muele-marlin/Marlin/src/gcode/calibrate/G33.cpp

666 lines
24 KiB
C++
Raw Normal View History

/**
* Marlin 3D Printer Firmware
2019-06-28 04:57:50 +00:00
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
2019-06-28 04:57:50 +00:00
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
2017-09-08 20:35:25 +00:00
#include "../../inc/MarlinConfig.h"
2017-09-08 20:35:25 +00:00
#if ENABLED(DELTA_AUTO_CALIBRATION)
#include "../gcode.h"
#include "../../module/delta.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#include "../../lcd/ultralcd.h"
#if HAS_BED_PROBE
#include "../../module/probe.h"
#endif
2017-11-05 02:01:41 +00:00
#if HOTENDS > 1
#include "../../module/tool_change.h"
#endif
2017-09-08 20:35:25 +00:00
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
_4P_STEP = _7P_STEP * 2, // 4-point step
NPP = _7P_STEP * 6; // number of calibration points on the radius
enum CalEnum : char { // the 7 main calibration points - add definitions if needed
CEN = 0,
__A = 1,
_AB = __A + _7P_STEP,
__B = _AB + _7P_STEP,
_BC = __B + _7P_STEP,
__C = _BC + _7P_STEP,
_CA = __C + _7P_STEP,
};
2017-11-03 09:07:45 +00:00
#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
#if HOTENDS > 1
const uint8_t old_tool_index = active_extruder;
#define AC_CLEANUP() ac_cleanup(old_tool_index)
#else
#define AC_CLEANUP() ac_cleanup()
#endif
2019-09-29 09:25:39 +00:00
float lcd_probe_pt(const xy_pos_t &xy);
void ac_home() {
endstops.enable(true);
home_delta();
endstops.not_homing();
}
void ac_setup(const bool reset_bed) {
#if HOTENDS > 1
tool_change(0, true);
#endif
planner.synchronize();
remember_feedrate_scaling_off();
#if HAS_LEVELING
if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid
#endif
}
void ac_cleanup(
#if HOTENDS > 1
const uint8_t old_tool_index
#endif
) {
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
do_blocking_move_to_z(delta_clip_start_height);
#endif
#if HAS_BED_PROBE
STOW_PROBE();
#endif
restore_feedrate_and_scaling();
#if HOTENDS > 1
tool_change(old_tool_index, true);
#endif
}
2018-10-01 04:44:33 +00:00
void print_signed_float(PGM_P const prefix, const float &f) {
SERIAL_ECHOPGM(" ");
serialprintPGM(prefix);
SERIAL_CHAR(':');
if (f >= 0) SERIAL_CHAR('+');
SERIAL_ECHO_F(f, 2);
}
/**
* - Print the delta settings
*/
static void print_calibration_settings(const bool end_stops, const bool tower_angles) {
SERIAL_ECHOPAIR(".Height:", delta_height);
if (end_stops) {
2019-09-29 09:25:39 +00:00
print_signed_float(PSTR("Ex"), delta_endstop_adj.a);
print_signed_float(PSTR("Ey"), delta_endstop_adj.b);
print_signed_float(PSTR("Ez"), delta_endstop_adj.c);
}
2017-10-20 06:08:21 +00:00
if (end_stops && tower_angles) {
SERIAL_ECHOPAIR(" Radius:", delta_radius);
2017-10-20 06:08:21 +00:00
SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_ECHO_SP(13);
2017-10-20 06:08:21 +00:00
}
if (tower_angles) {
2019-09-29 09:25:39 +00:00
print_signed_float(PSTR("Tx"), delta_tower_angle_trim.a);
print_signed_float(PSTR("Ty"), delta_tower_angle_trim.b);
print_signed_float(PSTR("Tz"), delta_tower_angle_trim.c);
2017-10-20 06:08:21 +00:00
}
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
SERIAL_ECHOPAIR(" Radius:", delta_radius);
2017-10-20 06:08:21 +00:00
}
SERIAL_EOL();
}
/**
* - Print the probe results
*/
