/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
* About Marlin
* This firmware is a mashup between Sprinter and grbl.
* - https://github.com/kliment/Sprinter
* - https://github.com/simen/grbl/tree
* -----------------
* G-Codes in Marlin
* Helpful G-code references:
* - http://linuxcnc.org/handbook/gcode/g-code.html
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
* Help to document Marlin's G-codes online:
* - http://reprap.org/wiki/G-code
* - https://github.com/MarlinFirmware/MarlinDocumentation
* "G" Codes
* G0 -> G1
* G1 - Coordinated Movement X Y Z E
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell S<seconds> or P<milliseconds>
* G5 - Cubic B-spline with XYZE destination and IJPQ offsets
* G10 - Retract filament according to settings of M207
* G11 - Retract recover filament according to settings of M208
* G12 - Clean tool
* G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
* G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
* G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
* G20 - Set input units to inches
* G21 - Set input units to millimeters
* G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
* G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
* G28 - Home one or more axes
* G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
* G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
* G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only)
* G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
* G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
* G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given
* "M" Codes
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
* M1 -> M0
* M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
* M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
* M5 - Turn laser/spindle off
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card. (Requires SDSUPPORT)
* M21 - Init SD card. (Requires SDSUPPORT)
* M22 - Release SD card. (Requires SDSUPPORT)
* M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
* M24 - Start/resume SD print. (Requires SDSUPPORT)
* M25 - Pause SD print. (Requires SDSUPPORT)
* M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
* M27 - Report SD print status. (Requires SDSUPPORT)
* M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
* M29 - Stop SD write. (Requires SDSUPPORT)
* M30 - Delete file from SD: "M30 /path/file.gco"
* M31 - Report time since last M109 or SD card start to serial.
* M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
* Use P to run other files as sub-programs: "M32 P !filename#"
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
* M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
* M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
* M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
* M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
* M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
* M75 - Start the print job timer.
* M76 - Pause the print job timer.
* M77 - Stop the print job timer.
* M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
* M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
* M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
* M82 - Set E codes absolute (default).
* M83 - Set E codes relative while in Absolute (G90) mode.
* M84 - Disable steppers until next move, or use S<seconds> to specify an idle
* duration after which steppers should turn off. S0 disables the timeout.
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
* M92 - Set planner.axis_steps_per_mm for one or more axes.
* M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
* M104 - Set extruder target temp.
* M105 - Report current temperatures.
* M106 - Fan on.
* M107 - Fan off.
* M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
* M110 - Set the current line number. (Used by host printing)
* M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
* M112 - Emergency stop.
* M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
* M114 - Report current position.
* M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
* M117 - Display a message on the controller screen. (Requires an LCD)
* M118 - Display a message in the host console.
* M119 - Report endstops status.
* M120 - Enable endstops detection.
* M121 - Disable endstops detection.
* M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
* M126 - Solenoid Air Valve Open. (Requires BARICUDA)
* M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
* M128 - EtoP Open. (Requires BARICUDA)
* M129 - EtoP Closed. (Requires BARICUDA)
* M140 - Set bed target temp. S<temp>
* M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
* M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
* M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, or PCA9632)
* M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
* M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
* M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
* M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
* M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
* Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
* M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
* M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
* M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
* M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
* M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
* M205 - Set advanced settings. Current units apply:
S<print> T<travel> minimum speeds
B<minimum segment time>
X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
* M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
* M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
* M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
Every normal extrude-only move will be classified as retract depending on the direction.
* M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
* M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
* M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
* M221 - Set Flow Percentage: "M221 S<percent>"
* M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
* M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
* M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
* M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
* M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
* M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
* M300 - Play beep sound S<frequency Hz> P<duration ms>
* M301 - Set PID parameters P I and D. (Requires PIDTEMP)
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
* M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
* M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
* M350 - Set microstepping mode. (Requires digital microstepping pins.)
* M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
* M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
* M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
* M381 - Disable all solenoids. (Requires EXT_SOLENOID)
* M400 - Finish all moves.
* M401 - Lower Z probe. (Requires a probe)
* M402 - Raise Z probe. (Requires a probe)
* M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
* M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
* M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
* M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
* M410 - Quickstop. Abort all planned moves.
* M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
* M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
* M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
* M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
* M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
* M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
* M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
* M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
* M666 - Set delta endstop adjustment. (Requires DELTA)
* M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
* M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
* M860 - Report the position of position encoder modules.
* M861 - Report the status of position encoder modules.
* M862 - Perform an axis continuity test for position encoder modules.
* M863 - Perform steps-per-mm calibration for position encoder modules.
* M864 - Change position encoder module I2C address.
* M865 - Check position encoder module firmware version.
* M866 - Report or reset position encoder module error count.
* M867 - Enable/disable or toggle error correction for position encoder modules.
* M868 - Report or set position encoder module error correction threshold.
* M869 - Report position encoder module error.
* M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
* M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
* M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
* M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
* M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
* M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
* M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
* M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
* M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
* M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
* ************ Custom codes - This can change to suit future G-code regulations
* M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
* M999 - Restart after being stopped by error
* "T" Codes
* T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
#include "Marlin.h"
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "endstops.h"
#include "temperature.h"
#include "cardreader.h"
#include "configuration_store.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#include "nozzle.h"
#include "duration_t.h"
#include "types.h"
#include "gcode.h"
#if HAS_ABL
#include "vector_3.h"
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
#include "qr_solve.h"
#endif
#elif ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#if ENABLED(BEZIER_CURVE_SUPPORT)
#include "planner_bezier.h"
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
#include "buzzer.h"
#if ENABLED(USE_WATCHDOG)
#include "watchdog.h"
#if ENABLED(BLINKM)
#include "blinkm.h"
#include "Wire.h"
#if ENABLED(PCA9632)
#include "pca9632.h"
#if HAS_SERVOS
#include "servo.h"
#if HAS_DIGIPOTSS
#include <SPI.h>
#if ENABLED(DAC_STEPPER_CURRENT)
#include "stepper_dac.h"
#if ENABLED(EXPERIMENTAL_I2CBUS)
#include "twibus.h"
#if ENABLED(I2C_POSITION_ENCODERS)
#include "I2CPositionEncoder.h"
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
#include "endstop_interrupts.h"
#if ENABLED(M100_FREE_MEMORY_WATCHER)
void gcode_M100();
void M100_dump_routine(const char * const title, const char *start, const char *end);
#if ENABLED(SDSUPPORT)
CardReader card;
TWIBus i2c;
#if ENABLED(G38_PROBE_TARGET)
bool G38_move = false,
G38_endstop_hit = false;
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
extern bool defer_return_to_status;
unified_bed_leveling ubl;
#define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
&& ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
&& ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
&& ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
|| isnan(ubl.z_values[0][0]))
bool Running = true;
uint8_t marlin_debug_flags = DEBUG_NONE;
* Cartesian Current Position
* Used to track the logical position as moves are queued.
* Used by 'line_to_current_position' to do a move after changing it.
* Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
float current_position[XYZE] = { 0.0 };
* Cartesian Destination
* A temporary position, usually applied to 'current_position'.
* Set with 'gcode_get_destination' or 'set_destination_to_current'.
* 'line_to_destination' sets 'current_position' to 'destination'.
float destination[XYZE] = { 0.0 };
* axis_homed
* Flags that each linear axis was homed.
* XYZ on cartesian, ABC on delta, ABZ on SCARA.
* axis_known_position
* Flags that the position is known in each linear axis. Set when homed.
* Cleared whenever a stepper powers off, potentially losing its position.
bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
* GCode line number handling. Hosts may opt to include line numbers when
* sending commands to Marlin, and lines will be checked for sequentiality.
* M110 N<int> sets the current line number.
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
* GCode Command Queue
* A simple ring buffer of BUFSIZE command strings.
* Commands are copied into this buffer by the command injectors
* (immediate, serial, sd card) and they are processed sequentially by
* the main loop. The process_next_command function parses the next
* command and hands off execution to individual handler functions.
uint8_t commands_in_queue = 0; // Count of commands in the queue
static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
cmd_queue_index_w = 0; // Ring buffer write position
char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
#else // This can be collapsed back to the way it was soon.
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
* Next Injected Command pointer. NULL if no commands are being injected.
* Used by Marlin internally to ensure that commands initiated from within
* are enqueued ahead of any pending serial or sd card commands.
static const char *injected_commands_P = NULL;
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
TempUnit input_temp_units = TEMPUNIT_C;
* Feed rates are often configured with mm/m
* but the planner and stepper like mm/s units.
static const float homing_feedrate_mm_s[] PROGMEM = {
#if ENABLED(DELTA)
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
#else
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
};
FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
float feedrate_mm_s = MMM_TO_MMS(1500.0);
static float saved_feedrate_mm_s;
int16_t feedrate_percentage = 100, saved_feedrate_percentage,
flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
volumetric_enabled =
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
true
false
;
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
#if HAS_WORKSPACE_OFFSET
#if HAS_POSITION_SHIFT
// The distance that XYZ has been offset by G92. Reset by G28.
float position_shift[XYZ] = { 0 };
#if HAS_HOME_OFFSET
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[XYZ] = { 0 };
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
// The above two are combined to save on computes
float workspace_offset[XYZ] = { 0 };
// Software Endstops are based on the configured limits.
#if HAS_SOFTWARE_ENDSTOPS
bool soft_endstops_enabled = true;
float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
#if FAN_COUNT > 0
int16_t fanSpeeds[FAN_COUNT] = { 0 };
#if ENABLED(PROBING_FANS_OFF)
bool fans_paused = false;
int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
// The active extruder (tool). Set with T<extruder> command.
uint8_t active_extruder = 0;
// Relative Mode. Enable with G91, disable with G90.
static bool relative_mode = false;
// For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
volatile bool wait_for_heatup = true;
// For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
#if HAS_RESUME_CONTINUE
volatile bool wait_for_user = false;
const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
// Number of characters read in the current line of serial input
static int serial_count = 0;
// Inactivity shutdown
millis_t previous_cmd_ms = 0;
static millis_t max_inactive_time = 0;
static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
// Print Job Timer
#if ENABLED(PRINTCOUNTER)
PrintCounter print_job_timer = PrintCounter();
Stopwatch print_job_timer = Stopwatch();
// Buzzer - I2C on the LCD or a BEEPER_PIN
#if ENABLED(LCD_USE_I2C_BUZZER)
#define BUZZ(d,f) lcd_buzz(d, f)
#elif PIN_EXISTS(BEEPER)
Buzzer buzzer;
#define BUZZ(d,f) buzzer.tone(d, f)
#define BUZZ(d,f) NOOP
static uint8_t target_extruder;
#if HAS_BED_PROBE
float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
#elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#define ADJUST_DELTA(V) \
if (planner.abl_enabled) { \
const float zadj = bilinear_z_offset(V); \
delta[A_AXIS] += zadj; \
delta[B_AXIS] += zadj; \
delta[C_AXIS] += zadj; \
}
#define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
#elif IS_KINEMATIC
#define ADJUST_DELTA(V) NOOP
#if ENABLED(Z_DUAL_ENDSTOPS)
float z_endstop_adj =
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
Z_DUAL_ENDSTOPS_ADJUSTMENT
0
// Extruder offsets
#if HOTENDS > 1
float hotend_offset[XYZ][HOTENDS];
#if HAS_Z_SERVO_ENDSTOP
const int z_servo_angle[2] = Z_SERVO_ANGLES;
#if ENABLED(BARICUDA)
int baricuda_valve_pressure = 0;
int baricuda_e_to_p_pressure = 0;
#if ENABLED(FWRETRACT)
bool autoretract_enabled = false;
bool retracted[EXTRUDERS] = { false };
bool retracted_swap[EXTRUDERS] = { false };
float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP;
float retract_feedrate_mm_s = RETRACT_FEEDRATE;
float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
#endif // FWRETRACT
#if HAS_POWER_SWITCH
bool powersupply_on =
#if ENABLED(PS_DEFAULT_OFF)
float delta[ABC],
endstop_adj[ABC] = { 0 };
// These values are loaded or reset at boot time when setup() calls
// settings.load(), which calls recalc_delta_settings().
float delta_radius,
delta_tower_angle_trim[2],
delta_tower[ABC][2],
delta_diagonal_rod,
delta_calibration_radius,
delta_diagonal_rod_2_tower[ABC],
delta_segments_per_second,
delta_clip_start_height = Z_MAX_POS;
float delta_safe_distance_from_top();
int bilinear_grid_spacing[2], bilinear_start[2];
float bilinear_grid_factor[2],
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
#if IS_SCARA
// Float constants for SCARA calculations
const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
L2_2 = sq(float(L2));
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
delta[ABC];
float cartes[XYZ] = { 0 };
#if ENABLED(FILAMENT_WIDTH_SENSOR)
bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
static bool filament_ran_out = false;
#if ENABLED(ADVANCED_PAUSE_FEATURE)
AdvancedPauseMenuResponse advanced_pause_menu_response;
#if ENABLED(MIXING_EXTRUDER)
float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
#if MIXING_VIRTUAL_TOOLS > 1
float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
static bool send_ok[BUFSIZE];
Servo servo[NUM_SERVOS];
#define MOVE_SERVO(I, P) servo[I].move(P)
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
#define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
#ifdef CHDK
millis_t chdkHigh = 0;
bool chdkActive = false;
#ifdef AUTOMATIC_CURRENT_CONTROL
bool auto_current_control = 0;
#if ENABLED(PID_EXTRUSION_SCALING)
int lpq_len = 20;
#if ENABLED(HOST_KEEPALIVE_FEATURE)
MarlinBusyState busy_state = NOT_BUSY;
static millis_t next_busy_signal_ms = 0;
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
#define host_keepalive() NOOP
I2CPositionEncodersMgr I2CPEM;
uint8_t blockBufferIndexRef = 0;
millis_t lastUpdateMillis;
#if ENABLED(CNC_WORKSPACE_PLANES)
static WorkspacePlane workspace_plane = PLANE_XY;
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
typedef void __void_##CONFIG##__
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
* ***************************************************************************
* ******************************** FUNCTIONS ********************************
void stop();
void get_available_commands();
void process_next_command();
void prepare_move_to_destination();
void get_cartesian_from_steppers();
void set_current_from_steppers_for_axis(const AxisEnum axis);
#if ENABLED(ARC_SUPPORT)
void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
void plan_cubic_move(const float offset[4]);
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
void report_current_position();
void report_current_position_detail();
#if ENABLED(DEBUG_LEVELING_FEATURE)
void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
serialprintPGM(prefix);
SERIAL_CHAR('(');
SERIAL_ECHO(x);
SERIAL_ECHOPAIR(", ", y);
SERIAL_ECHOPAIR(", ", z);
SERIAL_CHAR(')');
if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
#define DEBUG_POS(SUFFIX,VAR) do { \
print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
* sync_plan_position
* Set the planner/stepper positions directly from current_position with
* no kinematic translation. Used for homing axes and cartesian/core syncing.
void sync_plan_position() {
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
#if IS_KINEMATIC
inline void sync_plan_position_kinematic() {
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
planner.set_position_mm_kinematic(current_position);
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
extern "C" {
extern char __bss_end;
extern char __heap_start;
extern void* __brkval;
int freeMemory() {
int free_memory;
if ((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
#endif // !SDSUPPORT
#if ENABLED(DIGIPOT_I2C)
extern void digipot_i2c_set_current(uint8_t channel, float current);
extern void digipot_i2c_init();
* Inject the next "immediate" command, when possible, onto the front of the queue.
* Return true if any immediate commands remain to inject.
static bool drain_injected_commands_P() {
if (injected_commands_P != NULL) {
size_t i = 0;
char c, cmd[30];
strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
cmd[sizeof(cmd) - 1] = '\0';
while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
cmd[i] = '\0';
if (enqueue_and_echo_command(cmd)) // success?
injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
return (injected_commands_P != NULL); // return whether any more remain
* Record one or many commands to run from program memory.
* Aborts the current queue, if any.
* Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
void enqueue_and_echo_commands_P(const char * const pgcode) {
injected_commands_P = pgcode;
drain_injected_commands_P(); // first command executed asap (when possible)
* Clear the Marlin command queue
void clear_command_queue() {
cmd_queue_index_r = cmd_queue_index_w;
commands_in_queue = 0;
* Once a new command is in the ring buffer, call this to commit it
inline void _commit_command(bool say_ok) {
send_ok[cmd_queue_index_w] = say_ok;
if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
commands_in_queue++;
* Copy a command from RAM into the main command buffer.
* Return true if the command was successfully added.
