults to true.
isExecutable
Whether the package contains an executable.
isLibrary
Whether the package contains a library.
jailbreak
Whether to execute jailbreak-cabal before configurePhase to lift any version constraints in the cabal file. Note that this can't lift version bounds if they are conditional, e.g. if a dependency is hidden behind a flag.
enableParallelBuilding
Whether to use the -j flag to make GHC/Cabal start multiple jobs in parallel.
maxBuildCores
Upper limit of jobs to use in parallel for compilation regardless of $NIX_BUILD_CORES. Defaults to 16 as haskell compilation with GHC currently sees a performance regression if too many parallel jobs are used.
doCoverage
Whether to generate and install files needed for HPC. Defaults to false.
doHaddock
Wether to build (HTML) documentation using haddock. Defaults to true if supported.
testTarget
Name of the test suite to build and run. If unset, all test suites will be executed.
preCompileBuildDriver
Shell code to run before compiling Setup.hs.
postCompileBuildDriver
Shell code to run after compiling Setup.hs.
preHaddock
Shell code to run before building documentation using haddock.
postHaddock
Shell code to run after building documentation using haddock.
coreSetup
Whether to only allow core libraries to be used while building Setup.hs. Defaults to false.
useCpphs
Whether to enable the cpphs preprocessor. Defaults to false.
enableSeparateBinOutput
Whether to install executables to a separate bin output. Defaults to false.
enableSeparateDataOutput
Whether to install data files shipped with the package to a separate data output. Defaults to false.
enableSeparateDocOutput
Whether to install documentation to a separate doc output. Is automatically enabled if doHaddock is true.
allowInconsistentDependencies
If enabled, allow multiple versions of the same package at configure time. Usually in such a situation compilation would later fail. Defaults to false.
enableLibraryForGhci
Build and install a special object file for GHCi. This improves performance when loading the library in the REPL, but requires extra build time and disk space. Defaults to false.
buildTarget
Name of the executable or library to build and install. If unset, all available targets are built and installed.

Specifying dependencies

Since haskellPackages.mkDerivation is intended to be generated from cabal files, it reflects cabal's way of specifying dependencies. For one, dependencies are grouped by what part of the package they belong to. This helps to reduce the dependency closure of a derivation, for example benchmark dependencies are not included if doBenchmark == false.

setup*Depends
dependencies necessary to compile Setup.hs
library*Depends
dependencies of a library contained in the package
executable*Depends
dependencies of an executable contained in the package
test*Depends
dependencies of a test suite contained in the package
benchmark*Depends
dependencies of a benchmark contained in the package

The other categorization relates to the way the package depends on the dependency:

*ToolDepends
Tools we need to run as part of the build process. They are added to the derivation's nativeBuildInputs.
*HaskellDepends
Haskell libraries the package depends on. They are added to propagatedBuildInputs.
*SystemDepends
Non-Haskell libraries the package depends on. They are added to buildInputs
*PkgconfigDepends
*SystemDepends which are discovered using pkg-config. They are added to buildInputs and it is additionally ensured that pkg-config is available at build time.
*FrameworkDepends
Apple SDK Framework which the package depends on when compiling it on Darwin.

Using these two distinctions, you should be able to categorize most of the dependency specifications that are available: benchmarkFrameworkDepends, benchmarkHaskellDepends, benchmarkPkgconfigDepends, benchmarkSystemDepends, benchmarkToolDepends, executableFrameworkDepends, executableHaskellDepends, executablePkgconfigDepends, executableSystemDepends, executableToolDepends, libraryFrameworkDepends, libraryHaskellDepends, libraryPkgconfigDepends, librarySystemDepends, libraryToolDepends, setupHaskellDepends, testFrameworkDepends, testHaskellDepends, testPkgconfigDepends, testSystemDepends and testToolDepends.

That only leaves the following extra ways for specifying dependencies:

buildDepends
Allows specifying Haskell dependencies which are added to propagatedBuildInputs unconditionally.
buildTools
Like *ToolDepends, but are added to nativeBuildInputs unconditionally.
extraLibraries
Like *SystemDepends, but are added to buildInputs unconditionally.
pkg-configDepends
Like *PkgconfigDepends, but are added to buildInputs unconditionally.
testDepends
Deprecated, use either testHaskellDepends or testSystemDepends.
benchmarkDepends
Deprecated, use either benchmarkHaskellDepends or benchmarkSystemDepends.

The dependency specification methods in this list which are unconditional are especially useful when writing overrides when you want to make sure that they are definitely included. However, it is recommended to use the more accurate ones listed above when possible.

Meta attributes

haskellPackages.mkDerivation accepts the following attributes as direct arguments which are transparently set in meta of the resulting derivation. See the Meta-attributes section for their documentation.

