muele-marlin/Marlin/src/HAL/HAL_STM32F1/HAL_timers_Stm32f1.h

172 lines
6.5 KiB
C
Raw Normal View History

/**
* Marlin 3D Printer Firmware
*
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
* Copyright (c) 2017 Victor Perez
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* HAL for stm32duino.com based on Libmaple and compatible (STM32F1)
*/
#ifndef _HAL_TIMERS_STM32F1_H
#define _HAL_TIMERS_STM32F1_H
// --------------------------------------------------------------------------
// Includes
// --------------------------------------------------------------------------
#include <stdint.h>
#include <libmaple/timer.h>
// --------------------------------------------------------------------------
// Defines
// --------------------------------------------------------------------------
/**
* TODO: Check and confirm what timer we will use for each Temps and stepper driving.
* We should probable drive temps with PWM.
*/
#define FORCE_INLINE __attribute__((always_inline)) inline
typedef uint16_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFF
#define HAL_TIMER_RATE (F_CPU) // frequency of timers peripherals
#define STEP_TIMER_CHAN 1 // Channel of the timer to use for compare and interrupts
#define TEMP_TIMER_CHAN 1 // Channel of the timer to use for compare and interrupts
#if defined(MCU_STM32F103CB) || defined(MCU_STM32F103C8)
[2.0.x] Multiple updates to STM32F1 HAL (#8733) * STM32F1 HAL Adding files for STM32F1 HAL based on libmaple/stm32duino core. Current persistent_store uses cardreader changes to be sent in separate commit, but could be changed to use i2c eeprom. There is another persistent_store implementation that uses the MCU flash memory to emulate eeprom Adding readme with some information about the stm32 HAL. * Switch to Timer4 to avoid a hard reset on STM32F103C6 boards On bluepill STM32F103C6 boards, using Timer5 results in a error() vector call. Switch to 4 since these are both general purpose, 16 bit timers. * Add support for EEPROM emulation using Flash Some low end machines doe not have EEPROM support. Simulate it using the last two pages of flash. Flash does not allow rewrite between erases, so skip writing the working version if that's enabled. * Basic Pins for a malyan M200 This is a work in progress to go hand in hand with the STM32 work. * Add support for ADC with DMA. This work has exposed a problem with the pin enumerations in STM boards vs what marlin expects (i.e, try defining PA0 as a temp pin). The hack can be removed with we go to fastio completely. To see this work, set something in adc_pins to a value like PA0 and connect your pullup resistor'd thermistor. * Missing file - change HAL_adc_init to actually do something We have an actual ADC init function now. * Remove pinmode hack Remove the pin mode hack that I was using to init PA0. Updated Readme.md * Several changes to timers and GPIO Faster GPIO, and faster timer functions by accesing registers and libmaple. Still more changes pending for the Timer's code to skip using the HardwareTimer class altogether. Switch all enums to be within #defines This change allows a user to have, for instance, TEMP_4 and TEMP_BED definied but nothing else. The enums which are not defined move "out", allowing the first ones to take the slots in the enum, and since the array is sized on ADC_PIN_COUNT, we always have the right size data and in order. * Update Malyan M200 pins Update Malyan M200 pins with correct fan values. * Test all pins on actual hardware, update definitions Some of the pin definitions were from knowlege base/pdfs. Now they've been tested against actual hardware. This should be very close to final. * Update HAL_timers_Stm32f1.cpp * Add sample configurations for Malyan M200 Add sample configuration for Malyan M200 without bed leveling, and move fan to auto cool E0 since this printer by default has only one fan. Choose the timer based on MCU defintion. Timer5 is not valid on C8/CB class boards, so use Timer4 for the step timer. readme.md update * Updates to timers, and some stm32 boards definitiions * Correct pin toggle macro. * Remove duplicated Malyan M200 entry from pins.h * Update configuration_store.cpp * Formatting, indentation * Formatting in HAL_Stm32f1.cpp
2017-12-11 05:12:45 +00:00
#define STEP_TIMER_NUM 4 // For C8/CB boards, use timer 4
#else
#define STEP_TIMER_NUM 5 // for other boards, five is fine.