* Return false for a full buffer, or if the 'command' is a comment.
inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
strcpy(command_queue[cmd_queue_index_w], cmd);
_commit_command(say_ok);
return true;
* Enqueue with Serial Echo
bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
if (_enqueuecommand(cmd, say_ok)) {
SERIAL_ECHO_START();
SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
SERIAL_CHAR('"');
SERIAL_EOL();
return false;
void setup_killpin() {
#if HAS_KILL
SET_INPUT_PULLUP(KILL_PIN);
void setup_filrunoutpin() {
#if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
SET_INPUT(FIL_RUNOUT_PIN);
void setup_powerhold() {
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
void suicide() {
OUT_WRITE(SUICIDE_PIN, LOW);
void servo_init() {
#if NUM_SERVOS >= 1 && HAS_SERVO_0
servo[0].attach(SERVO0_PIN);
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
#if NUM_SERVOS >= 2 && HAS_SERVO_1
servo[1].attach(SERVO1_PIN);
servo[1].detach();
#if NUM_SERVOS >= 3 && HAS_SERVO_2
servo[2].attach(SERVO2_PIN);
servo[2].detach();
#if NUM_SERVOS >= 4 && HAS_SERVO_3
servo[3].attach(SERVO3_PIN);
servo[3].detach();
* Set position of Z Servo Endstop
* The servo might be deployed and positioned too low to stow
* when starting up the machine or rebooting the board.
* There's no way to know where the nozzle is positioned until
* homing has been done - no homing with z-probe without init!
STOW_Z_SERVO();
* Stepper Reset (RigidBoard, et.al.)
#if HAS_STEPPER_RESET
void disableStepperDrivers() {
OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
void i2c_on_receive(int bytes) { // just echo all bytes received to serial
i2c.receive(bytes);
void i2c_on_request() { // just send dummy data for now
i2c.reply("Hello World!\n");
#if HAS_COLOR_LEDS
void set_led_color(
const uint8_t r, const uint8_t g, const uint8_t b
#if ENABLED(RGBW_LED)
, const uint8_t w=0
) {
// This variant uses i2c to send the RGB components to the device.
SendColors(r, g, b);
#if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
// This variant uses 3 separate pins for the RGB components.
// If the pins can do PWM then their intensity will be set.
WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
analogWrite(RGB_LED_R_PIN, r);
analogWrite(RGB_LED_G_PIN, g);
analogWrite(RGB_LED_B_PIN, b);
WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
analogWrite(RGB_LED_W_PIN, w);
// Update I2C LED driver
PCA9632_SetColor(r, g, b);
#endif // HAS_COLOR_LEDS
void gcode_line_error(const char* err, bool doFlush = true) {
SERIAL_ERROR_START();
serialprintPGM(err);
SERIAL_ERRORLN(gcode_LastN);
//Serial.println(gcode_N);
if (doFlush) FlushSerialRequestResend();
serial_count = 0;
* Get all commands waiting on the serial port and queue them.
* Exit when the buffer is full or when no more characters are
* left on the serial port.
inline void get_serial_commands() {
static char serial_line_buffer[MAX_CMD_SIZE];
static bool serial_comment_mode = false;
// If the command buffer is empty for too long,
// send "wait" to indicate Marlin is still waiting.
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
static millis_t last_command_time = 0;
const millis_t ms = millis();
if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
SERIAL_ECHOLNPGM(MSG_WAIT);
last_command_time = ms;
* Loop while serial characters are incoming and the queue is not full
while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
char serial_char = MYSERIAL.read();
* If the character ends the line
if (serial_char == '\n' || serial_char == '\r') {
serial_comment_mode = false; // end of line == end of comment
if (!serial_count) continue; // skip empty lines
serial_line_buffer[serial_count] = 0; // terminate string
serial_count = 0; //reset buffer
char* command = serial_line_buffer;
while (*command == ' ') command++; // skip any leading spaces
char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
*apos = strchr(command, '*');
if (npos) {
bool M110 = strstr_P(command, PSTR("M110")) != NULL;
if (M110) {
char* n2pos = strchr(command + 4, 'N');
if (n2pos) npos = n2pos;
gcode_N = strtol(npos + 1, NULL, 10);
if (gcode_N != gcode_LastN + 1 && !M110) {
gcode_line_error(PSTR(MSG_ERR_LINE_NO));
return;
if (apos) {
byte checksum = 0, count = 0;
while (command[count] != '*') checksum ^= command[count++];
if (strtol(apos + 1, NULL, 10) != checksum) {
gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
// if no errors, continue parsing
else {
gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
gcode_LastN = gcode_N;
else if (apos) { // No '*' without 'N'
gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
// Movement commands alert when stopped
if (IsStopped()) {
char* gpos = strchr(command, 'G');
if (gpos) {
const int codenum = strtol(gpos + 1, NULL, 10);
switch (codenum) {
case 0:
case 1:
case 2:
case 3:
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
break;
#if DISABLED(EMERGENCY_PARSER)
// If command was e-stop process now
if (strcmp(command, "M108") == 0) {
wait_for_heatup = false;
#if ENABLED(ULTIPANEL)
wait_for_user = false;
if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
// Add the command to the queue
_enqueuecommand(serial_line_buffer, true);
else if (serial_count >= MAX_CMD_SIZE - 1) {
// Keep fetching, but ignore normal characters beyond the max length
// The command will be injected when EOL is reached
else if (serial_char == '\\') { // Handle escapes
if (MYSERIAL.available() > 0) {
// if we have one more character, copy it over
serial_char = MYSERIAL.read();
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
// otherwise do nothing
else { // it's not a newline, carriage return or escape char
if (serial_char == ';') serial_comment_mode = true;
} // queue has space, serial has data
* Get commands from the SD Card until the command buffer is full
* or until the end of the file is reached. The special character '#'
* can also interrupt buffering.
inline void get_sdcard_commands() {
static bool stop_buffering = false,
sd_comment_mode = false;
if (!card.sdprinting) return;
* '#' stops reading from SD to the buffer prematurely, so procedural
* macro calls are possible. If it occurs, stop_buffering is triggered
* and the buffer is run dry; this character _can_ occur in serial com
* due to checksums, however, no checksums are used in SD printing.
if (commands_in_queue == 0) stop_buffering = false;
uint16_t sd_count = 0;
bool card_eof = card.eof();
while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
const int16_t n = card.get();
char sd_char = (char)n;
card_eof = card.eof();
if (card_eof || n == -1
|| sd_char == '\n' || sd_char == '\r'
|| ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
if (card_eof) {
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
card.printingHasFinished();
#if ENABLED(PRINTER_EVENT_LEDS)
LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
set_led_color(0, 255, 0); // Green
enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
safe_delay(1000);
set_led_color(0, 0, 0); // OFF
card.checkautostart(true);
else if (n == -1) {
SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
if (sd_char == '#') stop_buffering = true;
sd_comment_mode = false; // for new command
if (!sd_count) continue; // skip empty lines (and comment lines)
command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
sd_count = 0; // clear sd line buffer
_commit_command(false);
else if (sd_count >= MAX_CMD_SIZE - 1) {
* Keep fetching, but ignore normal characters beyond the max length
* The command will be injected when EOL is reached
if (sd_char == ';') sd_comment_mode = true;
if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
#endif // SDSUPPORT
* Add to the circular command queue the next command from:
* - The command-injection queue (injected_commands_P)
* - The active serial input (usually USB)
* - The SD card file being actively printed
void get_available_commands() {
// if any immediate commands remain, don't get other commands yet
if (drain_injected_commands_P()) return;
get_serial_commands();
get_sdcard_commands();
* Set target_extruder from the T parameter or the active_extruder
* Returns TRUE if the target is invalid
bool get_target_extruder_from_command(const uint16_t code) {
if (parser.seenval('T')) {
const int8_t e = parser.value_byte();
if (e >= EXTRUDERS) {
SERIAL_CHAR('M');
SERIAL_ECHO(code);
SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
target_extruder = e;
target_extruder = active_extruder;
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
bool extruder_duplication_enabled = false; // Used in Dual X mode 2
#if ENABLED(DUAL_X_CARRIAGE)
static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(const int extruder) {
if (extruder == 0)
return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
* In dual carriage mode the extruder offset provides an override of the
* second X-carriage position when homed - otherwise X2_HOME_POS is used.
* This allows soft recalibration of the second extruder home position
* without firmware reflash (through the M218 command).
return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[XYZE]; // used in mode 1
static millis_t delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
#endif // DUAL_X_CARRIAGE
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
* Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end. Or
* they can prevent axes from moving past endstops and grinding.
* To keep doing their job as the coordinate system changes,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine.
void update_software_endstops(const AxisEnum axis) {
const float offs = 0.0
+ home_offset[axis]
+ position_shift[axis]
workspace_offset[axis] = offs;
if (axis == X_AXIS) {
// In Dual X mode hotend_offset[X] is T1's home position
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
if (active_extruder != 0) {
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
soft_endstop_max[X_AXIS] = dual_max_x + offs;
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
// In Duplication Mode, T0 can move as far left as X_MIN_POS
// but not so far to the right that T1 would move past the end
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
// In other modes, T0 can move from X_MIN_POS to X_MAX_POS
soft_endstop_min[axis] = base_min_pos(axis) + offs;
soft_endstop_max[axis] = base_max_pos(axis) + offs;
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
if (axis == Z_AXIS)
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
#if HAS_M206_COMMAND
* Change the home offset for an axis, update the current
* position and the software endstops to retain the same
* relative distance to the new home.
* Since this changes the current_position, code should
* call sync_plan_position soon after this.
static void set_home_offset(const AxisEnum axis, const float v) {
current_position[axis] += v - home_offset[axis];
home_offset[axis] = v;
update_software_endstops(axis);
#endif // HAS_M206_COMMAND
* Set an axis' current position to its home position (after homing).
* For Core and Cartesian robots this applies one-to-one when an
* individual axis has been homed.
* DELTA should wait until all homing is done before setting the XYZ
* current_position to home, because homing is a single operation.
* In the case where the axis positions are already known and previously
* homed, DELTA could home to X or Y individually by moving either one
* to the center. However, homing Z always homes XY and Z.
* SCARA should wait until all XY homing is done before setting the XY
* current_position to home, because neither X nor Y is at home until
* both are at home. Z can however be homed individually.
* Callers must sync the planner position after calling this!
static void set_axis_is_at_home(const AxisEnum axis) {
SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
axis_known_position[axis] = axis_homed[axis] = true;
position_shift[axis] = 0;
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
current_position[X_AXIS] = x_home_pos(active_extruder);
#if ENABLED(MORGAN_SCARA)
* Morgan SCARA homes XY at the same time
if (axis == X_AXIS || axis == Y_AXIS) {
float homeposition[XYZ];
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
// SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
// SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
* Get Home position SCARA arm angles using inverse kinematics,
* and calculate homing offset using forward kinematics
inverse_kinematics(homeposition);
forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
// SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
// SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
* SCARA home positions are based on configuration since the actual
* limits are determined by the inverse kinematic transform.
soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
{
current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
* Z Probe Z Homing? Account for the probe's Z offset.
#if HAS_BED_PROBE && Z_HOME_DIR < 0
if (axis == Z_AXIS) {
#if HOMING_Z_WITH_PROBE
current_position[Z_AXIS] -= zprobe_zoffset;
SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
#elif ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
DEBUG_POS("", current_position);
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
I2CPEM.homed(axis);
* Some planner shorthand inline functions
inline float get_homing_bump_feedrate(const AxisEnum axis) {
static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
if (hbd < 1) {
hbd = 10;
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
return homing_feedrate(axis) / hbd;
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
inline void line_to_current_position() {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
* Move the planner to the position stored in the destination array, which is
* used by G0/G1/G2/G3/G5 and many other functions to set a destination.
inline void line_to_destination(const float fr_mm_s) {
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
inline void set_current_to_destination() { COPY(current_position, destination); }
inline void set_destination_to_current() { COPY(destination, current_position); }
* Calculate delta, start a line, and set current_position to destination
void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
refresh_cmd_timeout();
#if UBL_DELTA
// ubl segmented line will do z-only moves in single segment
ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
if ( current_position[X_AXIS] == destination[X_AXIS]
&& current_position[Y_AXIS] == destination[Y_AXIS]
&& current_position[Z_AXIS] == destination[Z_AXIS]
&& current_position[E_AXIS] == destination[E_AXIS]
) return;
planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
set_current_to_destination();
#endif // IS_KINEMATIC
* Plan a move to (X, Y, Z) and set the current_position
* The final current_position may not be the one that was requested
void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
const float old_feedrate_mm_s = feedrate_mm_s;
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
if (!position_is_reachable_xy(lx, ly)) return;
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
set_destination_to_current(); // sync destination at the start
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
// when in the danger zone
if (current_position[Z_AXIS] > delta_clip_start_height) {
if (lz > delta_clip_start_height) { // staying in the danger zone
destination[X_AXIS] = lx; // move directly (uninterpolated)
destination[Y_AXIS] = ly;
destination[Z_AXIS] = lz;
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
destination[Z_AXIS] = delta_clip_start_height;
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
if (lz > current_position[Z_AXIS]) { // raising?
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
destination[X_AXIS] = lx;
prepare_move_to_destination(); // set_current_to_destination
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
if (lz < current_position[Z_AXIS]) { // lowering?
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
#elif IS_SCARA
set_destination_to_current();
// If Z needs to raise, do it before moving XY
if (destination[Z_AXIS] < lz) {
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
// If Z needs to lower, do it after moving XY
if (destination[Z_AXIS] > lz) {
if (current_position[Z_AXIS] < lz) {
feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
current_position[Z_AXIS] = lz;
line_to_current_position();
current_position[X_AXIS] = lx;
current_position[Y_AXIS] = ly;
if (current_position[Z_AXIS] > lz) {
stepper.synchronize();
feedrate_mm_s = old_feedrate_mm_s;
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
//
// Prepare to do endstop or probe moves
// with custom feedrates.
// - Save current feedrates
// - Reset the rate multiplier
// - Reset the command timeout
// - Enable the endstops (for endstop moves)
static void setup_for_endstop_or_probe_move() {
if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
saved_feedrate_mm_s = feedrate_mm_s;
saved_feedrate_percentage = feedrate_percentage;
feedrate_percentage = 100;
static void clean_up_after_endstop_or_probe_move() {
if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
feedrate_mm_s = saved_feedrate_mm_s;
feedrate_percentage = saved_feedrate_percentage;
* Raise Z to a minimum height to make room for a probe to move
inline void do_probe_raise(const float z_raise) {
SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
float z_dest = LOGICAL_Z_POSITION(z_raise);
if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
z_dest -= home_offset[Z_AXIS]; // Account for delta height adjustment
if (z_dest > current_position[Z_AXIS])
do_blocking_move_to_z(z_dest);
#endif // HAS_BED_PROBE
#if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
#if ENABLED(HOME_AFTER_DEACTIVATE)
const bool xx = x && !axis_known_position[X_AXIS],
yy = y && !axis_known_position[Y_AXIS],
zz = z && !axis_known_position[Z_AXIS];
const bool xx = x && !axis_homed[X_AXIS],
yy = y && !axis_homed[Y_AXIS],
zz = z && !axis_homed[Z_AXIS];
if (xx || yy || zz) {
SERIAL_ECHOPGM(MSG_HOME " ");
if (xx) SERIAL_ECHOPGM(MSG_X);
if (yy) SERIAL_ECHOPGM(MSG_Y);
if (zz) SERIAL_ECHOPGM(MSG_Z);
SERIAL_ECHOLNPGM(" " MSG_FIRST);
#if ENABLED(ULTRA_LCD)
lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
#if ENABLED(Z_PROBE_SLED)
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
* Method to dock/undock a sled designed by Charles Bell.
* stow[in] If false, move to MAX_X and engage the solenoid
* If true, move to MAX_X and release the solenoid
static void dock_sled(bool stow) {
SERIAL_ECHOPAIR("dock_sled(", stow);
// Dock sled a bit closer to ensure proper capturing
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
WRITE(SOL1_PIN, !stow); // switch solenoid
#elif ENABLED(Z_PROBE_ALLEN_KEY)
FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
void run_deploy_moves_script() {
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
void run_stow_moves_script() {
#if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
#define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
#define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
#define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
#define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
#define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
#define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
#define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
#define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
#define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
#define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
#define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
#define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
#define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
#define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
#define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
void fans_pause(const bool p) {
if (p != fans_paused) {
fans_paused = p;
if (p)
for (uint8_t x = 0; x < FAN_COUNT; x++) {
paused_fanSpeeds[x] = fanSpeeds[x];
fanSpeeds[x] = 0;
for (uint8_t x = 0; x < FAN_COUNT; x++)
fanSpeeds[x] = paused_fanSpeeds[x];
#endif // PROBING_FANS_OFF
// TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
#if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
#if QUIET_PROBING
void probing_pause(const bool p) {
#if ENABLED(PROBING_HEATERS_OFF)
thermalManager.pause(p);
fans_pause(p);
if (p) safe_delay(25);
#endif // QUIET_PROBING
#if ENABLED(BLTOUCH)
void bltouch_command(int angle) {
servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
safe_delay(BLTOUCH_DELAY);
void set_bltouch_deployed(const bool deploy) {
if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
bltouch_command(BLTOUCH_RESET); // try to reset it.
bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
safe_delay(1500); // Wait for internal self-test to complete.