static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
SERIAL_ECHOPGM(". ");
print_signed_float(PSTR("c"), z_pt[CEN]);
2017-10-20 06:08:21 +00:00
if (tower_points) {
print_signed_float(PSTR(" x"), z_pt[__A]);
print_signed_float(PSTR(" y"), z_pt[__B]);
print_signed_float(PSTR(" z"), z_pt[__C]);
2017-10-20 06:08:21 +00:00
}
if (tower_points && opposite_points) {
2017-09-24 07:18:15 +00:00
SERIAL_EOL();
2017-10-20 06:08:21 +00:00
SERIAL_CHAR('.');
SERIAL_ECHO_SP(13);
}
2017-10-20 06:08:21 +00:00
if (opposite_points) {
print_signed_float(PSTR("yz"), z_pt[_BC]);
print_signed_float(PSTR("zx"), z_pt[_CA]);
print_signed_float(PSTR("xy"), z_pt[_AB]);
2017-10-20 06:08:21 +00:00
}
SERIAL_EOL();
}
2017-10-20 06:08:21 +00:00
/**
* - Calculate the standard deviation from the zero plane
2017-10-20 06:08:21 +00:00
*/
static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {
if (!_0p_cal) {
float S2 = sq(z_pt[CEN]);
int16_t N = 1;
if (!_1p_cal) { // std dev from zero plane
LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {
S2 += sq(z_pt[rad]);
N++;
}
2019-09-18 04:10:19 +00:00
return LROUND(SQRT(S2 / N) * 1000.0f) / 1000.0f + 0.00001f;
}
}
2019-09-18 04:10:19 +00:00
return 0.00001f;
}
/**
* - Probe a point
*/
2019-09-29 09:25:39 +00:00
static float calibration_probe(const xy_pos_t &xy, const bool stow) {
2017-11-25 09:59:46 +00:00
#if HAS_BED_PROBE
return probe_at_point(xy, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, true);
2017-11-25 09:59:46 +00:00
#else
UNUSED(stow);
2019-09-29 09:25:39 +00:00
return lcd_probe_pt(xy);
2017-11-25 09:59:46 +00:00
#endif
}
/**
* - Probe a grid
*/
static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
2017-10-20 06:08:21 +00:00
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1 || probe_points == -1,
2017-10-20 06:08:21 +00:00
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3,
_7p_no_intermediates = probe_points == 3,
_7p_1_intermediates = probe_points == 4,
_7p_2_intermediates = probe_points == 5,
_7p_4_intermediates = probe_points == 6,
_7p_6_intermediates = probe_points == 7,
_7p_8_intermediates = probe_points == 8,
_7p_11_intermediates = probe_points == 9,
_7p_14_intermediates = probe_points == 10,
2017-10-20 06:08:21 +00:00
_7p_intermed_points = probe_points >= 4,
_7p_6_center = probe_points >= 5 && probe_points <= 7,
_7p_9_center = probe_points >= 8;
2017-10-20 06:08:21 +00:00
2019-09-18 04:10:19 +00:00
LOOP_CAL_ALL(rad) z_pt[rad] = 0.0f;
2017-10-20 06:08:21 +00:00
if (!_0p_calibration) {
const float dcr = delta_calibration_radius();
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
2019-09-29 09:25:39 +00:00
const xy_pos_t center{0};
z_pt[CEN] += calibration_probe(center, stow_after_each);
if (isnan(z_pt[CEN])) return false;
2017-10-20 06:08:21 +00:00
}
if (_7p_calibration) { // probe extra center points
2019-09-18 04:10:19 +00:00
const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0f : _7p_6_center ? float(_CA) : float(__C),
steps = _7p_9_center ? _4P_STEP / 3.0f : _7p_6_center ? _7P_STEP : _4P_STEP;
I_LOOP_CAL_PT(rad, start, steps) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = dcr * 0.1;
2019-09-29 09:25:39 +00:00
const xy_pos_t vec = { cos(a), sin(a) };
z_pt[CEN] += calibration_probe(vec * r, stow_after_each);
if (isnan(z_pt[CEN])) return false;