#endif
#define TEMP_TIMER_NUM 2 // index of timer to use for temperature
2018-05-13 21:48:02 +00:00
#define PULSE_TIMER_NUM STEP_TIMER_NUM
#define TEMP_TIMER_PRESCALE 1000 // prescaler for setting Temp timer, 72Khz
#define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency
#define STEPPER_TIMER_PRESCALE 18 // prescaler for setting stepper timer, 4Mhz
2018-06-12 21:32:22 +00:00
#define STEPPER_TIMER_RATE (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE) // frequency of stepper timer
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per µs
2017-12-10 01:59:12 +00:00
#define PULSE_TIMER_RATE STEPPER_TIMER_RATE // frequency of pulse timer
#define PULSE_TIMER_PRESCALE STEPPER_TIMER_PRESCALE
#define PULSE_TIMER_TICKS_PER_US STEPPER_TIMER_TICKS_PER_US
timer_dev* get_timer_dev(int number);
#define TIMER_DEV(num) get_timer_dev(num)
#define STEP_TIMER_DEV TIMER_DEV(STEP_TIMER_NUM)
#define TEMP_TIMER_DEV TIMER_DEV(TEMP_TIMER_NUM)
#define ENABLE_STEPPER_DRIVER_INTERRUPT() timer_enable_irq(STEP_TIMER_DEV, STEP_TIMER_CHAN)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() timer_disable_irq(STEP_TIMER_DEV, STEP_TIMER_CHAN)
#define STEPPER_ISR_ENABLED() HAL_timer_interrupt_enabled(STEP_TIMER_NUM)
#define ENABLE_TEMPERATURE_INTERRUPT() timer_enable_irq(TEMP_TIMER_DEV, TEMP_TIMER_CHAN)
#define DISABLE_TEMPERATURE_INTERRUPT() timer_disable_irq(TEMP_TIMER_DEV, TEMP_TIMER_CHAN)
#define HAL_timer_get_count(timer_num) timer_get_count(TIMER_DEV(timer_num))
// TODO change this
#define HAL_TEMP_TIMER_ISR extern "C" void tempTC_Handler(void)
#define HAL_STEP_TIMER_ISR extern "C" void stepTC_Handler(void)
extern "C" void tempTC_Handler(void);
extern "C" void stepTC_Handler(void);
// --------------------------------------------------------------------------
// Types
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
// Public Variables
// --------------------------------------------------------------------------
[2.0.x] Multiple updates to STM32F1 HAL (#8733) * STM32F1 HAL Adding files for STM32F1 HAL based on libmaple/stm32duino core. Current persistent_store uses cardreader changes to be sent in separate commit, but could be changed to use i2c eeprom. There is another persistent_store implementation that uses the MCU flash memory to emulate eeprom Adding readme with some information about the stm32 HAL. * Switch to Timer4 to avoid a hard reset on STM32F103C6 boards On bluepill STM32F103C6 boards, using Timer5 results in a error() vector call. Switch to 4 since these are both general purpose, 16 bit timers. * Add support for EEPROM emulation using Flash Some low end machines doe not have EEPROM support. Simulate it using the last two pages of flash. Flash does not allow rewrite between erases, so skip writing the working version if that's enabled. * Basic Pins for a malyan M200 This is a work in progress to go hand in hand with the STM32 work. * Add support for ADC with DMA. This work has exposed a problem with the pin enumerations in STM boards vs what marlin expects (i.e, try defining PA0 as a temp pin). The hack can be removed with we go to fastio completely. To see this work, set something in adc_pins to a value like PA0 and connect your pullup resistor'd thermistor. * Missing file - change HAL_adc_init to actually do something We have an actual ADC init function now. * Remove pinmode hack Remove the pin mode hack that I was using to init PA0. Updated Readme.md * Several changes to timers and GPIO Faster GPIO, and faster timer functions by accesing registers and libmaple. Still more changes pending for the Timer's code to skip using the HardwareTimer class altogether. Switch all enums to be within #defines This change allows a user to have, for instance, TEMP_4 and TEMP_BED definied but nothing else. The enums which are not defined move "out", allowing the first ones to take the slots in the enum, and since the array is sized on ADC_PIN_COUNT, we always have the right size data and in order. * Update Malyan M200 pins Update Malyan M200 pins with correct fan values. * Test all pins on actual hardware, update definitions Some of the pin definitions were from knowlege base/pdfs. Now they've been tested against actual hardware. This should be very close to final. * Update HAL_timers_Stm32f1.cpp * Add sample configurations for Malyan M200 Add sample configuration for Malyan M200 without bed leveling, and move fan to auto cool E0 since this printer by default has only one fan. Choose the timer based on MCU defintion. Timer5 is not valid on C8/CB class boards, so use Timer4 for the step timer. readme.md update * Updates to timers, and some stm32 boards definitiions * Correct pin toggle macro. * Remove duplicated Malyan M200 entry from pins.h * Update configuration_store.cpp * Formatting, indentation * Formatting in HAL_Stm32f1.cpp
2017-12-11 05:12:45 +00:00
/*
static HardwareTimer StepperTimer(STEP_TIMER_NUM);
static HardwareTimer TempTimer(TEMP_TIMER_NUM);