// (Measured completion time was 0.65 seconds
// after reset, deploy, and stow sequence)
if (TEST_BLTOUCH()) { // If it still claims to be triggered...
SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
stop(); // punt!
bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
#endif // BLTOUCH
// returns false for ok and true for failure
bool set_probe_deployed(bool deploy) {
DEBUG_POS("set_probe_deployed", current_position);
SERIAL_ECHOLNPAIR("deploy: ", deploy);
if (endstops.z_probe_enabled == deploy) return false;
// Make room for probe
do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
// When deploying make sure BLTOUCH is not already triggered
safe_delay(1500); // wait for internal self test to complete
// measured completion time was 0.65 seconds
// after reset, deploy & stow sequence
#elif ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
#define _AUE_ARGS true, false, false
#define _AUE_ARGS
if (axis_unhomed_error(_AUE_ARGS)) {
SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
stop();
const float oldXpos = current_position[X_AXIS],
oldYpos = current_position[Y_AXIS];
#ifdef _TRIGGERED_WHEN_STOWED_TEST
// If endstop is already false, the Z probe is deployed
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
// Would a goto be less ugly?
//while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
// for a triggered when stowed manual probe.
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
// otherwise an Allen-Key probe can't be stowed.
#if ENABLED(SOLENOID_PROBE)
#if HAS_SOLENOID_1
WRITE(SOL1_PIN, deploy);
#elif ENABLED(Z_PROBE_SLED)
dock_sled(!deploy);
#elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
deploy ? run_deploy_moves_script() : run_stow_moves_script();
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
if (IsRunning()) {
SERIAL_ERRORLNPGM("Z-Probe failed");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
endstops.enable_z_probe(deploy);
static void do_probe_move(float z, float fr_mm_m) {
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
// Deploy BLTouch at the start of any probe
set_bltouch_deployed(true);
probing_pause(true);
// Move down until probe triggered
do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
probing_pause(false);
// Retract BLTouch immediately after a probe
set_bltouch_deployed(false);
// Clear endstop flags
endstops.hit_on_purpose();
// Get Z where the steppers were interrupted
set_current_from_steppers_for_axis(Z_AXIS);
// Tell the planner where we actually are
SYNC_PLAN_POSITION_KINEMATIC();
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
// Do a single Z probe and return with current_position[Z_AXIS]
// at the height where the probe triggered.
static float run_z_probe() {
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
// Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
#if ENABLED(PROBE_DOUBLE_TOUCH)
// Do a first probe at the fast speed
do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
float first_probe_z = current_position[Z_AXIS];
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
// move up by the bump distance
do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
// If the nozzle is above the travel height then
// move down quickly before doing the slow probe
float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
if (zprobe_zoffset < 0) z -= zprobe_zoffset;
z -= home_offset[Z_AXIS]; // Account for delta height adjustment
if (z < current_position[Z_AXIS])
do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
// move down slowly to find bed
do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
// Debug: compare probe heights
#if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
+ home_offset[Z_AXIS] // Account for delta height adjustment
* - Move to the given XY
* - Deploy the probe, if not already deployed
* - Probe the bed, get the Z position
* - Depending on the 'stow' flag
* - Stow the probe, or
* - Raise to the BETWEEN height
* - Return the probed Z position
float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
SERIAL_ECHOPAIR(">>> probe_pt(", lx);
SERIAL_ECHOPAIR(", ", ly);
SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
SERIAL_ECHOLNPGM("stow)");
const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
if (printable)
if (!position_is_reachable_by_probe_xy(lx, ly)) return NAN;
if (!position_is_reachable_xy(nx, ny)) return NAN;
if (current_position[Z_AXIS] > delta_clip_start_height)
do_blocking_move_to_z(delta_clip_start_height);
// Ensure a minimum height before moving the probe
do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
// Move the probe to the given XY
do_blocking_move_to_xy(nx, ny);
if (DEPLOY_PROBE()) return NAN;
const float measured_z = run_z_probe();
if (!stow)
if (STOW_PROBE()) return NAN;
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL_F(lx, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(ly, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
return measured_z;
#if HAS_LEVELING
bool leveling_is_valid() {
return
#if ENABLED(MESH_BED_LEVELING)
mbl.has_mesh()
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
!!bilinear_grid_spacing[X_AXIS]
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#else // 3POINT, LINEAR
bool leveling_is_active() {
mbl.active()
ubl.state.active
planner.abl_enabled
* Turn bed leveling on or off, fixing the current
* position as-needed.
* Disable: Current position = physical position
* Enable: Current position = "unleveled" physical position
void set_bed_leveling_enabled(const bool enable/*=true*/) {
const bool can_change = (!enable || leveling_is_valid());
constexpr bool can_change = true;
if (can_change && enable != leveling_is_active()) {
if (!enable)
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
const bool enabling = enable && leveling_is_valid();
mbl.set_active(enabling);
if (enabling) planner.unapply_leveling(current_position);
#if PLANNER_LEVELING
if (ubl.state.active) { // leveling from on to off
// change unleveled current_position to physical current_position without moving steppers.
ubl.state.active = false; // disable only AFTER calling apply_leveling
else { // leveling from off to on
ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
// change physical current_position to unleveled current_position without moving steppers.
planner.unapply_leveling(current_position);
ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move.
#else // ABL
// Force bilinear_z_offset to re-calculate next time
const float reset[XYZ] = { -9999.999, -9999.999, 0 };
(void)bilinear_z_offset(reset);
// Enable or disable leveling compensation in the planner
planner.abl_enabled = enable;
// When disabling just get the current position from the steppers.
// This will yield the smallest error when first converted back to steps.
set_current_from_steppers_for_axis(
#if ABL_PLANAR
ALL_AXES
Z_AXIS
);
// When enabling, remove compensation from the current position,
// so compensation will give the right stepper counts.
#endif // ABL
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height(const float zfh) {
const bool level_active = leveling_is_active();
if (level_active)
set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
planner.z_fade_height = zfh;
planner.inverse_z_fade_height = RECIPROCAL(zfh);
set_bed_leveling_enabled(true); // turn back on after changing fade height
if (level_active) {
#endif // LEVELING_FADE_HEIGHT
* Reset calibration results to zero.
void reset_bed_level() {
set_bed_leveling_enabled(false);
if (leveling_is_valid()) {
mbl.reset();
mbl.set_has_mesh(false);
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
planner.bed_level_matrix.set_to_identity();
bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
z_values[x][y] = NAN;
ubl.reset();
#endif // HAS_LEVELING
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
* Enable to produce output in JSON format suitable
* for SCAD or JavaScript mesh visualizers.
* Visualize meshes in OpenSCAD using the included script.
* buildroot/shared/scripts/MarlinMesh.scad
//#define SCAD_MESH_OUTPUT
* Print calibration results for plotting or manual frame adjustment.
static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
#ifndef SCAD_MESH_OUTPUT
for (uint8_t x = 0; x < sx; x++) {
for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL((int)x);
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
for (uint8_t y = 0; y < sy; y++) {
SERIAL_PROTOCOLPGM(" ["); // open sub-array
if (y < 10) SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL((int)y);
const float offset = fn(x, y);
if (!isnan(offset)) {
if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
SERIAL_PROTOCOL_F(offset, precision);
for (uint8_t i = 3; i < precision + 3; i++)
SERIAL_PROTOCOLPGM("NAN");
for (uint8_t i = 0; i < precision + 3; i++)
SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOLCHAR(']'); // close sub-array
if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOLPGM("];"); // close 2D array
* Extrapolate a single point from its neighbors
static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
SERIAL_ECHOPGM("Extrapolate [");
if (x < 10) SERIAL_CHAR(' ');
SERIAL_ECHO((int)x);
SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
SERIAL_CHAR(' ');
if (y < 10) SERIAL_CHAR(' ');
SERIAL_ECHO((int)y);
SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
SERIAL_CHAR(']');
if (!isnan(z_values[x][y])) {
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
return; // Don't overwrite good values.
// Get X neighbors, Y neighbors, and XY neighbors
const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
b1 = z_values[x ][y1], b2 = z_values[x ][y2],
c1 = z_values[x1][y1], c2 = z_values[x2][y2];
// Treat far unprobed points as zero, near as equal to far
if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
// Take the average instead of the median
z_values[x][y] = (a + b + c) / 3.0;
// Median is robust (ignores outliers).
// z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
// : ((c < b) ? b : (a < c) ? a : c);
//Enable this if your SCARA uses 180° of total area
//#define EXTRAPOLATE_FROM_EDGE
#if ENABLED(EXTRAPOLATE_FROM_EDGE)
#if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
#define HALF_IN_X
#elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
#define HALF_IN_Y
* Fill in the unprobed points (corners of circular print surface)
* using linear extrapolation, away from the center.
static void extrapolate_unprobed_bed_level() {
#ifdef HALF_IN_X
constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
xlen = ctrx1;
#ifdef HALF_IN_Y
constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
ylen = ctry1;
for (uint8_t xo = 0; xo <= xlen; xo++)
for (uint8_t yo = 0; yo <= ylen; yo++) {
uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
#ifndef HALF_IN_X
const uint8_t x1 = ctrx1 - xo;
#ifndef HALF_IN_Y
const uint8_t y1 = ctry1 - yo;
extrapolate_one_point(x1, y1, +1, +1); // left-below + +
extrapolate_one_point(x2, y1, -1, +1); // right-below - +
extrapolate_one_point(x1, y2, +1, -1); // left-above + -
extrapolate_one_point(x2, y2, -1, -1); // right-above - -
static void print_bilinear_leveling_grid() {
SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
[](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
#define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
#define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
#define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
#define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
int bilinear_grid_spacing_virt[2] = { 0 };
float bilinear_grid_factor_virt[2] = { 0 };
static void bed_level_virt_print() {
SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
[](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
#define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
uint8_t ep = 0, ip = 1;
if (!x || x == ABL_TEMP_POINTS_X - 1) {
if (x) {
ep = GRID_MAX_POINTS_X - 1;
ip = GRID_MAX_POINTS_X - 2;
if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
return LINEAR_EXTRAPOLATION(
z_values[ep][y - 1],
z_values[ip][y - 1]
bed_level_virt_coord(ep + 1, y),
bed_level_virt_coord(ip + 1, y)
if (!y || y == ABL_TEMP_POINTS_Y - 1) {
if (y) {
ep = GRID_MAX_POINTS_Y - 1;
ip = GRID_MAX_POINTS_Y - 2;
if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
z_values[x - 1][ep],
z_values[x - 1][ip]
bed_level_virt_coord(x, ep + 1),
bed_level_virt_coord(x, ip + 1)
return z_values[x - 1][y - 1];
static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
return (
p[i-1] * -t * sq(1 - t)
+ p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
+ p[i+1] * t * (1 + 4 * t - 3 * sq(t))
- p[i+2] * sq(t) * (1 - t)
) * 0.5;
static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
float row[4], column[4];
for (uint8_t i = 0; i < 4; i++) {
for (uint8_t j = 0; j < 4; j++) {
column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
row[i] = bed_level_virt_cmr(column, 1, ty);
return bed_level_virt_cmr(row, 1, tx);
void bed_level_virt_interpolate() {
bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
continue;
z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
bed_level_virt_2cmr(
x + 1,
y + 1,
(float)tx / (BILINEAR_SUBDIVISIONS),
(float)ty / (BILINEAR_SUBDIVISIONS)
#endif // ABL_BILINEAR_SUBDIVISION
// Refresh after other values have been updated
void refresh_bed_level() {
bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
bed_level_virt_interpolate();
#endif // AUTO_BED_LEVELING_BILINEAR
* Home an individual linear axis
static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
SERIAL_ECHOPAIR(", ", distance);
SERIAL_ECHOPAIR(", ", fr_mm_s);
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
if (deploy_bltouch) set_bltouch_deployed(true);
if (axis == Z_AXIS) probing_pause(true);
// Tell the planner we're at Z=0
current_position[axis] = 0;
current_position[axis] = distance;
inverse_kinematics(current_position);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
sync_plan_position();
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
if (axis == Z_AXIS) probing_pause(false);
if (deploy_bltouch) set_bltouch_deployed(false);
SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
* TMC2130 specific sensorless homing using stallGuard2.
* stallGuard2 only works when in spreadCycle mode.
* spreadCycle and stealthChop are mutually exclusive.
#if ENABLED(SENSORLESS_HOMING)
void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
#if ENABLED(STEALTHCHOP)
if (enable) {
st.coolstep_min_speed(1024UL * 1024UL - 1UL);
st.stealthChop(0);
st.coolstep_min_speed(0);
st.stealthChop(1);
st.diag1_stall(enable ? 1 : 0);
* Home an individual "raw axis" to its endstop.
* This applies to XYZ on Cartesian and Core robots, and
* to the individual ABC steppers on DELTA and SCARA.
* At the end of the procedure the axis is marked as
* homed and the current position of that axis is updated.
* Kinematic robots should wait till all axes are homed
* before updating the current position.
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
static void homeaxis(const AxisEnum axis) {
// Only Z homing (with probe) is permitted
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
#define CAN_HOME(A) \
(axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
const int axis_home_dir =
(axis == X_AXIS) ? x_home_dir(active_extruder) :
home_dir(axis);
// Homing Z towards the bed? Deploy the Z probe or endstop.
if (axis == Z_AXIS && DEPLOY_PROBE()) return;
// Set a flag for Z motor locking
if (axis == Z_AXIS) stepper.set_homing_flag(true);
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(X_IS_TMC2130)
if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
#if ENABLED(Y_IS_TMC2130)
if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
// Fast move towards endstop until triggered
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
// When homing Z with probe respect probe clearance
const float bump = axis_home_dir * (
(axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
home_bump_mm(axis)
// If a second homing move is configured...
if (bump) {
// Move away from the endstop by the axis HOME_BUMP_MM
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
do_homing_move(axis, -bump);
// Slow move towards endstop until triggered
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
float adj = FABS(z_endstop_adj);
bool lockZ1;
if (axis_home_dir > 0) {
adj = -adj;
lockZ1 = (z_endstop_adj > 0);
lockZ1 = (z_endstop_adj < 0);
if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
// Move to the adjusted endstop height
do_homing_move(axis, adj);
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
stepper.set_homing_flag(false);
} // Z_AXIS
set_axis_is_at_home(axis);
#elif ENABLED(DELTA)
// Delta has already moved all three towers up in G28
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes.
// retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
do_homing_move(axis, endstop_adj[axis] - 0.1);
// For cartesian/core machines,
// set the axis to its home position
destination[axis] = current_position[axis];
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
// Re-enable stealthChop if used. Disable diag1 pin on driver.
if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
// Put away the Z probe
if (axis == Z_AXIS && STOW_PROBE()) return;
SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
} // homeaxis()
void retract(const bool retracting, const bool swapping = false) {
static float hop_height;
if (retracting == retracted[active_extruder]) return;
if (retracting) {
feedrate_mm_s = retract_feedrate_mm_s;
current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
sync_plan_position_e();
prepare_move_to_destination();
if (retract_zlift > 0.01) {
hop_height = current_position[Z_AXIS];
// Pretend current position is lower
current_position[Z_AXIS] -= retract_zlift;
// Raise up to the old current_position
// If the height hasn't been lowered, undo the Z hop
if (retract_zlift > 0.01 && hop_height <= current_position[Z_AXIS]) {
// Pretend current position is higher. Z will lower on the next move
current_position[Z_AXIS] += retract_zlift;
// Lower Z
feedrate_mm_s = retract_recover_feedrate_mm_s;
const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
// Recover E
retracted[active_extruder] = retracting;
} // retract()
void normalize_mix() {
float mix_total = 0.0;
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
// Scale all values if they don't add up to ~1.0
if (!NEAR(mix_total, 1.0)) {
SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
#if ENABLED(DIRECT_MIXING_IN_G1)
// Get mixing parameters from the GCode
// The total "must" be 1.0 (but it will be normalized)
// If no mix factors are given, the old mix is preserved
void gcode_get_mix() {
const char* mixing_codes = "ABCDHI";
byte mix_bits = 0;
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
if (parser.seenval(mixing_codes[i])) {
SBI(mix_bits, i);
float v = parser.value_float();
NOLESS(v, 0.0);
mixing_factor[i] = RECIPROCAL(v);
// If any mixing factors were included, clear the rest
// If none were included, preserve the last mix
if (mix_bits) {
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
normalize_mix();
* ***************************** G-CODE HANDLING *****************************
* Set XYZE destination and feedrate from the current GCode command
* - Set destination from included axis codes
* - Set to current for missing axis codes
* - Set the feedrate, if included
void gcode_get_destination() {
LOOP_XYZE(i) {
if (parser.seen(axis_codes[i]))
destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
destination[i] = current_position[i];
if (parser.linearval('F') > 0.0)
feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
if (!DEBUGGING(DRYRUN))
print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
// Get ABCDHI mixing factors
#if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
gcode_get_mix();
* Output a "busy" message at regular intervals
* while the machine is not accepting commands.
void host_keepalive() {
if (host_keepalive_interval && busy_state != NOT_BUSY) {
if (PENDING(ms, next_busy_signal_ms)) return;
switch (busy_state) {
case IN_HANDLER:
case IN_PROCESS:
SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
case PAUSED_FOR_USER:
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
case PAUSED_FOR_INPUT:
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
default:
next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
#endif // HOST_KEEPALIVE_FEATURE
/**************************************************
***************** GCode Handlers *****************
**************************************************/
* G0, G1: Coordinated movement of X Y Z E axes
inline void gcode_G0_G1(
bool fast_move=false
gcode_get_destination(); // For X Y Z E F
if (autoretract_enabled && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z')) && parser.seen('E')) {
const float echange = destination[E_AXIS] - current_position[E_AXIS];
// Is this move an attempt to retract or recover?
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
sync_plan_position_e(); // AND from the planner
retract(!retracted[active_extruder]);
fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
* G2: Clockwise Arc
* G3: Counterclockwise Arc
* This command has two forms: IJ-form and R-form.
* - I specifies an X offset. J specifies a Y offset.
* At least one of the IJ parameters is required.
* X and Y can be omitted to do a complete circle.
* The given XY is not error-checked. The arc ends
* based on the angle of the destination.
* Mixing I or J with R will throw an error.
* - R specifies the radius. X or Y is required.
* Omitting both X and Y will throw an error.
* X or Y must differ from the current XY.
* Mixing R with I or J will throw an error.
* - P specifies the number of full circles to do
* before the specified arc move.
* Examples:
* G2 I10 ; CW circle centered at X+10
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
inline void gcode_G2_G3(bool clockwise) {
#if ENABLED(SF_ARC_FIX)
const bool relative_mode_backup = relative_mode;
relative_mode = true;
gcode_get_destination();
relative_mode = relative_mode_backup;
float arc_offset[2] = { 0.0, 0.0 };
if (parser.seenval('R')) {
const float r = parser.value_linear_units(),
p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
if (r && (p2 != p1 || q2 != q1)) {
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
dx = p2 - p1, dy = q2 - q1, // X and Y differences
d = HYPOT(dx, dy), // Linear distance between the points
h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
arc_offset[0] = cx - p1;
arc_offset[1] = cy - q1;
if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
if (arc_offset[0] || arc_offset[1]) {
#if ENABLED(ARC_P_CIRCLES)
// P indicates number of circles to do
int8_t circles_to_do = parser.byteval('P');
if (!WITHIN(circles_to_do, 0, 100)) {
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
while (circles_to_do--)
plan_arc(current_position, arc_offset, clockwise);
// Send the arc to the planner
plan_arc(destination, arc_offset, clockwise);
// Bad arguments
#endif // ARC_SUPPORT
* G4: Dwell S<seconds> or P<milliseconds>
inline void gcode_G4() {
millis_t dwell_ms = 0;
if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
dwell_ms += previous_cmd_ms; // keep track of when we started waiting
if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
while (PENDING(millis(), dwell_ms)) idle();
* Parameters interpreted according to:
* http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
* However I, J omission is not supported at this point; all
* parameters can be omitted and default to zero.
* G5: Cubic B-spline
inline void gcode_G5() {
const float offset[] = {
parser.linearval('I'),
parser.linearval('J'),
parser.linearval('P'),
parser.linearval('Q')
plan_cubic_move(offset);
#endif // BEZIER_CURVE_SUPPORT
* G11 - Recover filament according to settings of M208
inline void gcode_G10_G11(bool doRetract=false) {
#if EXTRUDERS > 1
if (doRetract)
retracted_swap[active_extruder] = parser.boolval('S'); // checks for swap retract argument
retract(doRetract
, retracted_swap[active_extruder]
#if ENABLED(NOZZLE_CLEAN_FEATURE)
* G12: Clean the nozzle
inline void gcode_G12() {
// Don't allow nozzle cleaning without homing first
if (axis_unhomed_error()) return;
const uint8_t pattern = parser.ushortval('P', 0),
strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
Nozzle::clean(pattern, strokes, radius, objects);
void report_workspace_plane() {
SERIAL_ECHOPGM("Workspace Plane ");
serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
* G17: Select Plane XY
* G18: Select Plane ZX
* G19: Select Plane YZ
inline void gcode_G17() { workspace_plane = PLANE_XY; }
inline void gcode_G18() { workspace_plane = PLANE_ZX; }
inline void gcode_G19() { workspace_plane = PLANE_YZ; }
#endif // CNC_WORKSPACE_PLANES
#if ENABLED(INCH_MODE_SUPPORT)
* G20: Set input mode to inches
inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
* G21: Set input mode to millimeters
inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
#if ENABLED(NOZZLE_PARK_FEATURE)
* G27: Park the nozzle
inline void gcode_G27() {
// Don't allow nozzle parking without homing first
Nozzle::park(parser.ushortval('P'));
#endif // NOZZLE_PARK_FEATURE
#if ENABLED(QUICK_HOME)
static void quick_home_xy() {
// Pretend the current position is 0,0
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
const int x_axis_home_dir =
x_home_dir(active_extruder)
home_dir(X_AXIS)
const float mlx = max_length(X_AXIS),
mly = max_length(Y_AXIS),
mlratio = mlx > mly ? mly / mlx : mlx / mly,
fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
endstops.hit_on_purpose(); // clear endstop hit flags
#endif // QUICK_HOME
void log_machine_info() {
SERIAL_ECHOPGM("Machine Type: ");
SERIAL_ECHOLNPGM("Delta");
SERIAL_ECHOLNPGM("SCARA");
#elif IS_CORE
SERIAL_ECHOLNPGM("Core");
SERIAL_ECHOLNPGM("Cartesian");
SERIAL_ECHOPGM("Probe: ");
#if ENABLED(PROBE_MANUALLY)
SERIAL_ECHOLNPGM("PROBE_MANUALLY");
#elif ENABLED(FIX_MOUNTED_PROBE)
SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
#elif ENABLED(BLTOUCH)
SERIAL_ECHOLNPGM("BLTOUCH");
#elif HAS_Z_SERVO_ENDSTOP
SERIAL_ECHOLNPGM("SERVO PROBE");
SERIAL_ECHOLNPGM("Z_PROBE_SLED");
SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
SERIAL_ECHOLNPGM("NONE");
SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
#if X_PROBE_OFFSET_FROM_EXTRUDER > 0
SERIAL_ECHOPGM(" (Right");
#elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
SERIAL_ECHOPGM(" (Left");
#elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
SERIAL_ECHOPGM(" (Middle");
SERIAL_ECHOPGM(" (Aligned With");
#if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
SERIAL_ECHOPGM("-Back");
#elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
SERIAL_ECHOPGM("-Front");
#elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
SERIAL_ECHOPGM("-Center");
if (zprobe_zoffset < 0)
SERIAL_ECHOPGM(" & Below");
else if (zprobe_zoffset > 0)
SERIAL_ECHOPGM(" & Above");
SERIAL_ECHOPGM(" & Same Z as");
SERIAL_ECHOLNPGM(" Nozzle)");
SERIAL_ECHOPGM("Auto Bed Leveling: ");
SERIAL_ECHOPGM("LINEAR");
SERIAL_ECHOPGM("BILINEAR");
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
SERIAL_ECHOPGM("3POINT");
SERIAL_ECHOPGM("UBL");
if (leveling_is_active()) {
SERIAL_ECHOLNPGM(" (enabled)");
const float diff[XYZ] = {
stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
SERIAL_ECHOPGM("ABL Adjustment X");
if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
SERIAL_ECHO(diff[X_AXIS]);
SERIAL_ECHOPGM(" Y");
if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
SERIAL_ECHO(diff[Y_AXIS]);
SERIAL_ECHOPGM(" Z");
if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
SERIAL_ECHO(diff[Z_AXIS]);
SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
SERIAL_ECHOLNPGM(" (disabled)");
SERIAL_ECHOPGM("Mesh Bed Leveling");
float lz = current_position[Z_AXIS];
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
SERIAL_ECHOPGM(" (disabled)");
#endif // MESH_BED_LEVELING
#endif // DEBUG_LEVELING_FEATURE
* A delta can only safely home all axes at the same time
* This is like quick_home_xy() but for 3 towers.
inline void home_delta() {
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
// Init the current position of all carriages to 0,0,0
ZERO(current_position);
// Move all carriages together linearly until an endstop is hit.
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
feedrate_mm_s = homing_feedrate(X_AXIS);
// At least one carriage has reached the top.
// Now re-home each carriage separately.
HOMEAXIS(A);
HOMEAXIS(B);
HOMEAXIS(C);
// Set all carriages to their home positions
// Do this here all at once for Delta, because
// XYZ isn't ABC. Applying this per-tower would
// give the impression that they are the same.
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
#endif // DELTA
#if ENABLED(Z_SAFE_HOMING)
inline void home_z_safely() {
// Disallow Z homing if X or Y are unknown
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
* Move the Z probe (or just the nozzle) to the safe homing point
destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
// This causes the carriage on Dual X to unpark
active_extruder_parked = false;
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
HOMEAXIS(Z);
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
#endif // Z_SAFE_HOMING
bool g29_in_progress = false;
constexpr bool g29_in_progress = false;
* G28: Home all axes according to settings
* Parameters
* None Home to all axes with no parameters.
* With QUICK_HOME enabled XY will home together, then Z.
* Cartesian parameters
* X Home to the X endstop
* Y Home to the Y endstop
* Z Home to the Z endstop
inline void gcode_G28(const bool always_home_all) {
SERIAL_ECHOLNPGM(">>> gcode_G28");
log_machine_info();
// Wait for planner moves to finish!
// Cancel the active G29 session
g29_in_progress = false;
// Disable the leveling matrix before homing
const bool ubl_state_at_entry = leveling_is_active();
workspace_plane = PLANE_XY;
// Always home with tool 0 active
const uint8_t old_tool_index = active_extruder;
tool_change(0, 0, true);
extruder_duplication_enabled = false;
setup_for_endstop_or_probe_move();
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
endstops.enable(true); // Enable endstops for next homing move
home_delta();
UNUSED(always_home_all);
#else // NOT DELTA
const bool homeX = always_home_all || parser.seen('X'),
homeY = always_home_all || parser.seen('Y'),
homeZ = always_home_all || parser.seen('Z'),
home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
if (home_all || homeZ) {
if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
if (home_all || homeX || homeY) {
// Raise Z before homing any other axes and z is not already high enough (never lower z)
destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
if (destination[Z_AXIS] > current_position[Z_AXIS]) {
if (DEBUGGING(LEVELING))
SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
do_blocking_move_to_z(destination[Z_AXIS]);
if (home_all || (homeX && homeY)) quick_home_xy();
#if ENABLED(HOME_Y_BEFORE_X)
// Home Y
if (home_all || homeY) {
HOMEAXIS(Y);
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
// Home X
if (home_all || homeX) {
// Always home the 2nd (right) extruder first
active_extruder = 1;
HOMEAXIS(X);
// Remember this extruder's position for later tool change
inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
// Home the 1st (left) extruder
active_extruder = 0;
// Consider the active extruder to be parked
COPY(raised_parked_position, current_position);
delayed_move_time = 0;
active_extruder_parked = true;
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
#if DISABLED(HOME_Y_BEFORE_X)
// Home Z last if homing towards the bed
#if Z_HOME_DIR < 0
home_z_safely();
if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
} // home_all || homeZ
#endif // Z_HOME_DIR < 0
#endif // !DELTA (gcode_G28)
endstops.not_homing();
#if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
// move to a height where we can use the full xy-area
set_bed_leveling_enabled(ubl_state_at_entry);
clean_up_after_endstop_or_probe_move();
// Restore the active tool after homing
tool_change(old_tool_index, 0, true);
lcd_refresh();
report_current_position();
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
} // G28
void home_all_axes() { gcode_G28(true); }
#if HAS_PROBING_PROCEDURE
void out_of_range_error(const char* p_edge) {
SERIAL_PROTOCOLPGM("?Probe ");
serialprintPGM(p_edge);
SERIAL_PROTOCOLLNPGM(" position out of range.");
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
#if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
extern bool lcd_wait_for_move;
inline void _manual_goto_xy(const float &x, const float &y) {
#if MANUAL_PROBE_HEIGHT > 0
feedrate_mm_s = homing_feedrate(Z_AXIS);
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
current_position[X_AXIS] = LOGICAL_X_POSITION(x);
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS); // just slightly over the bed
lcd_wait_for_move = false;
// Save 130 bytes with non-duplication of PSTR
void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
void mbl_mesh_report() {
SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
[](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
void mesh_probing_done() {
mbl.set_has_mesh(true);
home_all_axes();
set_bed_leveling_enabled(true);
#if ENABLED(MESH_G28_REST_ORIGIN)
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
line_to_destination(homing_feedrate(Z_AXIS));
* G29: Mesh-based Z probe, probes a grid and produces a
* mesh to compensate for variable bed height
* Parameters With MESH_BED_LEVELING:
* S0 Produce a mesh report
* S1 Start probing mesh points
* S2 Probe the next mesh point
* S3 Xn Yn Zn.nn Manually modify a single point
* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
* S5 Reset and disable mesh
* The S0 report the points as below
* +----> X-axis 1-n
* |
* v Y-axis 1-n
inline void gcode_G29() {
static int mbl_probe_index = -1;
static bool enable_soft_endstops;
const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
if (!WITHIN(state, 0, 5)) {
SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
int8_t px, py;
switch (state) {
case MeshReport:
SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF);
mbl_mesh_report();
SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
case MeshStart:
mbl_probe_index = 0;
enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
case MeshNext:
if (mbl_probe_index < 0) {
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
// For each G29 S2...
if (mbl_probe_index == 0) {
// For the initial G29 S2 save software endstop state
enable_soft_endstops = soft_endstops_enabled;
// For G29 S2 after adjusting Z.
mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
soft_endstops_enabled = enable_soft_endstops;
// If there's another point to sample, move there with optional lift.
if (mbl_probe_index < GRID_MAX_POINTS) {
mbl.zigzag(mbl_probe_index, px, py);
_manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
soft_endstops_enabled = false;
mbl_probe_index++;
// One last "return to the bed" (as originally coded) at completion
// After recording the last point, activate home and activate
mbl_probe_index = -1;
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
BUZZ(100, 659);
BUZZ(100, 698);
mesh_probing_done();
case MeshSet:
if (parser.seenval('X')) {
px = parser.value_int() - 1;
if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
SERIAL_CHAR('X'); echo_not_entered();
if (parser.seenval('Y')) {
py = parser.value_int() - 1;
if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
SERIAL_CHAR('Y'); echo_not_entered();
if (parser.seenval('Z')) {
mbl.z_values[px][py] = parser.value_linear_units();
SERIAL_CHAR('Z'); echo_not_entered();
case MeshSetZOffset:
mbl.z_offset = parser.value_linear_units();
case MeshReset:
reset_bed_level();
} // switch(state)
#elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
#if ABL_GRID
#if ENABLED(PROBE_Y_FIRST)
#define PR_OUTER_VAR xCount
#define PR_OUTER_END abl_grid_points_x
#define PR_INNER_VAR yCount
#define PR_INNER_END abl_grid_points_y
#define PR_OUTER_VAR yCount
#define PR_OUTER_END abl_grid_points_y
#define PR_INNER_VAR xCount
#define PR_INNER_END abl_grid_points_x
* G29: Detailed Z probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
* Enhanced G29 Auto Bed Leveling Probe Routine
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
* or alter the bed level data. Useful to check the topology
* after a first run of G29.