2017-11-25 09:59:46 +00:00
}
z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
2017-10-20 06:08:21 +00:00
}
if (!_1p_calibration) { // probe the radius
const CalEnum start = _4p_opposite_points ? _AB : __A;
2019-09-18 04:10:19 +00:00
const float steps = _7p_14_intermediates ? _7P_STEP / 15.0f : // 15r * 6 + 10c = 100
_7p_11_intermediates ? _7P_STEP / 12.0f : // 12r * 6 + 9c = 81
_7p_8_intermediates ? _7P_STEP / 9.0f : // 9r * 6 + 10c = 64
_7p_6_intermediates ? _7P_STEP / 7.0f : // 7r * 6 + 7c = 49
_7p_4_intermediates ? _7P_STEP / 5.0f : // 5r * 6 + 6c = 36
_7p_2_intermediates ? _7P_STEP / 3.0f : // 3r * 6 + 7c = 25
_7p_1_intermediates ? _7P_STEP / 2.0f : // 2r * 6 + 4c = 16
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
_4P_STEP; // .5r * 6 + 1c = 4
2017-10-20 06:08:21 +00:00
bool zig_zag = true;
F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {
const int8_t offset = _7p_9_center ? 2 : 0;
for (int8_t circle = 0; circle <= offset; circle++) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = dcr * (1 - 0.1 * (zig_zag ? offset - circle : circle)),
2018-09-17 22:30:04 +00:00
interpol = FMOD(rad, 1);
2019-09-29 09:25:39 +00:00
const xy_pos_t vec = { cos(a), sin(a) };
const float z_temp = calibration_probe(vec * r, stow_after_each);
if (isnan(z_temp)) return false;
// split probe point to neighbouring calibration points
2018-07-04 23:38:05 +00:00
z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
2017-10-20 06:08:21 +00:00
}
zig_zag = !zig_zag;
}
if (_7p_intermed_points)
LOOP_CAL_RAD(rad)
z_pt[rad] /= _7P_STEP / steps;
2017-10-20 06:08:21 +00:00
2019-09-18 04:10:19 +00:00
do_blocking_move_to_xy(0.0f, 0.0f);
}
2017-10-20 06:08:21 +00:00
}
return true;
2017-10-20 06:08:21 +00:00
}
/**
* kinematics routines and auto tune matrix scaling parameters:
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - formulae for approximative forward kinematics in the end-stop displacement matrix
* - definition of the matrix scaling parameters
*/
2019-09-29 09:25:39 +00:00
static void reverse_kinematics_probe_points(float z_pt[NPP + 1], abc_float_t mm_at_pt_axis[NPP + 1]) {
xyz_pos_t pos{0};
const float dcr = delta_calibration_radius();
LOOP_CAL_ALL(rad) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = (rad == CEN ? 0.0f : dcr);
2019-09-29 09:25:39 +00:00
pos.set(cos(a) * r, sin(a) * r, z_pt[rad]);
inverse_kinematics(pos);
2019-09-29 09:25:39 +00:00
mm_at_pt_axis[rad] = delta;
}
}
2017-10-20 06:08:21 +00:00
2019-09-29 09:25:39 +00:00
static void forward_kinematics_probe_points(abc_float_t mm_at_pt_axis[NPP + 1], float z_pt[NPP + 1]) {
const float r_quot = delta_calibration_radius() / delta_radius;
2019-09-29 09:25:39 +00:00
#define ZPP(N,I,A) (((1.0f + r_quot * (N)) / 3.0f) * mm_at_pt_axis[I].A)
#define Z00(I, A) ZPP( 0, I, A)
#define Zp1(I, A) ZPP(+1, I, A)
#define Zm1(I, A) ZPP(-1, I, A)
#define Zp2(I, A) ZPP(+2, I, A)
#define Zm2(I, A) ZPP(-2, I, A)
2019-09-29 09:25:39 +00:00
z_pt[CEN] = Z00(CEN, a) + Z00(CEN, b) + Z00(CEN, c);
z_pt[__A] = Zp2(__A, a) + Zm1(__A, b) + Zm1(__A, c);
z_pt[__B] = Zm1(__B, a) + Zp2(__B, b) + Zm1(__B, c);
z_pt[__C] = Zm1(__C, a) + Zm1(__C, b) + Zp2(__C, c);
z_pt[_BC] = Zm2(_BC, a) + Zp1(_BC, b) + Zp1(_BC, c);
z_pt[_CA] = Zp1(_CA, a) + Zm2(_CA, b) + Zp1(_CA, c);