  • These attributes are populated with a default value if omitted:
    • homepage: defaults to the hackage page for pname.
    • platforms: defaults to lib.platforms.all (since GHC can cross-compile)
  • These attributes are only set if given:
    • description
    • license
    • changelog
    • maintainers
    • broken
    • hydraPlatforms

Development environments

In addition to building and installing Haskell software, nixpkgs can also provide development environments for Haskell projects. This has the obvious advantage that you benefit from cache.nixos.org and no longer need to compile all project dependencies yourself.

Our main objective with haskellPackages is to package Haskell software in nixpkgs. This entails some limitations, partially due to self-imposed restrictions of nixpkgs, partially in the name of maintainability:

  • Only the packages built with the default compiler see extensive testing of the whole package set. The experience using an older or newer packaged compiler may be worse.

  • We aim for a “blessed” package set which only contains one version of each package.

Thus, to get the best experience, make sure that your project can be compiled using the default compiler of nixpkgs and recent versions of its dependencies. “Recent” can either mean the version contained in a certain Stackage snapshot (usually the latest LTS or nightly one) or the latest version from Hackage. Similarly to Stackage, we sometimes intervene and downgrade packages to ensure as many packages as possible can be compiled together.

In particular, it is not possible to get the dependencies of a legacy project from nixpkgs or to use a specific stack solver for compiling a project.

Now for the actual development environments: By default every derivation built using haskellPackages.mkDerivation exposes an environment suitable for building it interactively as the env attribute. For example, if you have a local checkout of random, you can enter a development environment for it like this (if the dependencies in the development and packaged version match):

$ cd ~/src/random
$ nix-shell -A haskellPackages.random.env '<nixpkgs>'
[nix-shell:~/src/random]$ ghc-pkg list
/nix/store/a8hhl54xlzfizrhcf03c1l3f6l9l8qwv-ghc-9.2.4-with-packages/lib/ghc-9.2.4/package.conf.d
    Cabal-3.6.3.0
    array-0.5.4.0
    base-4.16.3.0
    binary-0.8.9.0
    ghc-9.2.4

As you can see, the environment contains a GHC which is set up so it finds all dependencies of random. Note that this environment does not mirror the environment used to build the package, but is intended as a convenient tool for development and simple debugging. env relies on the ghcWithPackages wrapper which automatically injects a pre-populated package-db into every GHC invocation. When building the derivation, the appropriate flags would always be passed explicitly.

env mirrors the normal derivation environment in one aspect: It does not include familiar development tools like cabal-install, since we rely on plain Setup.hs to build all packages. However, cabal-install will work as expected if in PATH (e.g. when installed globally and using a nix-shell without --pure). A declarative and pure way of adding arbitrary development tools is provided via shellFor.

Often you won't work on a package that is already part of haskellPackages or Hackage, so we first need to write a Nix expression to obtain the development environment from. Luckily, we can generate one very easily from an already existing cabal file using cabal2nix:

$ ls
my-project.cabal src …
$ cabal2nix ./. > my-project.nix

The generated nix expression evaluates to a function ready to be callPackage-ed. For now, we can add a minimal default.nix which does just that:

# Retrieve nixpkgs impurely from NIX_PATH for now, you can pin it instead, of course.
{ pkgs ? import <nixpkgs> {} }:

# use the nixpkgs default haskell package set
pkgs.haskellPackages.callPackage ./my-project.nix { }

Using nix-build default.nix we can now build our project, but we can also enter a shell with all the package's dependencies available using nix-shell -A env default.nix. If you have cabal-install installed globally, it'll work inside the shell as expected.

shellFor

Having to install tools globally is obviously not great, especially if you want to provide a batteries-included shell.nix with your project. Luckily there's a proper tool for making development environments out of packages' build environments: shellFor, a function exposed by every haskell package set. It takes the following arguments and returns a derivation which is suitable as a development environment inside nix-shell:

packages
This argument is used to select the packages for which to build the development environment. This should be a function which takes a haskell package set and returns a list of packages. shellFor will pass the used package set to this function and include all dependencies of the returned package in the build environment. This means you can reuse nix expressions of packages included in nixpkgs, but also use local nix expressions like this: hpkgs: [ (hpkgs.callPackage ./my-project.nix { }) ].
nativeBuildInputs
Expects a list of derivations to add as build tools to the build environment. This is the place to add packages like cabal-install, doctest or hlint. Defaults to [].
buildInputs
Expects a list of derivations to add as library dependencies, like openssl. This is rarely necessary as the haskell package expressions usually track system dependencies as well. Defaults to [].
withHoogle
If this is true, hoogle will be added to nativeBuildInputs. Additionally, its database will be populated with all included dependencies, so you'll be able search through the documentation of your dependencies. Defaults to false.
genericBuilderArgsModifier
This argument accepts a function allowing you to modify the arguments passed to mkDerivation in order to create the development environment. For example, args: { doCheck = false; } would cause the environment to not include any test dependencies. Defaults to lib.id.
doBenchmark
This is a shortcut for enabling doBenchmark via genericBuilderArgsModifier. Setting it to true will cause the development environment to include all benchmark dependencies which would be excluded by default. Defaults to false.