* J Jettison current bed leveling data
* V Set the verbose level (0-4). Example: "G29 V3"
* Parameters With LINEAR leveling only:
* P Set the size of the grid that will be probed (P x P points).
* Example: "G29 P4"
* X Set the X size of the grid that will be probed (X x Y points).
* Example: "G29 X7 Y5"
* Y Set the Y size of the grid that will be probed (X x Y points).
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
* Not supported by non-linear delta printer bed leveling.
* Parameters With LINEAR and BILINEAR leveling only:
* S Set the XY travel speed between probe points (in units/min)
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
* Parameters with DEBUG_LEVELING_FEATURE only:
* C Make a totally fake grid with no actual probing.
* For use in testing when no probing is possible.
* Parameters with BILINEAR leveling only:
* Z Supply an additional Z probe offset
* Extra parameters with PROBE_MANUALLY:
* To do manual probing simply repeat G29 until the procedure is complete.
* The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
* Q Query leveling and G29 state
* A Abort current leveling procedure
* Extra parameters with BILINEAR only:
* W Write a mesh point. (If G29 is idle.)
* I X index for mesh point
* J Y index for mesh point
* X X for mesh point, overrides I
* Y Y for mesh point, overrides J
* Z Z for mesh point. Otherwise, raw current Z.
* Without PROBE_MANUALLY:
* E By default G29 will engage the Z probe, test the bed, then disengage.
* Include "E" to engage/disengage the Z probe for each sample.
* There's no extra effect if you have a fixed Z probe.
// G29 Q is also available if debugging
const bool query = parser.seen('Q');
const uint8_t old_debug_flags = marlin_debug_flags;
if (query) marlin_debug_flags |= DEBUG_LEVELING;
DEBUG_POS(">>> gcode_G29", current_position);
marlin_debug_flags = old_debug_flags;
#if DISABLED(PROBE_MANUALLY)
if (query) return;
const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
const bool faux = parser.boolval('C');
#elif ENABLED(PROBE_MANUALLY)
const bool faux = no_action;
bool constexpr faux = false;
// Don't allow auto-leveling without homing first
// Define local vars 'static' for manual probing, 'auto' otherwise
#define ABL_VAR static
#define ABL_VAR
ABL_VAR int verbose_level;
ABL_VAR float xProbe, yProbe, measured_z;
ABL_VAR bool dryrun, abl_should_enable;
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int abl_probe_index;
#if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
ABL_VAR bool enable_soft_endstops = true;
ABL_VAR uint8_t PR_OUTER_VAR;
ABL_VAR int8_t PR_INNER_VAR;
ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
ABL_VAR float xGridSpacing, yGridSpacing;
ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
abl_grid_points_y = GRID_MAX_POINTS_Y;
ABL_VAR bool do_topography_map;
#else // Bilinear
uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
ABL_VAR int abl2;
int constexpr abl2 = GRID_MAX_POINTS;
ABL_VAR float zoffset;
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
mean;
int constexpr abl2 = 3;
// Probe at 3 arbitrary points
ABL_VAR vector_3 points[3] = {
vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
#endif // AUTO_BED_LEVELING_3POINT
* On the initial G29 fetch command parameters.
if (!g29_in_progress) {
abl_probe_index = -1;
abl_should_enable = leveling_is_active();
if (parser.seen('W')) {
if (!leveling_is_valid()) {
SERIAL_ERRORLNPGM("No bilinear grid");
const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
if (!WITHIN(z, -10, 10)) {
SERIAL_ERRORLNPGM("Bad Z value");
const float x = parser.floatval('X', NAN),
y = parser.floatval('Y', NAN);
int8_t i = parser.byteval('I', -1),
j = parser.byteval('J', -1);
if (!isnan(x) && !isnan(y)) {
// Get nearest i / j from x / y
i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
z_values[i][j] = z;
set_bed_leveling_enabled(abl_should_enable);
} // parser.seen('W')
// Jettison bed leveling data
if (parser.seen('J')) {
verbose_level = parser.intval('V');
if (!WITHIN(verbose_level, 0, 4)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
dryrun = parser.boolval('D')
|| no_action
do_topography_map = verbose_level > 2 || parser.boolval('T');
// X and Y specify points in each direction, overriding the default
// These values may be saved with the completed mesh
abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
abl2 = abl_grid_points_x * abl_grid_points_y;
zoffset = parser.linearval('Z');
xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
if (left_out || right_out || front_out || back_out) {
if (left_out) {
out_of_range_error(PSTR("(L)eft"));
left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
if (right_out) {
out_of_range_error(PSTR("(R)ight"));
right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
if (front_out) {
out_of_range_error(PSTR("(F)ront"));
front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
if (back_out) {
out_of_range_error(PSTR("(B)ack"));
back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
// probe at the points of a lattice grid
xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
#endif // ABL_GRID
if (verbose_level > 0) {
SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
// Disable auto bed leveling during G29
planner.abl_enabled = false;
if (!dryrun) {
// Re-orient the current position without leveling
// based on where the steppers are positioned.
set_current_from_steppers_for_axis(ALL_AXES);
// Sync the planner to where the steppers stopped
if (!faux) setup_for_endstop_or_probe_move();
//xProbe = yProbe = measured_z = 0;
// Deploy the probe. Probe will raise if needed.
if (DEPLOY_PROBE()) {
planner.abl_enabled = abl_should_enable;
if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
|| yGridSpacing != bilinear_grid_spacing[Y_AXIS]
|| left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
|| front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
if (dryrun) {
// Before reset bed level, re-enable to correct the position
// Reset grid to 0.0 or "not probed". (Also disables ABL)
// Initialize a grid with the given dimensions
bilinear_grid_spacing[X_AXIS] = xGridSpacing;
bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
// Can't re-enable (on error) until the new grid is written
abl_should_enable = false;
mean = 0.0;
#endif // AUTO_BED_LEVELING_LINEAR
#if ENABLED(AUTO_BED_LEVELING_3POINT)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
points[0].z = points[1].z = points[2].z = 0;
} // !g29_in_progress
// For manual probing, get the next index to probe now.
// On the first probe this will be incremented to 0.
if (!no_action) {
++abl_probe_index;
g29_in_progress = true;
// Abort current G29 procedure, go back to idle state
if (seenA && g29_in_progress) {
SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
#if ENABLED(LCD_BED_LEVELING)
// Query G29 status
if (verbose_level || seenQ) {
SERIAL_PROTOCOLPGM("Manual G29 ");
if (g29_in_progress) {
SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
SERIAL_PROTOCOLLNPAIR(" of ", abl2);
SERIAL_PROTOCOLLNPGM("idle");
if (no_action) return;
if (abl_probe_index == 0) {
// For the initial G29 save software endstop state
// For G29 after adjusting Z.
// Save the previous Z before going to the next point
measured_z = current_position[Z_AXIS];
mean += measured_z;
eqnBVector[abl_probe_index] = measured_z;
eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
z_values[xCount][yCount] = measured_z + zoffset;
SERIAL_PROTOCOLPAIR("Save X", xCount);
SERIAL_PROTOCOLPAIR(" Y", yCount);
SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
points[abl_probe_index].z = measured_z;
// Skip any unreachable points
while (abl_probe_index < abl2) {
// Set xCount, yCount based on abl_probe_index, with zig-zag
PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
// Probe in reverse order for every other row/column
bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
const float xBase = xCount * xGridSpacing + left_probe_bed_position,
yBase = yCount * yGridSpacing + front_probe_bed_position;
xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
indexIntoAB[xCount][yCount] = abl_probe_index;
// Keep looping till a reachable point is found
if (position_is_reachable_xy(xProbe, yProbe)) break;
// Is there a next point to move to?
if (abl_probe_index < abl2) {
_manual_goto_xy(xProbe, yProbe); // Can be used here too!
// Leveling done! Fall through to G29 finishing code below
SERIAL_PROTOCOLLNPGM("Grid probing done.");
// Re-enable software endstops, if needed
if (abl_probe_index < 3) {
xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
SERIAL_PROTOCOLLNPGM("3-point probing done.");
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) {
planeNormal.x *= -1;
planeNormal.y *= -1;
planeNormal.z *= -1;
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
#else // !PROBE_MANUALLY
const bool stow_probe_after_each = parser.boolval('E');
bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
// Outer loop is Y with PROBE_Y_FIRST disabled
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
int8_t inStart, inStop, inInc;
if (zig) { // away from origin
inStart = 0;
inStop = PR_INNER_END;
inInc = 1;
else { // towards origin
inStart = PR_INNER_END - 1;
inStop = -1;
inInc = -1;
zig ^= true; // zag
// Inner loop is Y with PROBE_Y_FIRST enabled
for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
float xBase = left_probe_bed_position + xGridSpacing * xCount,
yBase = front_probe_bed_position + yGridSpacing * yCount;
indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
// Avoid probing outside the round or hexagonal area
if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
if (isnan(measured_z)) {
idle();
} // inner
} // outer
for (uint8_t i = 0; i < 3; ++i) {
// Retain the last probe position
xProbe = LOGICAL_X_POSITION(points[i].x);
yProbe = LOGICAL_Y_POSITION(points[i].y);
points[i].z = measured_z;
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
if (STOW_PROBE()) {
#endif // !PROBE_MANUALLY
// G29 Finishing Code
// Unless this is a dry run, auto bed leveling will
// definitely be enabled after this point.
// If code above wants to continue leveling, it should
// return or loop before this point.
// Restore state after probing
if (!faux) clean_up_after_endstop_or_probe_move();
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
// Calculate leveling, print reports, correct the position
if (!dryrun) extrapolate_unprobed_bed_level();
print_bilinear_leveling_grid();
refresh_bed_level();
bed_level_virt_print();
// For LINEAR leveling calculate matrix, print reports, correct the position
* solve the plane equation ax + by + d = z
* A is the matrix with rows [x y 1] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
float plane_equation_coefficients[3];
qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
mean /= abl2;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 8);
// Create the matrix but don't correct the position yet
planner.bed_level_matrix = matrix_3x3::create_look_at(
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
// Show the Topography map if enabled
if (do_topography_map) {
SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
" +--- BACK --+\n"
" | |\n"
" L | (+) | R\n"
" E | | I\n"
" F | (-) N (+) | G\n"
" T | | H\n"
" | (-) | T\n"
" O-- FRONT --+\n"
" (0,0)");
float min_diff = 999;
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
int ind = indexIntoAB[xx][yy];
float diff = eqnBVector[ind] - mean,
x_tmp = eqnAMatrix[ind + 0 * abl2],
y_tmp = eqnAMatrix[ind + 1 * abl2],
z_tmp = 0;
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
SERIAL_PROTOCOL_F(diff, 5);
} // xx
} // yy
if (verbose_level > 3) {
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
float x_tmp = eqnAMatrix[ind + 0 * abl2],
float diff = eqnBVector[ind] - z_tmp - min_diff;
SERIAL_PROTOCOLPGM(" +");
// Include + for column alignment
} //do_topography_map
// For LINEAR and 3POINT leveling correct the current position
if (verbose_level > 0)
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
// Correct the current XYZ position based on the tilted plane.
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
float converted[XYZ];
COPY(converted, current_position);
planner.abl_enabled = true;
planner.unapply_leveling(converted); // use conversion machinery
// Use the last measured distance to the bed, if possible
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
const float simple_z = current_position[Z_AXIS] - measured_z;
SERIAL_ECHOPAIR("Z from Probe:", simple_z);
SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
converted[Z_AXIS] = simple_z;
// The rotated XY and corrected Z are now current_position
COPY(current_position, converted);
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
// Unapply the offset because it is going to be immediately applied
// and cause compensation movement in Z
current_position[Z_AXIS] -= bilinear_z_offset(current_position);
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
#endif // ABL_PLANAR
#ifdef Z_PROBE_END_SCRIPT
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
KEEPALIVE_STATE(IN_HANDLER);
// Auto Bed Leveling is complete! Enable if possible.
planner.abl_enabled = dryrun ? abl_should_enable : true;
if (planner.abl_enabled)
#endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
* G30: Do a single Z probe at the current XY
* Parameters:
* X Probe X position (default current X)
* Y Probe Y position (default current Y)
* S0 Leave the probe deployed
inline void gcode_G30() {
const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
// Disable leveling so the planner won't mess with us
const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
if (!isnan(measured_z)) {
SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
* G31: Deploy the Z probe
inline void gcode_G31() { DEPLOY_PROBE(); }
* G32: Stow the Z probe
inline void gcode_G32() { STOW_PROBE(); }
#endif // Z_PROBE_SLED
#if ENABLED(DELTA_AUTO_CALIBRATION)
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, endstops, delta radius, and tower angles.
* Pn Number of probe points:
* P1 Probe center and set height only.
* P2 Probe center and towers. Set height, endstops, and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Set all.
* P4-P7 Probe all positions at different locations and average them.