z_pt[_AB] = Zp1(_AB, a) + Zp1(_AB, b) + Zm2(_AB, c);
}
2017-10-20 06:08:21 +00:00
2019-09-29 09:25:39 +00:00
static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], abc_float_t delta_e, const float delta_r, abc_float_t delta_t) {
const float z_center = z_pt[CEN];
2019-09-29 09:25:39 +00:00
abc_float_t diff_mm_at_pt_axis[NPP + 1], new_mm_at_pt_axis[NPP + 1];
2017-10-20 06:08:21 +00:00
reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);
2017-10-20 06:08:21 +00:00
delta_radius += delta_r;
2019-09-29 09:25:39 +00:00
delta_tower_angle_trim += delta_t;
recalc_delta_settings();
reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);
2017-10-20 06:08:21 +00:00
2019-09-29 09:25:39 +00:00
LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad] -= new_mm_at_pt_axis[rad] + delta_e;
forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);
2017-10-20 06:08:21 +00:00
LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;
z_pt[CEN] = z_center;
2017-10-20 06:08:21 +00:00
delta_radius -= delta_r;
2019-09-29 09:25:39 +00:00
delta_tower_angle_trim -= delta_t;
recalc_delta_settings();
}
2017-10-20 06:08:21 +00:00
static float auto_tune_h() {
const float r_quot = delta_calibration_radius() / delta_radius;
2019-09-29 09:25:39 +00:00
return RECIPROCAL(r_quot / (2.0f / 3.0f)); // (2/3)/CR
}
2017-10-20 06:08:21 +00:00
static float auto_tune_r() {
2019-09-29 09:25:39 +00:00
constexpr float diff = 0.01f, delta_r = diff;
float r_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
2019-09-18 04:10:19 +00:00
r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0f;
r_fac = diff / r_fac / 3.0f; // 1/(3*delta_Z)
return r_fac;
}
2017-10-20 06:08:21 +00:00
static float auto_tune_a() {
2019-09-29 09:25:39 +00:00
constexpr float diff = 0.01f, delta_r = 0.0f;
float a_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
delta_t.reset();
LOOP_XYZ(axis) {
delta_t[axis] = diff;
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
delta_t[axis] = 0;
2019-09-18 04:10:19 +00:00
a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0f;
a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0f;
2017-10-20 06:08:21 +00:00
}
2019-09-18 04:10:19 +00:00
a_fac = diff / a_fac / 3.0f; // 1/(3*delta_Z)
return a_fac;
}
2017-10-20 06:08:21 +00:00
2017-10-06 20:47:51 +00:00
/**
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, z_offset, endstops, delta radius, and tower angles.
2017-10-06 20:47:51 +00:00
*
* Parameters:
*
* Pn Number of probe points:
* P0 Normalizes calibration.
* P1 Calibrates height only with center probe.
* P2 Probe center and towers. Calibrate height, endstops and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Calibrate all.
* P4-P10 Probe all positions at different intermediate locations and average them.
2017-10-06 20:47:51 +00:00
*
2017-10-20 06:08:21 +00:00
* T Don't calibrate tower angle corrections
2017-10-06 20:47:51 +00:00
*
2017-10-20 06:08:21 +00:00
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
2017-10-06 20:47:51 +00:00
*
2018-03-16 06:25:32 +00:00
* Fn Force to run at least n iterations and take the best result
2017-10-06 20:47:51 +00:00
*
2017-10-20 06:08:21 +00:00
* Vn Verbose level:
2017-10-06 20:47:51 +00:00
* V0 Dry-run mode. Report settings and probe results. No calibration.