[2.0.x] Multiple updates to STM32F1 HAL (#8733) * STM32F1 HAL Adding files for STM32F1 HAL based on libmaple/stm32duino core. Current persistent_store uses cardreader changes to be sent in separate commit, but could be changed to use i2c eeprom. There is another persistent_store implementation that uses the MCU flash memory to emulate eeprom Adding readme with some information about the stm32 HAL. * Switch to Timer4 to avoid a hard reset on STM32F103C6 boards On bluepill STM32F103C6 boards, using Timer5 results in a error() vector call. Switch to 4 since these are both general purpose, 16 bit timers. * Add support for EEPROM emulation using Flash Some low end machines doe not have EEPROM support. Simulate it using the last two pages of flash. Flash does not allow rewrite between erases, so skip writing the working version if that's enabled. * Basic Pins for a malyan M200 This is a work in progress to go hand in hand with the STM32 work. * Add support for ADC with DMA. This work has exposed a problem with the pin enumerations in STM boards vs what marlin expects (i.e, try defining PA0 as a temp pin). The hack can be removed with we go to fastio completely. To see this work, set something in adc_pins to a value like PA0 and connect your pullup resistor'd thermistor. * Missing file - change HAL_adc_init to actually do something We have an actual ADC init function now. * Remove pinmode hack Remove the pin mode hack that I was using to init PA0. Updated Readme.md * Several changes to timers and GPIO Faster GPIO, and faster timer functions by accesing registers and libmaple. Still more changes pending for the Timer's code to skip using the HardwareTimer class altogether. Switch all enums to be within #defines This change allows a user to have, for instance, TEMP_4 and TEMP_BED definied but nothing else. The enums which are not defined move "out", allowing the first ones to take the slots in the enum, and since the array is sized on ADC_PIN_COUNT, we always have the right size data and in order. * Update Malyan M200 pins Update Malyan M200 pins with correct fan values. * Test all pins on actual hardware, update definitions Some of the pin definitions were from knowlege base/pdfs. Now they've been tested against actual hardware. This should be very close to final. * Update HAL_timers_Stm32f1.cpp * Add sample configurations for Malyan M200 Add sample configuration for Malyan M200 without bed leveling, and move fan to auto cool E0 since this printer by default has only one fan. Choose the timer based on MCU defintion. Timer5 is not valid on C8/CB class boards, so use Timer4 for the step timer. readme.md update * Updates to timers, and some stm32 boards definitiions * Correct pin toggle macro. * Remove duplicated Malyan M200 entry from pins.h * Update configuration_store.cpp * Formatting, indentation * Formatting in HAL_Stm32f1.cpp
2017-12-11 05:12:45 +00:00
*/
// --------------------------------------------------------------------------
// Public functions
// --------------------------------------------------------------------------
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency);
void HAL_timer_enable_interrupt(const uint8_t timer_num);
void HAL_timer_disable_interrupt(const uint8_t timer_num);
bool HAL_timer_interrupt_enabled(const uint8_t timer_num);
/**
* NOTE: By default libmaple sets ARPE = 1, which means the Auto reload register is preloaded (will only update with an update event)
* Thus we have to pause the timer, update the value, refresh, resume the timer.
* That seems like a big waste of time and may be better to change the timer config to ARPE = 0, so ARR can be updated any time.
* We are using a Channel in each timer in Capture/Compare mode. We could also instead use the Time Update Event Interrupt, but need to disable ARPE
* so we can change the ARR value on the fly (without calling refresh), and not get an interrupt right there because we caused an UEV.
* This mode pretty much makes 2 timers unusable for PWM since they have their counts updated all the time on ISRs.
* The way Marlin manages timer interrupts doesn't make for an efficient usage in STM32F1
* Todo: Look at that possibility later.
*/
FORCE_INLINE static void HAL_timer_set_compare(const uint8_t timer_num, const hal_timer_t compare) {
//compare = MIN(compare, HAL_TIMER_TYPE_MAX);
switch (timer_num) {
case STEP_TIMER_NUM:
timer_set_compare(STEP_TIMER_DEV, STEP_TIMER_CHAN, compare);
return;
case TEMP_TIMER_NUM:
timer_set_compare(TEMP_TIMER_DEV, TEMP_TIMER_CHAN, compare);
return;
default:
return;
}
}
FORCE_INLINE static hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) {
switch (timer_num) {
case STEP_TIMER_NUM:
return timer_get_compare(STEP_TIMER_DEV, STEP_TIMER_CHAN);
case TEMP_TIMER_NUM:
return timer_get_compare(TEMP_TIMER_DEV, TEMP_TIMER_CHAN);
default:
return 0;
}
}
2017-12-10 02:00:10 +00:00
FORCE_INLINE static void HAL_timer_isr_prologue(const uint8_t timer_num) {
switch (timer_num) {
case STEP_TIMER_NUM:
timer_set_count(STEP_TIMER_DEV, 0);
timer_generate_update(STEP_TIMER_DEV);
return;
case TEMP_TIMER_NUM:
timer_set_count(TEMP_TIMER_DEV, 0);
timer_generate_update(TEMP_TIMER_DEV);
return;
default:
return;
}
}
#define HAL_timer_isr_epilogue(TIMER_NUM)
#endif // _HAL_TIMERS_STM32F1_H