* T0 Don't calibrate tower angle corrections
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
* Fn Force to run at least n iterations and takes the best result
* Vn Verbose level:
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report settings
* V2 Report settings and probe results
* E Engage the probe for each point
void print_signed_float(const char * const prefix, const float &f) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOLCHAR(':');
if (f >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(f, 2);
inline void gcode_G33() {
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(probe_points, 1, 7)) {
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1 to 7).");
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 2)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
const float calibration_precision = parser.floatval('C');
if (calibration_precision < 0) {
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
const int8_t force_iterations = parser.intval('F', 1);
if (!WITHIN(force_iterations, 1, 30)) {
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (1-30).");
const bool towers_set = parser.boolval('T', true),
stow_after_each = parser.boolval('E'),
_1p_calibration = probe_points == 1,
_4p_calibration = probe_points == 2,
_4p_towers_points = _4p_calibration && towers_set,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3,
_7p_half_circle = probe_points == 3,
_7p_double_circle = probe_points == 5,
_7p_triple_circle = probe_points == 6,
_7p_quadruple_circle = probe_points == 7,
_7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
_7p_intermed_points = _7p_calibration && !_7p_half_circle;
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
int8_t iterations = 0;
float test_precision,
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
zero_std_dev_old = zero_std_dev,
zero_std_dev_min = zero_std_dev,
e_old[XYZ] = {
endstop_adj[A_AXIS],
endstop_adj[B_AXIS],
endstop_adj[C_AXIS]
},
dr_old = delta_radius,
zh_old = home_offset[Z_AXIS],
alpha_old = delta_tower_angle_trim[A_AXIS],
beta_old = delta_tower_angle_trim[B_AXIS];
if (!_1p_calibration) { // test if the outer radius is reachable
const float circles = (_7p_quadruple_circle ? 1.5 :
_7p_triple_circle ? 1.0 :
_7p_double_circle ? 0.5 : 0),
r = (1 + circles * 0.1) * delta_calibration_radius;
for (uint8_t axis = 1; axis < 13; ++axis) {
const float a = RADIANS(180 + 30 * axis);
if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
reset_bed_level(); // After calibration bed-level data is no longer valid
DEPLOY_PROBE();
endstops.enable(true);
// print settings
SERIAL_PROTOCOLPGM("Checking... AC");
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
LCD_MESSAGEPGM("Checking... AC"); // TODO: Make translatable string
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (!_1p_calibration) {
print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
if (_7p_calibration && towers_set) {
SERIAL_PROTOCOLPGM(".Tower angle : ");
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
SERIAL_PROTOCOLPGM(" Tz:+0.00");
home_offset[Z_AXIS] -= probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
do {
float z_at_pt[13] = { 0.0 };
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
iterations++;
// Probe the points
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
if (_7p_calibration) { // probe extra center points
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
if (!_1p_calibration) { // probe the radius
bool zig_zag = true;
const uint8_t start = _4p_opposite_points ? 3 : 1,
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
for (uint8_t axis = start; axis < 13; axis += step) {
const float zigadd = (zig_zag ? 0.5 : 0.0),
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
_7p_triple_circle ? zigadd + 0.5 :
_7p_double_circle ? zigadd : 0;
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
const float a = RADIANS(180 + 30 * axis),
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
zig_zag = !zig_zag;
z_at_pt[axis] /= (2 * offset_circles + 1);
if (_7p_intermed_points) // average intermediates to tower and opposites
for (uint8_t axis = 1; axis < 13; axis += 2)
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
float S1 = z_at_pt[0],
S2 = sq(z_at_pt[0]);
int16_t N = 1;
if (!_1p_calibration) // std dev from zero plane
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
S1 += z_at_pt[axis];
S2 += sq(z_at_pt[axis]);
N++;
zero_std_dev_old = zero_std_dev;
NOMORE(zero_std_dev_min, zero_std_dev);
zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
// Solve matrices
if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
if (zero_std_dev < zero_std_dev_min) {
COPY(e_old, endstop_adj);
dr_old = delta_radius;
zh_old = home_offset[Z_AXIS];
alpha_old = delta_tower_angle_trim[A_AXIS];
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
const float r_diff = delta_radius - delta_calibration_radius,
h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
#define ZP(N,I) ((N) * z_at_pt[I])
#define Z1000(I) ZP(1.00, I)
#define Z1050(I) ZP(h_factor, I)
#define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
#define Z0350(I) ZP(h_factor / 3.00, I)
#define Z0175(I) ZP(h_factor / 6.00, I)
#define Z2250(I) ZP(r_factor, I)
#define Z0750(I) ZP(r_factor / 3.00, I)
#define Z0375(I) ZP(r_factor / 6.00, I)
#define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
#define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
switch (probe_points) {
test_precision = 0.00;
LOOP_XYZ(i) e_delta[i] = Z1000(0);
if (towers_set) {
e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
delta_radius += r_delta;
delta_tower_angle_trim[A_AXIS] += t_alpha;
delta_tower_angle_trim[B_AXIS] += t_beta;
// adjust delta_height and endstops by the max amount
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod);
else if (zero_std_dev >= test_precision) { // step one back
COPY(endstop_adj, e_old);
delta_radius = dr_old;
home_offset[Z_AXIS] = zh_old;
delta_tower_angle_trim[A_AXIS] = alpha_old;
delta_tower_angle_trim[B_AXIS] = beta_old;
// print report
if (verbose_level != 1) {
SERIAL_PROTOCOLPGM(". ");
print_signed_float(PSTR("c"), z_at_pt[0]);
if (_4p_towers_points || _7p_calibration) {
print_signed_float(PSTR(" x"), z_at_pt[1]);
print_signed_float(PSTR(" y"), z_at_pt[5]);
print_signed_float(PSTR(" z"), z_at_pt[9]);
if (!_4p_opposite_points) SERIAL_EOL();
if ((_4p_opposite_points) || _7p_calibration) {
if (_7p_calibration) {
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
print_signed_float(PSTR(" yz"), z_at_pt[7]);
print_signed_float(PSTR("zx"), z_at_pt[11]);
print_signed_float(PSTR("xy"), z_at_pt[3]);
if (test_precision != 0.0) { // !forced end
if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOL_SP(36);
if (zero_std_dev >= test_precision)
SERIAL_PROTOCOLPGM("rolling back.");
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
else { // !end iterations
char mess[15] = "No convergence";
if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
SERIAL_PROTOCOL(mess);
lcd_setstatus(mess);
if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations)
serialprintPGM(save_message);
else { // forced end
if (verbose_level == 0) {
SERIAL_PROTOCOLPGM("End DRY-RUN");
SERIAL_PROTOCOL_SP(39);
SERIAL_PROTOCOLLNPGM("Calibration OK");
while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations);
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
STOW_PROBE();
#endif // DELTA_AUTO_CALIBRATION
static bool G38_run_probe() {
bool G38_pass_fail = false;
// Get direction of move and retract
float retract_mm[XYZ];
LOOP_XYZ(i) {
float dist = destination[i] - current_position[i];
retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
stepper.synchronize(); // wait until the machine is idle
// Move until destination reached or target hit
G38_move = true;
G38_move = false;
if (G38_endstop_hit) {
G38_pass_fail = true;
// Move away by the retract distance
LOOP_XYZ(i) destination[i] += retract_mm[i];
endstops.enable(false);
feedrate_mm_s /= 4;
// Bump the target more slowly
LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
return G38_pass_fail;
* G38.2 - probe toward workpiece, stop on contact, signal error if failure
* G38.3 - probe toward workpiece, stop on contact
* Like G28 except uses Z min probe for all axes
inline void gcode_G38(bool is_38_2) {
// Get X Y Z E F
// If any axis has enough movement, do the move
LOOP_XYZ(i)
if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate(i);
// If G38.2 fails throw an error
if (!G38_run_probe() && is_38_2) {
SERIAL_ERRORLNPGM("Failed to reach target");
#endif // G38_PROBE_TARGET
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
* G42: Move X & Y axes to mesh coordinates (I & J)
inline void gcode_G42() {
const bool hasI = parser.seenval('I');
const int8_t ix = hasI ? parser.value_int() : 0;
const bool hasJ = parser.seenval('J');
const int8_t iy = hasJ ? parser.value_int() : 0;
if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
#define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
#define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
#define _GET_MESH_X(I) mbl.index_to_xpos[I]
#define _GET_MESH_Y(J) mbl.index_to_ypos[J]
if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
if (parser.boolval('P')) {
if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
const float fval = parser.linearval('F');
if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
// SCARA kinematic has "safe" XY raw moves
prepare_uninterpolated_move_to_destination();
#endif // AUTO_BED_LEVELING_UBL
* G92: Set current position to given X Y Z E
inline void gcode_G92() {
bool didXYZ = false,
didE = parser.seenval('E');
if (!didE) stepper.synchronize();
if (parser.seenval(axis_codes[i])) {
current_position[i] = parser.value_axis_units((AxisEnum)i);
if (i != E_AXIS) didXYZ = true;
const float p = current_position[i];
const float v = parser.value_axis_units((AxisEnum)i);
current_position[i] = v;
if (i != E_AXIS) {
didXYZ = true;
position_shift[i] += v - p; // Offset the coordinate space
update_software_endstops((AxisEnum)i);
I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
if (didXYZ)
else if (didE)
* M0: Unconditional stop - Wait for user button press on LCD
* M1: Conditional stop - Wait for user button press on LCD
inline void gcode_M0_M1() {
const char * const args = parser.string_arg;
millis_t ms = 0;
bool hasP = false, hasS = false;
if (parser.seenval('P')) {
ms = parser.value_millis(); // milliseconds to wait
hasP = ms > 0;
if (parser.seenval('S')) {
ms = parser.value_millis_from_seconds(); // seconds to wait
hasS = ms > 0;
if (!hasP && !hasS && args && *args)
lcd_setstatus(args, true);
LCD_MESSAGEPGM(MSG_USERWAIT);
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
dontExpireStatus();
if (!hasP && !hasS && args && *args) {
SERIAL_ECHOLN(args);
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true;
if (ms > 0) {
ms += previous_cmd_ms; // wait until this time for a click
while (PENDING(millis(), ms) && wait_for_user) idle();
if (lcd_detected()) {
while (wait_for_user) idle();
IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
#endif // HAS_RESUME_CONTINUE
#if ENABLED(SPINDLE_LASER_ENABLE)
* M3: Spindle Clockwise
* M4: Spindle Counter-clockwise
* S0 turns off spindle.
* If no speed PWM output is defined then M3/M4 just turns it on.
* At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
* Hardware PWM is required. ISRs are too slow.
* NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
* No other settings give a PWM signal that goes from 0 to 5 volts.
* The system automatically sets WGM to Mode 1, so no special
* initialization is needed.
* WGM bits for timer 2 are automatically set by the system to
* Mode 1. This produces an acceptable 0 to 5 volt signal.
* No special initialization is needed.
* NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
* factors for timers 2, 3, 4, and 5 are acceptable.
* SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
* the spindle/laser during power-up or when connecting to the host
* (usually goes through a reset which sets all I/O pins to tri-state)
* PWM duty cycle goes from 0 (off) to 255 (always on).
// Wait for spindle to come up to speed
inline void delay_for_power_up() {
while (PENDING(millis(), SPINDLE_LASER_POWERUP_DELAY + previous_cmd_ms)) idle();
// Wait for spindle to stop turning
inline void delay_for_power_down() {
while (PENDING(millis(), SPINDLE_LASER_POWERDOWN_DELAY + previous_cmd_ms + 1)) idle();
* ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
* it accepts inputs of 0-255
inline void ocr_val_mode() {
uint8_t spindle_laser_power = parser.value_byte();
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
inline void gcode_M3_M4(bool is_M3) {
stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
#if SPINDLE_DIR_CHANGE
const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
if (SPINDLE_STOP_ON_DIR_CHANGE \
&& READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
&& READ(SPINDLE_DIR_PIN) != rotation_dir
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
delay_for_power_down();
digitalWrite(SPINDLE_DIR_PIN, rotation_dir);
* Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
* Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
* Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
#if ENABLED(SPINDLE_LASER_PWM)
if (parser.seen('O')) ocr_val_mode();
const float spindle_laser_power = parser.floatval('S');
if (spindle_laser_power == 0) {
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
if (spindle_laser_power <= SPEED_POWER_MIN)
ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
if (spindle_laser_power >= SPEED_POWER_MAX)
ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
delay_for_power_up();
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
* M5 turn off spindle
inline void gcode_M5() {
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
#endif // SPINDLE_LASER_ENABLE
* M17: Enable power on all stepper motors
inline void gcode_M17() {
LCD_MESSAGEPGM(MSG_NO_MOVE);
enable_all_steppers();
#define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
#define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
static float resume_position[XYZE];
static bool move_away_flag = false;
static bool sd_print_paused = false;
static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
static millis_t next_buzz = 0;
static int8_t runout_beep = 0;
if (init) next_buzz = runout_beep = 0;
if (ELAPSED(ms, next_buzz)) {
if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
BUZZ(300, 2000);
runout_beep++;
static void ensure_safe_temperature() {
bool heaters_heating = true;
wait_for_heatup = true; // M108 will clear this
while (wait_for_heatup && heaters_heating) {
heaters_heating = false;
HOTEND_LOOP() {
if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
heaters_heating = true;
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
if (move_away_flag) return false; // already paused
if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (!thermalManager.allow_cold_extrude &&
thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
ensure_safe_temperature(); // wait for extruder to heat up before unloading
// Indicate that the printer is paused
move_away_flag = true;
// Pause the print job and timer
if (card.sdprinting) {
card.pauseSDPrint();
sd_print_paused = true;
print_job_timer.pause();
// Show initial message and wait for synchronize steppers
if (show_lcd) {
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
// Save current position
COPY(resume_position, current_position);
if (retract) {
// Initial retract before move to filament change position
destination[E_AXIS] += retract;
RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
// Lift Z axis
if (z_lift > 0) {
destination[Z_AXIS] += z_lift;
NOMORE(destination[Z_AXIS], Z_MAX_POS);
RUNPLAN(PAUSE_PARK_Z_FEEDRATE);
// Move XY axes to filament exchange position
destination[X_AXIS] = x_pos;
destination[Y_AXIS] = y_pos;
clamp_to_software_endstops(destination);
RUNPLAN(PAUSE_PARK_XY_FEEDRATE);
if (unload_length != 0) {
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
// Unload filament
destination[E_AXIS] += unload_length;
RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
#if HAS_BUZZER
filament_change_beep(max_beep_count, true);
// Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
disable_e_steppers();
safe_delay(100);
// Start the heater idle timers
const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
HOTEND_LOOP()
thermalManager.start_heater_idle_timer(e, nozzle_timeout);
static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
bool nozzle_timed_out = false;
// Wait for filament insert by user and press button
wait_for_user = true; // LCD click or M108 will clear this
while (wait_for_user) {
filament_change_beep(max_beep_count);
// If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
// re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
if (!nozzle_timed_out)
nozzle_timed_out |= thermalManager.is_heater_idle(e);
if (nozzle_timed_out) {
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
// Wait for LCD click or M108
while (wait_for_user) idle(true);
// Re-enable the heaters if they timed out
HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
// Wait for the heaters to reach the target temperatures
ensure_safe_temperature();
wait_for_user = true; /* Wait for user to load filament */
nozzle_timed_out = false;
idle(true);
static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
if (!move_away_flag) return;
thermalManager.reset_heater_idle_timer(e);
if (nozzle_timed_out) ensure_safe_temperature();
if (load_length != 0) {
// Show "insert filament"
if (nozzle_timed_out)
while (wait_for_user && nozzle_timed_out) {
// Show "load" message
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
// Load filament
destination[E_AXIS] += load_length;
RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
#if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
float extrude_length = initial_extrude_length;
if (extrude_length > 0) {
// "Wait for filament extrude"
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
// Extrude filament to get into hotend
destination[E_AXIS] += extrude_length;
RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
// Show "Extrude More" / "Resume" menu and wait for reply
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
// Keep looping if "Extrude More" was selected
} while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
// "Wait for print to resume"
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
// Set extruder to saved position
destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
planner.set_e_position_mm(current_position[E_AXIS]);
// Move XYZ to starting position
planner.buffer_line_kinematic(resume_position, PAUSE_PARK_XY_FEEDRATE, active_extruder);
// Move XY to starting position, then Z
destination[X_AXIS] = resume_position[X_AXIS];
destination[Y_AXIS] = resume_position[Y_AXIS];
destination[Z_AXIS] = resume_position[Z_AXIS];
filament_ran_out = false;
// Show status screen
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
if (sd_print_paused) {
card.startFileprint();
sd_print_paused = false;
move_away_flag = false;
#endif // ADVANCED_PAUSE_FEATURE
* M20: List SD card to serial output
inline void gcode_M20() {
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
card.ls();
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
* M21: Init SD Card
inline void gcode_M21() { card.initsd(); }
* M22: Release SD Card
inline void gcode_M22() { card.release(); }
* M23: Open a file
inline void gcode_M23() { card.openFile(parser.string_arg, true); }
* M24: Start or Resume SD Print
inline void gcode_M24() {
#if ENABLED(PARK_HEAD_ON_PAUSE)
resume_print();
print_job_timer.start();
* M25: Pause SD Print
inline void gcode_M25() {
enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
* M26: Set SD Card file index
inline void gcode_M26() {
if (card.cardOK && parser.seenval('S'))
card.setIndex(parser.value_long());
* M27: Get SD Card status
inline void gcode_M27() { card.getStatus(); }
* M28: Start SD Write
inline void gcode_M28() { card.openFile(parser.string_arg, false); }
* M29: Stop SD Write
* Processed in write to file routine above
inline void gcode_M29() {
// card.saving = false;
* M30 <filename>: Delete SD Card file
inline void gcode_M30() {
if (card.cardOK) {
card.closefile();
card.removeFile(parser.string_arg);
* M31: Get the time since the start of SD Print (or last M109)
inline void gcode_M31() {
char buffer[21];
duration_t elapsed = print_job_timer.duration();
elapsed.toString(buffer);
lcd_setstatus(buffer);
SERIAL_ECHOLNPAIR("Print time: ", buffer);
* M32: Select file and start SD Print
inline void gcode_M32() {
if (card.sdprinting)
char* namestartpos = parser.string_arg;
const bool call_procedure = parser.boolval('P');
card.openFile(namestartpos, true, call_procedure);
if (parser.seenval('S'))
// Procedure calls count as normal print time.