2017-11-25 09:59:46 +00:00
* V1 Report start and end settings only
* V2 Report settings at each iteration
* V3 Report settings and probe results
2017-10-06 20:47:51 +00:00
*
* E Engage the probe for each point
*/
2017-09-08 20:35:25 +00:00
void GcodeSuite::G33() {
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(probe_points, 0, 10)) {
2019-09-11 07:46:52 +00:00
SERIAL_ECHOLNPGM("?(P)oints implausible (0-10).");
return;
}
const bool towers_set = !parser.seen('T');
2019-09-18 04:10:19 +00:00
const float calibration_precision = parser.floatval('C', 0.0f);
if (calibration_precision < 0) {
2019-09-11 07:46:52 +00:00
SERIAL_ECHOLNPGM("?(C)alibration precision implausible (>=0).");
return;
}
const int8_t force_iterations = parser.intval('F', 0);
if (!WITHIN(force_iterations, 0, 30)) {
2019-09-11 07:46:52 +00:00
SERIAL_ECHOLNPGM("?(F)orce iteration implausible (0-30).");
return;
}
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 3)) {
2019-09-11 07:46:52 +00:00
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-3).");
return;
}
const bool stow_after_each = parser.seen('E');
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1 || probe_points == -1,
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_9_center = probe_points >= 8,
_tower_results = (_4p_calibration && towers_set) || probe_points >= 3,
_opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,
_endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,
2019-08-16 23:34:13 +00:00
_angle_results = probe_points >= 3 && towers_set;
int8_t iterations = 0;
float test_precision,
2019-09-18 04:10:19 +00:00
zero_std_dev = (verbose_level ? 999.0f : 0.0f), // 0.0 in dry-run mode : forced end
zero_std_dev_min = zero_std_dev,
zero_std_dev_old = zero_std_dev,
2019-09-29 09:25:39 +00:00
h_factor, r_factor, a_factor,
r_old = delta_radius,
2019-09-29 09:25:39 +00:00
h_old = delta_height;
abc_pos_t e_old = delta_endstop_adj, a_old = delta_tower_angle_trim;
SERIAL_ECHOLNPGM("G33 Auto Calibrate");
2017-10-20 06:08:21 +00:00
const float dcr = delta_calibration_radius();
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
LOOP_CAL_RAD(axis) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1));
if (!position_is_reachable(cos(a) * dcr, sin(a) * dcr)) {
SERIAL_ECHOLNPGM("?Bed calibration radius implausible.");
return;
}
}
}
2017-10-20 06:08:21 +00:00
// Report settings
2018-10-01 04:44:33 +00:00
PGM_P checkingac = PSTR("Checking... AC");
serialprintPGM(checkingac);
if (verbose_level == 0) SERIAL_ECHOPGM(" (DRY-RUN)");
SERIAL_EOL();
ui.set_status_P(checkingac);
print_calibration_settings(_endstop_results, _angle_results);
ac_setup(!_0p_calibration && !_1p_calibration);
if (!_0p_calibration) ac_home();
do { // start iterations
2019-09-18 04:10:19 +00:00
float z_at_pt[NPP + 1] = { 0.0f };
2019-09-18 04:10:19 +00:00
test_precision = zero_std_dev_old != 999.0f ? (zero_std_dev + zero_std_dev_old) / 2.0f : zero_std_dev;
iterations++;
// Probe the points
zero_std_dev_old = zero_std_dev;
if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each)) {
SERIAL_ECHOLNPGM("Correct delta settings with M665 and M666");
return AC_CLEANUP();
2017-11-25 09:59:46 +00:00
}
zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);
// Solve matrices
2017-10-06 20:47:51 +00:00
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
#if !HAS_BED_PROBE
2019-09-18 04:10:19 +00:00
test_precision = 0.0f; // forced end
#endif
if (zero_std_dev < zero_std_dev_min) {
// set roll-back point
2019-09-29 09:25:39 +00:00
e_old = delta_endstop_adj;
r_old = delta_radius;
h_old = delta_height;
2019-09-29 09:25:39 +00:00
a_old = delta_tower_angle_trim;
}
2019-09-29 09:25:39 +00:00
abc_float_t e_delta = { 0.0f }, t_delta = { 0.0f };
float r_delta = 0.0f;
/**
* convergence matrices:
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - definition of the matrix scaling parameters
* - matrices for 4 and 7 point calibration
*/
2019-09-18 04:10:19 +00:00
#define ZP(N,I) ((N) * z_at_pt[I] / 4.0f) // 4.0 = divider to normalize to integers
#define Z12(I) ZP(12, I)
2017-09-24 07:18:15 +00:00
#define Z4(I) ZP(4, I)
#define Z2(I) ZP(2, I)
#define Z1(I) ZP(1, I)
#define Z0(I) ZP(0, I)
// calculate factors
if (_7p_9_center) calibration_radius_factor = 0.9f;
h_factor = auto_tune_h();
r_factor = auto_tune_r();
a_factor = auto_tune_a();
calibration_radius_factor = 1.0f;
switch (probe_points) {
2017-10-06 20:47:51 +00:00
case 0:
2019-09-18 04:10:19 +00:00
test_precision = 0.0f; // forced end
2017-10-06 20:47:51 +00:00
break;
case 1:
2019-09-18 04:10:19 +00:00
test_precision = 0.0f; // forced end
LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);