One neat property of shellFor is that it allows you to work on multiple packages using the same environment in conjunction with cabal.project files. Say our example above depends on distribution-nixpkgs and we have a project file set up for both, we can add the following shell.nix expression:

{ pkgs ? import <nixpkgs> {} }:

pkgs.haskellPackages.shellFor {
  packages = hpkgs: [
    # reuse the nixpkgs for this package
    hpkgs.distribution-nixpkgs
    # call our generated nix expression manually
    (hpkgs.callPackage ./my-project/my-project.nix { })
  ];

  # development tools we use
  nativeBuildInputs = [
    pkgs.cabal-install
    pkgs.haskellPackages.doctest
    pkgs.cabal2nix
  ];

  # Extra arguments are added to mkDerivation's arguments as-is.
  # Since it adds all passed arguments to the shell environment,
  # we can use this to set the environment variable the `Paths_`
  # module of distribution-nixpkgs uses to search for bundled
  # files.
  # See also: https://cabal.readthedocs.io/en/latest/cabal-package.html#accessing-data-files-from-package-code
  distribution_nixpkgs_datadir = toString ./distribution-nixpkgs;
}

Overriding haskell packages

Overriding a single package

Like many language specific subsystems in nixpkgs, the Haskell infrastructure also has its own quirks when it comes to overriding. Overriding of the inputs to a package at least follows the standard procedure. For example, imagine you need to build nix-tree with a more recent version of brick than the default one provided by haskellPackages:

haskellPackages.nix-tree.override {
  brick = haskellPackages.brick_0_67;
}

The custom interface comes into play when you want to override the arguments passed to haskellPackages.mkDerivation. For this, the function overrideCabal from haskell.lib.compose is used. E.g. if you want to install a man page that is distributed with the package, you can do something like this:

haskell.lib.compose.overrideCabal (drv: {
  postInstall = ''
    ${drv.postInstall or ""}
    install -Dm644 man/pnbackup.1 -t $out/share/man/man1
  '';
}) haskellPackages.pnbackup

overrideCabal takes two arguments:

  1. A function which receives all arguments passed to haskellPackages.mkDerivation before and returns a set of arguments to replace (or add) with a new value.
  2. The Haskell derivation to override.

The arguments are ordered so that you can easily create helper functions by making use of currying:

let
  installManPage = haskell.lib.compose.overrideCabal (drv: {
    postInstall = ''
      ${drv.postInstall or ""}
      install -Dm644 man/${drv.pname}.1 -t "$out/share/man/man1"
    '';
  });
in

installManPage haskellPackages.pnbackup

In fact, haskell.lib.compose already provides lots of useful helpers for common tasks, detailed in the next section. They are also structured in such a way that they can be combined using lib.pipe:

lib.pipe my-haskell-package [
  # lift version bounds on dependencies
  haskell.lib.compose.doJailbreak
  # disable building the haddock documentation
  haskell.lib.compose.dontHaddock
  # pass extra package flag to Cabal's configure step
  (haskell.lib.compose.enableCabalFlag "myflag")
]

haskell.lib.compose

The base interface for all overriding is the following function:

overrideCabal f drv
Takes the arguments passed to obtain drv to f and uses the resulting attribute set to update the argument set. Then a recomputed version of drv using the new argument set is returned.

All other helper functions are implemented in terms of overrideCabal and make common overrides shorter and more complicate ones trivial. The simple overrides which only change a single argument are only described very briefly in the following overview. Refer to the documentation of haskellPackages.mkDerivation for a more detailed description of the effects of the respective arguments.