if (!call_procedure) print_job_timer.start();
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
* M33: Get the long full path of a file or folder
* <dospath> Case-insensitive DOS-style path to a file or folder
* Example:
* M33 miscel~1/armchair/armcha~1.gco
* Output:
* /Miscellaneous/Armchair/Armchair.gcode
inline void gcode_M33() {
card.printLongPath(parser.string_arg);
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
* M34: Set SD Card Sorting Options
inline void gcode_M34() {
if (parser.seen('S')) card.setSortOn(parser.value_bool());
if (parser.seenval('F')) {
const int v = parser.value_long();
card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
//if (parser.seen('R')) card.setSortReverse(parser.value_bool());
#endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
* M928: Start SD Write
inline void gcode_M928() {
card.openLogFile(parser.string_arg);
* Sensitive pin test for M42, M226
static bool pin_is_protected(const int8_t pin) {
static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
* M42: Change pin status via GCode
* P<pin> Pin number (LED if omitted)
* S<byte> Pin status from 0 - 255
inline void gcode_M42() {
if (!parser.seenval('S')) return;
const byte pin_status = parser.value_byte();
const int pin_number = parser.intval('P', LED_PIN);
if (pin_number < 0) return;
if (pin_is_protected(pin_number)) {
SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
switch (pin_number) {
#if HAS_FAN0
case FAN_PIN: fanSpeeds[0] = pin_status; break;
#if HAS_FAN1
case FAN1_PIN: fanSpeeds[1] = pin_status; break;
#if HAS_FAN2
case FAN2_PIN: fanSpeeds[2] = pin_status; break;
#if ENABLED(PINS_DEBUGGING)
#include "pinsDebug.h"
inline void toggle_pins() {
const bool I_flag = parser.boolval('I');
const int repeat = parser.intval('R', 1),
start = parser.intval('S'),
end = parser.intval('E', NUM_DIGITAL_PINS - 1),
wait = parser.intval('W', 500);
for (uint8_t pin = start; pin <= end; pin++) {
//report_pin_state_extended(pin, I_flag, false);
if (!I_flag && pin_is_protected(pin)) {
report_pin_state_extended(pin, I_flag, true, "Untouched ");
report_pin_state_extended(pin, I_flag, true, "Pulsing ");
#if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
if (pin == 46) {
SET_OUTPUT(46);
for (int16_t j = 0; j < repeat; j++) {
WRITE(46, 0); safe_delay(wait);
WRITE(46, 1); safe_delay(wait);
else if (pin == 47) {
SET_OUTPUT(47);
WRITE(47, 0); safe_delay(wait);
WRITE(47, 1); safe_delay(wait);
pinMode(pin, OUTPUT);
digitalWrite(pin, 0); safe_delay(wait);
digitalWrite(pin, 1); safe_delay(wait);
SERIAL_ECHOLNPGM("Done.");
} // toggle_pins
inline void servo_probe_test() {
#if !(NUM_SERVOS > 0 && HAS_SERVO_0)
SERIAL_ERRORLNPGM("SERVO not setup");
#elif !HAS_Z_SERVO_ENDSTOP
SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
SERIAL_PROTOCOLLNPGM("Servo probe test");
SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
bool probe_inverting;
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
#define PROBE_TEST_PIN Z_MIN_PIN
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
#if Z_MIN_ENDSTOP_INVERTING
SERIAL_PROTOCOLLNPGM("true");
SERIAL_PROTOCOLLNPGM("false");
probe_inverting = Z_MIN_ENDSTOP_INVERTING;
#elif ENABLED(Z_MIN_PROBE_ENDSTOP)
#define PROBE_TEST_PIN Z_MIN_PROBE_PIN
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
#if Z_MIN_PROBE_ENDSTOP_INVERTING
probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
SET_INPUT_PULLUP(PROBE_TEST_PIN);
bool deploy_state, stow_state;
servo[probe_index].move(z_servo_angle[0]); //deploy
safe_delay(500);
deploy_state = digitalRead(PROBE_TEST_PIN);
servo[probe_index].move(z_servo_angle[1]); //stow
stow_state = digitalRead(PROBE_TEST_PIN);
if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
if (deploy_state != stow_state) {
SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
if (deploy_state) {
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
else { // measure active signal length
servo[probe_index].move(z_servo_angle[0]); // deploy
SERIAL_PROTOCOLLNPGM("please trigger probe");
uint16_t probe_counter = 0;
// Allow 30 seconds max for operator to trigger probe
for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
safe_delay(2);
if (0 == j % (500 * 1)) // keep cmd_timeout happy
if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
if (probe_counter == 50)
SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
else if (probe_counter >= 2)
SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
} // pulse detected
} // for loop waiting for trigger
if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
} // measure active signal length
} // servo_probe_test
* M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
* M43 - report name and state of pin(s)
* P<pin> Pin to read or watch. If omitted, reads all pins.
* I Flag to ignore Marlin's pin protection.
* M43 W - Watch pins -reporting changes- until reset, click, or M108.
* P<pin> Pin to read or watch. If omitted, read/watch all pins.
* M43 E<bool> - Enable / disable background endstop monitoring
* - Machine continues to operate
* - Reports changes to endstops
* - Toggles LED_PIN when an endstop changes
* - Can not reliably catch the 5mS pulse from BLTouch type probes
* M43 T - Toggle pin(s) and report which pin is being toggled
* S<pin> - Start Pin number. If not given, will default to 0
* L<pin> - End Pin number. If not given, will default to last pin defined for this board
* I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
* R - Repeat pulses on each pin this number of times before continueing to next pin
* W - Wait time (in miliseconds) between pulses. If not given will default to 500
* M43 S - Servo probe test
* P<index> - Probe index (optional - defaults to 0
inline void gcode_M43() {
if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
toggle_pins();
// Enable or disable endstop monitoring
if (parser.seen('E')) {
endstop_monitor_flag = parser.value_bool();
SERIAL_PROTOCOLPGM("endstop monitor ");
SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
SERIAL_PROTOCOLLNPGM("abled");
if (parser.seen('S')) {
servo_probe_test();
// Get the range of pins to test or watch
const uint8_t first_pin = parser.byteval('P'),
last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
if (first_pin > last_pin) return;
const bool ignore_protection = parser.boolval('I');
// Watch until click, M108, or reset
if (parser.boolval('W')) {
SERIAL_PROTOCOLLNPGM("Watching pins");
byte pin_state[last_pin - first_pin + 1];
for (int8_t pin = first_pin; pin <= last_pin; pin++) {
if (pin_is_protected(pin) && !ignore_protection) continue;
pinMode(pin, INPUT_PULLUP);
delay(1);
/*
if (IS_ANALOG(pin))
pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
//*/
pin_state[pin - first_pin] = digitalRead(pin);
for (;;) {
const byte val =
IS_ANALOG(pin)
? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
:
digitalRead(pin);
if (val != pin_state[pin - first_pin]) {
report_pin_state_extended(pin, ignore_protection, false);
pin_state[pin - first_pin] = val;
if (!wait_for_user) {
safe_delay(200);
// Report current state of selected pin(s)
for (uint8_t pin = first_pin; pin <= last_pin; pin++)
report_pin_state_extended(pin, ignore_protection, true);
#endif // PINS_DEBUGGING
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
* M48: Z probe repeatability measurement function.
* Usage:
* M48 <P#> <X#> <Y#> <V#> <E> <L#>
* P = Number of sampled points (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage Z probe for each reading
* L = Number of legs of movement before probe
* S = Schizoid (Or Star if you prefer)
* This function assumes the bed has been homed. Specifically, that a G28 command
* as been issued prior to invoking the M48 Z probe repeatability measurement function.
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
* regenerated.
inline void gcode_M48() {
SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
const int8_t n_samples = parser.byteval('P', 10);
if (!WITHIN(n_samples, 4, 50)) {
SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
float X_current = current_position[X_AXIS],
Y_current = current_position[Y_AXIS];
const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
#if DISABLED(DELTA)
if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
out_of_range_error(PSTR("X"));
if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
out_of_range_error(PSTR("Y"));
if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
bool seen_L = parser.seen('L');
uint8_t n_legs = seen_L ? parser.value_byte() : 0;
if (n_legs > 15) {
SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
if (n_legs == 1) n_legs = 2;
const bool schizoid_flag = parser.boolval('S');
if (schizoid_flag && !seen_L) n_legs = 7;
* Now get everything to the specified probe point So we can safely do a
* probe to get us close to the bed. If the Z-Axis is far from the bed,
* we don't want to use that as a starting point for each probe.
if (verbose_level > 2)
SERIAL_PROTOCOLLNPGM("Positioning the probe...");
// Disable bed level correction in M48 because we want the raw data when we probe
const bool was_enabled = leveling_is_active();
// Move to the first point, deploy, and probe
const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
if (isnan(t)) return;
randomSeed(millis());
double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
for (uint8_t n = 0; n < n_samples; n++) {
if (n_legs) {
int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
float angle = random(0.0, 360.0),
radius = random(
DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
5, X_MAX_LENGTH / 8
SERIAL_ECHOPAIR("Starting radius: ", radius);
SERIAL_ECHOPAIR(" angle: ", angle);
SERIAL_ECHOPGM(" Direction: ");
if (dir > 0) SERIAL_ECHOPGM("Counter-");
SERIAL_ECHOLNPGM("Clockwise");
for (uint8_t l = 0; l < n_legs - 1; l++) {
double delta_angle;
if (schizoid_flag)
// The points of a 5 point star are 72 degrees apart. We need to
// skip a point and go to the next one on the star.
delta_angle = dir * 2.0 * 72.0;
// If we do this line, we are just trying to move further
// around the circle.
delta_angle = dir * (float) random(25, 45);
angle += delta_angle;
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
// If we have gone out too far, we can do a simple fix and scale the numbers
// back in closer to the origin.
while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
X_current *= 0.8;
Y_current *= 0.8;
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
SERIAL_ECHOLNPAIR(", ", Y_current);
SERIAL_PROTOCOLPGM("Going to:");
SERIAL_ECHOPAIR(" X", X_current);
SERIAL_ECHOPAIR(" Y", Y_current);
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
do_blocking_move_to_xy(X_current, Y_current);
} // n_legs loop
} // n_legs
// Probe a single point
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
* Get the current mean for the data points we have so far
double sum = 0.0;
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1);
NOMORE(min, sample_set[n]);
NOLESS(max, sample_set[n]);
* Now, use that mean to calculate the standard deviation for the
* data points we have so far
sum = 0.0;
for (uint8_t j = 0; j <= n; j++)
sum += sq(sample_set[j] - mean);
sigma = SQRT(sum / (n + 1));
if (verbose_level > 1) {
SERIAL_PROTOCOL(n + 1);
SERIAL_PROTOCOLPGM(" of ");
SERIAL_PROTOCOL((int)n_samples);
SERIAL_PROTOCOLPGM(": z: ");
SERIAL_PROTOCOL_F(sample_set[n], 3);
SERIAL_PROTOCOLPGM(" mean: ");
SERIAL_PROTOCOL_F(mean, 4);
SERIAL_PROTOCOLPGM(" sigma: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM(" min: ");
SERIAL_PROTOCOL_F(min, 3);
SERIAL_PROTOCOLPGM(" max: ");
SERIAL_PROTOCOL_F(max, 3);
SERIAL_PROTOCOLPGM(" range: ");
SERIAL_PROTOCOL_F(max-min, 3);
} // End of probe loop
if (STOW_PROBE()) return;
SERIAL_PROTOCOLPGM("Finished!");
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM(" Min: ");
SERIAL_PROTOCOLPGM(" Max: ");
SERIAL_PROTOCOLPGM(" Range: ");
SERIAL_PROTOCOLPGM("Standard Deviation: ");
// Re-enable bed level correction if it had been on
set_bed_leveling_enabled(was_enabled);
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
inline void gcode_M49() {
ubl.g26_debug_flag ^= true;
SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
* M75: Start print timer
inline void gcode_M75() { print_job_timer.start(); }
* M76: Pause print timer
inline void gcode_M76() { print_job_timer.pause(); }
* M77: Stop print timer
inline void gcode_M77() { print_job_timer.stop(); }
* M78: Show print statistics
inline void gcode_M78() {
// "M78 S78" will reset the statistics
if (parser.intval('S') == 78)
print_job_timer.initStats();
print_job_timer.showStats();
* M104: Set hot end temperature
inline void gcode_M104() {
if (get_target_extruder_from_command(104)) return;
if (DEBUGGING(DRYRUN)) return;
#if ENABLED(SINGLENOZZLE)
if (target_extruder != active_extruder) return;
const int16_t temp = parser.value_celsius();
thermalManager.setTargetHotend(temp, target_extruder);
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
* Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
* standby mode, for instance in a dual extruder setup, without affecting
* the running print timer.
if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
print_job_timer.stop();
LCD_MESSAGEPGM(WELCOME_MSG);
if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
#if ENABLED(AUTOTEMP)
planner.autotemp_M104_M109();
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
void print_heater_state(const float &c, const float &t,
#if ENABLED(SHOW_TEMP_ADC_VALUES)
const float r,
const int8_t e=-2
SERIAL_PROTOCOLCHAR(
#if HAS_TEMP_BED && HAS_TEMP_HOTEND
e == -1 ? 'B' : 'T'
#elif HAS_TEMP_HOTEND
'T'
'B'
if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
SERIAL_PROTOCOL(c);
SERIAL_PROTOCOLPAIR(" /" , t);
SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
SERIAL_PROTOCOLCHAR(')');
void print_heaterstates() {
#if HAS_TEMP_HOTEND
print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
, thermalManager.rawHotendTemp(target_extruder)
#if HAS_TEMP_BED
print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
thermalManager.rawBedTemp(),
-1 // BED
HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
thermalManager.rawHotendTemp(e),
e
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
SERIAL_PROTOCOLPGM(" B@:");
SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
SERIAL_PROTOCOLPAIR(" @", e);
SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
* M105: Read hot end and bed temperature
inline void gcode_M105() {
if (get_target_extruder_from_command(105)) return;
SERIAL_PROTOCOLPGM(MSG_OK);
print_heaterstates();
#else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
#if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
static uint8_t auto_report_temp_interval;
static millis_t next_temp_report_ms;
* M155: Set temperature auto-report interval. M155 S<seconds>
inline void gcode_M155() {
auto_report_temp_interval = parser.value_byte();
NOMORE(auto_report_temp_interval, 60);
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
inline void auto_report_temperatures() {
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
#endif // AUTO_REPORT_TEMPERATURES
* M106: Set Fan Speed
* S<int> Speed between 0-255
* P<index> Fan index, if more than one fan
inline void gcode_M106() {
uint16_t s = parser.ushortval('S', 255);
NOMORE(s, 255);
const uint8_t p = parser.byteval('P', 0);
if (p < FAN_COUNT) fanSpeeds[p] = s;
* M107: Fan Off
inline void gcode_M107() {
const uint16_t p = parser.ushortval('P');
if (p < FAN_COUNT) fanSpeeds[p] = 0;
#endif // FAN_COUNT > 0
* M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
inline void gcode_M108() { wait_for_heatup = false; }
* M112: Emergency Stop
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
* M410: Quickstop - Abort all planned moves
* This will stop the carriages mid-move, so most likely they
* will be out of sync with the stepper position after this.
inline void gcode_M410() { quickstop_stepper(); }
* M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
#ifndef MIN_COOLING_SLOPE_DEG
#define MIN_COOLING_SLOPE_DEG 1.50
#ifndef MIN_COOLING_SLOPE_TIME
#define MIN_COOLING_SLOPE_TIME 60
inline void gcode_M109() {
if (get_target_extruder_from_command(109)) return;
const bool no_wait_for_cooling = parser.seenval('S');
if (no_wait_for_cooling || parser.seenval('R')) {
* Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
* standby mode, (e.g., in a dual extruder setup) without affecting
if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
else return;
#if TEMP_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
// Loop until the temperature has stabilized
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
// Loop until the temperature is very close target
#define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
float target_temp = -1.0, old_temp = 9999.0;
bool wants_to_cool = false;
wait_for_heatup = true;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
KEEPALIVE_STATE(NOT_BUSY);
const float start_temp = thermalManager.degHotend(target_extruder);
uint8_t old_blue = 0;
// Target temperature might be changed during the loop
if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
target_temp = thermalManager.degTargetHotend(target_extruder);
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
now = millis();
if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
next_temp_ms = now + 1000UL;
SERIAL_PROTOCOLPGM(" W:");
if (residency_start_ms)
SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
SERIAL_PROTOCOLCHAR('?');
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
const float temp = thermalManager.degHotend(target_extruder);
// Gradually change LED strip from violet to red as nozzle heats up
if (!wants_to_cool) {
const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
const float temp_diff = FABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
else if (temp_diff > TEMP_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
// Prevent a wait-forever situation if R is misused i.e. M109 R0
if (wants_to_cool) {
// break after MIN_COOLING_SLOPE_TIME seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
old_temp = temp;
} while (wait_for_heatup && TEMP_CONDITIONS);
if (wait_for_heatup) {
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
set_led_color(255, 255, 255); // Set LEDs All On
#ifndef MIN_COOLING_SLOPE_DEG_BED
#define MIN_COOLING_SLOPE_DEG_BED 1.50
#ifndef MIN_COOLING_SLOPE_TIME_BED
#define MIN_COOLING_SLOPE_TIME_BED 60
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
inline void gcode_M190() {
LCD_MESSAGEPGM(MSG_BED_HEATING);
thermalManager.setTargetBed(parser.value_celsius());
if (parser.value_celsius() > BED_MINTEMP)
#if TEMP_BED_RESIDENCY_TIME > 0
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
#define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
target_extruder = active_extruder; // for print_heaterstates
const float start_temp = thermalManager.degBed();
uint8_t old_red = 255;
if (target_temp != thermalManager.degTargetBed()) {
wants_to_cool = thermalManager.isCoolingBed();
target_temp = thermalManager.degTargetBed();
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
const float temp = thermalManager.degBed();
// Gradually change LED strip from blue to violet as bed heats up
const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
if (red != old_red) set_led_color((old_red = red), 0, 255);
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
else if (temp_diff > TEMP_BED_HYSTERESIS) {
#endif // TEMP_BED_RESIDENCY_TIME > 0
// Prevent a wait-forever situation if R is misused i.e. M190 R0
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
#endif // HAS_TEMP_BED
* M110: Set Current Line Number
inline void gcode_M110() {
if (parser.seenval('N')) gcode_LastN = parser.value_long();
* M111: Set the debug level
inline void gcode_M111() {
marlin_debug_flags = parser.byteval('S', (uint8_t)DEBUG_NONE);
const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
const static char* const debug_strings[] PROGMEM = {
str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
, str_debug_32
SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
if (marlin_debug_flags) {
uint8_t comma = 0;
for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
if (TEST(marlin_debug_flags, i)) {
if (comma++) SERIAL_CHAR(',');
serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
SERIAL_ECHOPGM(MSG_DEBUG_OFF);
* M113: Get or set Host Keepalive interval (0 to disable)
* S<seconds> Optional. Set the keepalive interval.
inline void gcode_M113() {
host_keepalive_interval = parser.value_byte();
NOMORE(host_keepalive_interval, 60);
SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
#if HAS_HEATER_1
* M126: Heater 1 valve open
inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
* M127: Heater 1 valve close
inline void gcode_M127() { baricuda_valve_pressure = 0; }
#if HAS_HEATER_2
* M128: Heater 2 valve open
inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
* M129: Heater 2 valve close
inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
#endif // BARICUDA
* M140: Set bed temperature
inline void gcode_M140() {
if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
* M145: Set the heatup state for a material in the LCD menu
* S<material> (0=PLA, 1=ABS)
* H<hotend temp>
* B<bed temp>
* F<fan speed>
inline void gcode_M145() {
const uint8_t material = (uint8_t)parser.intval('S');
if (material >= COUNT(lcd_preheat_hotend_temp)) {
SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
int v;
if (parser.seenval('H')) {
v = parser.value_int();
lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
#if TEMP_SENSOR_BED != 0
if (parser.seenval('B')) {
lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
#endif // ULTIPANEL
* M149: Set temperature units
inline void gcode_M149() {
if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
* M80 : Turn on the Power Supply
* M80 S : Report the current state and exit
inline void gcode_M80() {
// S: Report the current power supply state and exit
serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
* If you have a switch on suicide pin, this is useful
* if you want to start another print with suicide feature after
* a print without suicide...