break;
case 2:
if (towers_set) { // see 4 point calibration (towers) matrix
2019-09-29 09:25:39 +00:00
e_delta.set((+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN),
(-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN),
(-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN));
r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;
}
else { // see 4 point calibration (opposites) matrix
2019-09-29 09:25:39 +00:00
e_delta.set((-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
(+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
(+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN));
r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;
}
break;
default: // see 7 point calibration (towers & opposites) matrix
2019-09-29 09:25:39 +00:00
e_delta.set((+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
(-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
(-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN));
r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;
if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix
2019-09-29 09:25:39 +00:00
t_delta.set((+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor,
(+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor,
(-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor);
}
break;
}
2019-09-29 09:25:39 +00:00
delta_endstop_adj += e_delta;
delta_radius += r_delta;
2019-09-29 09:25:39 +00:00
delta_tower_angle_trim += t_delta;
}
else if (zero_std_dev >= test_precision) {
// roll back
2019-09-29 09:25:39 +00:00
delta_endstop_adj = e_old;
delta_radius = r_old;
delta_height = h_old;
2019-09-29 09:25:39 +00:00
delta_tower_angle_trim = a_old;
2017-09-24 07:18:15 +00:00
}
2017-10-20 06:08:21 +00:00
2017-09-24 07:18:15 +00:00
if (verbose_level != 0) { // !dry run
2018-10-16 08:38:57 +00:00
// Normalize angles to least-squares
2017-10-20 06:08:21 +00:00
if (_angle_results) {
2019-09-18 04:10:19 +00:00
float a_sum = 0.0f;
2017-10-20 06:08:21 +00:00
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
2019-09-18 04:10:19 +00:00
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f;
2017-10-20 06:08:21 +00:00
}
2017-09-27 09:57:14 +00:00
2017-09-24 07:18:15 +00:00
// adjust delta_height and endstops by the max amount
2019-09-29 09:25:39 +00:00
const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c);
delta_height -= z_temp;
2017-09-24 07:18:15 +00:00
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
}
2017-11-08 09:07:17 +00:00
recalc_delta_settings();
NOMORE(zero_std_dev_min, zero_std_dev);
// print report
if (verbose_level == 3)
print_calibration_results(z_at_pt, _tower_results, _opposite_results);
2017-10-20 06:08:21 +00:00
if (verbose_level != 0) { // !dry run
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
SERIAL_ECHOPGM("Calibration OK");
SERIAL_ECHO_SP(32);
2017-11-08 01:34:34 +00:00
#if HAS_BED_PROBE
if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)
SERIAL_ECHOPGM("rolling back.");
else
#endif
{
SERIAL_ECHOPAIR_F("std dev:", zero_std_dev_min, 3);
}
SERIAL_EOL();
char mess[21];
2017-11-07 23:33:33 +00:00
strcpy_P(mess, PSTR("Calibration sd:"));
if (zero_std_dev_min < 1)
2019-09-18 04:10:19 +00:00
sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev_min * 1000.0f));
else
2018-07-04 23:38:05 +00:00
sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev_min));
ui.set_status(mess);
print_calibration_settings(_endstop_results, _angle_results);
SERIAL_ECHOLNPGM("Save with M500 and/or copy to Configuration.h");
}
else { // !end iterations
char mess[15];
if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (unsigned int)iterations);
else
2017-11-07 23:33:33 +00:00
strcpy_P(mess, PSTR("No convergence"));
SERIAL_ECHO(mess);
SERIAL_ECHO_SP(32);
SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
ui.set_status(mess);
2017-11-25 09:59:46 +00:00
if (verbose_level > 1)
print_calibration_settings(_endstop_results, _angle_results);
}
}
else { // dry run
2018-10-01 04:44:33 +00:00
PGM_P enddryrun = PSTR("End DRY-RUN");
serialprintPGM(enddryrun);
SERIAL_ECHO_SP(35);
SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
char mess[21];
2017-11-07 23:33:33 +00:00
strcpy_P(mess, enddryrun);
strcpy_P(&mess[11], PSTR(" sd:"));
if (zero_std_dev < 1)
2019-09-18 04:10:19 +00:00
sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev * 1000.0f));
else
2018-07-04 23:38:05 +00:00
sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev));
ui.set_status(mess);
}
ac_home();
}
2017-10-06 20:47:51 +00:00
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
AC_CLEANUP();
}
2017-09-08 20:35:25 +00:00
#endif // DELTA_AUTO_CALIBRATION