Packaging Helpers
overrideSrc { src, version } drv
Replace the source used for building drv with the path or derivation given as src. The version attribute is optional. Prefer this function over overriding src via overrideCabal, since it also automatically takes care of removing any Hackage revisions.
justStaticExecutables drv
Only build and install the executables produced by drv, removing everything that may refer to other Haskell packages' store paths (like libraries and documentation). This dramatically reduces the closure size of the resulting derivation. Note that the executables are only statically linked against their Haskell dependencies, but will still link dynamically against libc, GMP and other system library dependencies. If dependencies use their Cabal-generated Paths_* module, this may not work as well if GHC's dead code elimination is unable to remove the references to the dependency's store path that module contains.
enableSeparateBinOutput drv
Install executables produced by drv to a separate bin output. This has a similar effect as justStaticExecutables, but preserves the libraries and documentation in the out output alongside the bin output with a much smaller closure size.
markBroken drv
Sets the broken flag to true for drv.
markUnbroken drv, unmarkBroken drv
Set the broken flag to false for drv.
doDistribute drv
Updates hydraPlatforms so that Hydra will build drv. This is sometimes necessary when working with versioned packages in haskellPackages which are not built by default.
dontDistribute drv
Sets hydraPlatforms to [], causing Hydra to skip this package altogether. Useful if it fails to evaluate cleanly and is causing noise in the evaluation errors tab on Hydra.
Development Helpers
sdistTarball drv
Create a source distribution tarball like those found on Hackage instead of building the package drv.
documentationTarball drv
Create a documentation tarball suitable for uploading to Hackage instead of building the package drv.
buildFromSdist drv
Uses sdistTarball drv as the source to compile drv. This helps to catch packaging bugs when building from a local directory, e.g. when required files are missing from extra-source-files.
failOnAllWarnings drv
Enables all warnings GHC supports and makes it fail the build if any of them are emitted.
enableDWARFDebugging drv
Compiles the package with additional debug symbols enabled, useful for debugging with e.g. gdb.
doStrip drv
Sets doStrip to true for drv.
dontStrip drv
Sets doStrip to false for drv.
Trivial Helpers
doJailbreak drv
Sets the jailbreak argument to true for drv.
dontJailbreak drv
Sets the jailbreak argument to false for drv.
doHaddock drv
Sets doHaddock to true for drv.
dontHaddock drv
Sets doHaddock to false for drv. Useful if the build of a package is failing because of e.g. a syntax error in the Haddock documentation.
doHyperlinkSource drv
Sets hyperlinkSource to true for drv.
dontHyperlinkSource drv
Sets hyperlinkSource to false for drv.
doCheck drv
Sets doCheck to true for drv.
dontCheck drv
Sets doCheck to false for drv. Useful if a package has a broken, flaky or otherwise problematic test suite breaking the build.
appendConfigureFlags list drv
Adds the strings in list to the configureFlags argument for drv.
enableCabalFlag flag drv
Makes sure that the Cabal flag flag is enabled in Cabal's configure step.
disableCabalFlag flag drv
Makes sure that the Cabal flag flag is disabled in Cabal's configure step.
appendBuildflags list drv
Adds the strings in list to the buildFlags argument for drv.
appendPatches list drv
Adds the list of derivations or paths to the patches argument for drv.
addBuildTools list drv
Adds the list of derivations to the buildTools argument for drv.
addExtraLibraries list drv
Adds the list of derivations to the extraLibraries argument for drv.
addBuildDepends list drv
Adds the list of derivations to the buildDepends argument for drv.
addTestToolDepends list drv
Adds the list of derivations to the testToolDepends argument for drv.
addPkgconfigDepends list drv
Adds the list of derivations to the pkg-configDepends argument for drv.
addSetupDepends list drv
Adds the list of derivations to the setupHaskellDepends argument for drv.
doBenchmark drv
Set doBenchmark to true for drv. Useful if your development environment is missing the dependencies necessary for compiling the benchmark component.
dontBenchmark drv
Set doBenchmark to false for drv.
setBuildTargets list drv
Sets the buildTarget argument for drv so that the targets specified in list are built.
doCoverage drv
Sets the doCoverage argument to true for drv.
dontCoverage drv
Sets the doCoverage argument to false for drv.

Library functions in the Haskell package sets

Some library functions depend on packages from the Haskell package sets. Thus they are exposed from those instead of from haskell.lib.compose which can only access what is passed directly to it. When using the functions below, make sure that you are obtaining them from the same package set (haskellPackages, haskell.packages.ghc944 etc.) as the packages you are working with or even better from the self/final fix point of your overlay to haskellPackages.

Note: Some functions like shellFor that are not intended for overriding per se, are omitted in this section.

cabalSdist { src, name }
Generates the Cabal sdist tarball for src, suitable for uploading to Hackage. Contrary to haskell.lib.compose.sdistTarball, it uses cabal-install over Setup.hs, so it is usually faster: No build dependencies need to be downloaded and we can skip compiling Setup.hs.
buildFromCabalSdist drv
Build drv, but run its src attribute through cabalSdist first. Useful for catching files necessary for compilation that are missing from the sdist.
generateOptparseApplicativeCompletions list drv
Generate and install shell completion files for the installed executables whose names are given via list. The executables need to be using optparse-applicative for this to work. Note that this feature is automatically disabled when cross-compiling, since it requires executing the binaries in question.

F.A.Q.

Why is topic X not covered in this section? Why is section Y missing?

We have been working on moving the nixpkgs Haskell documentation back into the nixpkgs manual. Since this process has not been completed yet, you may find some topics missing here covered in the old haskell4nix docs.

If you feel any important topic is not documented at all, feel free to comment on the issue linked above.