#if ENABLED(HAVE_TMC2130)
delay(100);
tmc2130_init(); // Settings only stick when the driver has power
powersupply_on = true;
#endif // HAS_POWER_SWITCH
* M81: Turn off Power, including Power Supply, if there is one.
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
inline void gcode_M81() {
thermalManager.disable_all_heaters();
stepper.finish_and_disable();
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
fans_paused = false;
ZERO(paused_fanSpeeds);
safe_delay(1000); // Wait 1 second before switching off
suicide();
#elif HAS_POWER_SWITCH
powersupply_on = false;
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
* M82: Set E codes absolute (default)
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
* M83: Set E codes relative while in Absolute Coordinates (G90) mode
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
* M18, M84: Disable stepper motors
inline void gcode_M18_M84() {
stepper_inactive_time = parser.value_millis_from_seconds();
bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
if (all_axis) {
if (parser.seen('X')) disable_X();
if (parser.seen('Y')) disable_Y();
if (parser.seen('Z')) disable_Z();
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
if (parser.seen('E')) disable_e_steppers();
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
ubl_lcd_map_control = defer_return_to_status = false;
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
inline void gcode_M85() {
if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
* Multi-stepper support for M92, M201, M203
#if ENABLED(DISTINCT_E_FACTORS)
#define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
#define TARGET_EXTRUDER target_extruder
#define GET_TARGET_EXTRUDER(CMD) NOOP
#define TARGET_EXTRUDER 0
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
* (Follows the same syntax as G92)
* With multiple extruders use T to specify which one.
inline void gcode_M92() {
GET_TARGET_EXTRUDER(92);
if (parser.seen(axis_codes[i])) {
if (i == E_AXIS) {
const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
if (value < 20.0) {
float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
planner.max_jerk[E_AXIS] *= factor;
planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
planner.refresh_positioning();
* Output the current position to serial
void report_current_position() {
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
stepper.report_positions();
SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
#ifdef M114_DETAIL
void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
char str[12];
for (uint8_t i = 0; i < n; i++) {
SERIAL_CHAR(axis_codes[i]);
SERIAL_CHAR(':');
SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
void report_current_position_detail() {
SERIAL_PROTOCOLPGM("\nLogical:");
report_xyze(current_position);
SERIAL_PROTOCOLPGM("Raw: ");
const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
report_xyz(raw);
SERIAL_PROTOCOLPGM("Leveled:");
float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
planner.apply_leveling(leveled);
report_xyz(leveled);
SERIAL_PROTOCOLPGM("UnLevel:");
float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
planner.unapply_leveling(unleveled);
report_xyz(unleveled);
SERIAL_PROTOCOLPGM("ScaraK: ");
SERIAL_PROTOCOLPGM("DeltaK: ");
inverse_kinematics(leveled); // writes delta[]
report_xyz(delta);
SERIAL_PROTOCOLPGM("Stepper:");
const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
report_xyze(step_count, 4, 0);
const float deg[XYZ] = {
stepper.get_axis_position_degrees(A_AXIS),
stepper.get_axis_position_degrees(B_AXIS)
SERIAL_PROTOCOLPGM("Degrees:");
report_xyze(deg, 2);
SERIAL_PROTOCOLPGM("FromStp:");
get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
report_xyze(from_steppers);
const float diff[XYZE] = {
from_steppers[X_AXIS] - leveled[X_AXIS],
from_steppers[Y_AXIS] - leveled[Y_AXIS],
from_steppers[Z_AXIS] - leveled[Z_AXIS],
from_steppers[E_AXIS] - current_position[E_AXIS]
SERIAL_PROTOCOLPGM("Differ: ");
report_xyze(diff);
#endif // M114_DETAIL
* M114: Report current position to host
inline void gcode_M114() {
if (parser.seen('D')) {
report_current_position_detail();
* M115: Capabilities string
inline void gcode_M115() {
SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
#if ENABLED(EXTENDED_CAPABILITIES_REPORT)
// EEPROM (M500, M501)
#if ENABLED(EEPROM_SETTINGS)
SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
// AUTOREPORT_TEMP (M155)
#if ENABLED(AUTO_REPORT_TEMPERATURES)
SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
// PROGRESS (M530 S L, M531 <file>, M532 X L)
SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
// AUTOLEVEL (G29)
SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
// Z_PROBE (G30)
SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
// MESH_REPORT (M420 V)
SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
// SOFTWARE_POWER (M80, M81)
SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
// CASE LIGHTS (M355)
#if HAS_CASE_LIGHT
SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
// EMERGENCY_PARSER (M108, M112, M410)
#if ENABLED(EMERGENCY_PARSER)
SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
#endif // EXTENDED_CAPABILITIES_REPORT
* M117: Set LCD Status Message
inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
* M118: Display a message in the host console.
* A Append '// ' for an action command, as in OctoPrint
* E Have the host 'echo:' the text
inline void gcode_M118() {
if (parser.boolval('E')) SERIAL_ECHO_START();
if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
SERIAL_ECHOLN(parser.string_arg);
* M119: Output endstop states to serial output
inline void gcode_M119() { endstops.M119(); }
* M120: Enable endstops and set non-homing endstop state to "enabled"
inline void gcode_M120() { endstops.enable_globally(true); }
* M121: Disable endstops and set non-homing endstop state to "disabled"
inline void gcode_M121() { endstops.enable_globally(false); }
* M125: Store current position and move to filament change position.
* Called on pause (by M25) to prevent material leaking onto the
* object. On resume (M24) the head will be moved back and the
* print will resume.
* If Marlin is compiled without SD Card support, M125 can be
* used directly to pause the print and move to park position,
* resuming with a button click or M108.
* L = override retract length
* X = override X
* Y = override Y
* Z = override Z raise
inline void gcode_M125() {
const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
#if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
- (PAUSE_PARK_RETRACT_LENGTH)
const float z_lift = parser.linearval('Z')
#if PAUSE_PARK_Z_ADD > 0
+ PAUSE_PARK_Z_ADD
// Move XY axes to filament change position or given position
const float x_pos = parser.linearval('X')
#ifdef PAUSE_PARK_X_POS
+ PAUSE_PARK_X_POS
#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
+ (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
const float y_pos = parser.linearval('Y')
#ifdef PAUSE_PARK_Y_POS
+ PAUSE_PARK_Y_POS
+ (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
const bool job_running = print_job_timer.isRunning();
if (pause_print(retract, z_lift, x_pos, y_pos)) {
#if DISABLED(SDSUPPORT)
// Wait for lcd click or M108
wait_for_filament_reload();
// Return to print position and continue
if (job_running) print_job_timer.start();
#endif // PARK_HEAD_ON_PAUSE
* M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
* Always sets all 3 or 4 components. If a component is left out, set to 0.
* M150 R255 ; Turn LED red
* M150 R255 U127 ; Turn LED orange (PWM only)
* M150 ; Turn LED off
* M150 R U B ; Turn LED white
* M150 W ; Turn LED white using a white LED
inline void gcode_M150() {
set_led_color(
parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
, parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
* M200: Set filament diameter and set E axis units to cubic units
* T<extruder> - Optional extruder number. Current extruder if omitted.
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
inline void gcode_M200() {
if (get_target_extruder_from_command(200)) return;
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
volumetric_enabled = (parser.value_linear_units() != 0.0);
if (volumetric_enabled) {
filament_size[target_extruder] = parser.value_linear_units();
// make sure all extruders have some sane value for the filament size
for (uint8_t i = 0; i < COUNT(filament_size); i++)
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
calculate_volumetric_multipliers();
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
inline void gcode_M201() {
GET_TARGET_EXTRUDER(201);
const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
planner.reset_acceleration_rates();
#if 0 // Not used for Sprinter/grbl gen6
inline void gcode_M202() {
if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
inline void gcode_M203() {
GET_TARGET_EXTRUDER(203);
LOOP_XYZE(i)
planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
* M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
* P = Printing moves
* R = Retract only (no X, Y, Z) moves
* T = Travel (non printing) moves
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
inline void gcode_M204() {
if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
if (parser.seen('P')) {
planner.acceleration = parser.value_linear_units();
SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
if (parser.seen('R')) {
planner.retract_acceleration = parser.value_linear_units();
SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
if (parser.seen('T')) {
planner.travel_acceleration = parser.value_linear_units();
SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
* M205: Set Advanced Settings
* S = Min Feed Rate (units/s)
* T = Min Travel Feed Rate (units/s)
* B = Min Segment Time (µs)
* X = Max X Jerk (units/sec^2)
* Y = Max Y Jerk (units/sec^2)
* Z = Max Z Jerk (units/sec^2)
* E = Max E Jerk (units/sec^2)
inline void gcode_M205() {
if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
* *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
* *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
* *** In the next 1.2 release, it will simply be disabled by default.
inline void gcode_M206() {
set_home_offset((AxisEnum)i, parser.value_linear_units());
if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
* M665: Set delta configurations
* H = delta height
* L = diagonal rod
* R = delta radius
* S = segments per second
* B = delta calibration radius
* X = Alpha (Tower 1) angle trim
* Y = Beta (Tower 2) angle trim
* Z = Rotate A and B by this angle
inline void gcode_M665() {
if (parser.seen('H')) {
home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
update_software_endstops(Z_AXIS);
if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
if (parser.seen('R')) delta_radius = parser.value_linear_units();
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
if (parser.seen('B')) delta_calibration_radius = parser.value_float();
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
delta_tower_angle_trim[A_AXIS] -= parser.value_float();
delta_tower_angle_trim[B_AXIS] -= parser.value_float();
* M666: Set delta endstop adjustment
inline void gcode_M666() {
SERIAL_ECHOLNPGM(">>> gcode_M666");
endstop_adj[i] = parser.value_linear_units();
SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
SERIAL_ECHOLNPGM("<<< gcode_M666");
// normalize endstops so all are <=0; set the residue to delta height
* M665: Set SCARA settings
* S[segments-per-second] - Segments-per-second
* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
* A, P, and X are all aliases for the shoulder angle
* B, T, and Y are all aliases for the elbow angle
const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
const uint8_t sumAPX = hasA + hasP + hasX;
if (sumAPX == 1)
home_offset[A_AXIS] = parser.value_float();
else if (sumAPX > 1) {
SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
const uint8_t sumBTY = hasB + hasT + hasY;
if (sumBTY == 1)
home_offset[B_AXIS] = parser.value_float();
else if (sumBTY > 1) {
SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
* M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
#endif // !DELTA && Z_DUAL_ENDSTOPS
* M207: Set firmware retraction values
* S[+units] retract_length
* W[+units] retract_length_swap (multi-extruder)
* F[units/min] retract_feedrate_mm_s
* Z[units] retract_zlift
inline void gcode_M207() {
if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
if (parser.seen('W')) retract_length_swap = parser.value_axis_units(E_AXIS);
* M208: Set firmware un-retraction values
* S[+units] retract_recover_length (in addition to M207 S*)
* W[+units] retract_recover_length_swap (multi-extruder)
* F[units/min] retract_recover_feedrate_mm_s
inline void gcode_M208() {
if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
if (parser.seen('W')) retract_recover_length_swap = parser.value_axis_units(E_AXIS);
* M209: Enable automatic retract (M209 S1)
* For slicers that don't support G10/11, reversed extrude-only
* moves will be classified as retraction.
inline void gcode_M209() {
autoretract_enabled = parser.value_bool();
for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
* M211: Enable, Disable, and/or Report software endstops
* Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
inline void gcode_M211() {
if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
SERIAL_ECHOPGM(MSG_OFF);
SERIAL_ECHOPGM(MSG_SOFT_MIN);
SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
SERIAL_ECHOPGM(MSG_SOFT_MAX);
SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
* M218 - set hotend offset (in linear units)
* T<tool>
* X<xoffset>
* Y<yoffset>
* Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
inline void gcode_M218() {
if (get_target_extruder_from_command(218) || target_extruder == 0) return;
if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_ECHO(hotend_offset[X_AXIS][e]);
SERIAL_CHAR(',');
SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
#endif // HOTENDS > 1
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
inline void gcode_M220() {
if (parser.seenval('S')) feedrate_percentage = parser.value_int();
* M221: Set extrusion percentage (M221 T0 S95)
inline void gcode_M221() {
if (get_target_extruder_from_command(221)) return;
flow_percentage[target_extruder] = parser.value_int();
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
inline void gcode_M226() {
const int pin_number = parser.value_int(),
pin_state = parser.intval('S', -1); // required pin state - default is inverted
if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
int target = LOW;
pinMode(pin_number, INPUT);
switch (pin_state) {
target = HIGH;
target = LOW;
case -1:
target = !digitalRead(pin_number);
while (digitalRead(pin_number) != target) idle();
} // pin_state -1 0 1 && pin_number > -1
} // parser.seen('P')
* M260: Send data to a I2C slave device
* This is a PoC, the formating and arguments for the GCODE will
* change to be more compatible, the current proposal is:
* M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
* M260 B<byte-1 value in base 10>
* M260 B<byte-2 value in base 10>
* M260 B<byte-3 value in base 10>
* M260 S1 ; Send the buffered data and reset the buffer
* M260 R1 ; Reset the buffer without sending data
inline void gcode_M260() {
// Set the target address
if (parser.seen('A')) i2c.address(parser.value_byte());
// Add a new byte to the buffer
if (parser.seen('B')) i2c.addbyte(parser.value_byte());
// Flush the buffer to the bus
if (parser.seen('S')) i2c.send();
// Reset and rewind the buffer
else if (parser.seen('R')) i2c.reset();
* M261: Request X bytes from I2C slave device
* Usage: M261 A<slave device address base 10> B<number of bytes>
inline void gcode_M261() {
uint8_t bytes = parser.byteval('B', 1);
if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
i2c.relay(bytes);
SERIAL_ERRORLN("Bad i2c request");
#endif // EXPERIMENTAL_I2CBUS
* M280: Get or set servo position. P<index> [S<angle>]
inline void gcode_M280() {
if (!parser.seen('P')) return;
const int servo_index = parser.value_int();
if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
if (parser.seen('S'))
MOVE_SERVO(servo_index, parser.value_int());
SERIAL_ECHOPAIR(" Servo ", servo_index);
SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
SERIAL_ECHOPAIR("Servo ", servo_index);
SERIAL_ECHOLNPGM(" out of range");
#endif // HAS_SERVOS
* M300: Play beep sound S<frequency Hz> P<duration ms>
inline void gcode_M300() {
uint16_t const frequency = parser.ushortval('S', 260);
uint16_t duration = parser.ushortval('P', 1000);
// Limits the tone duration to 0-5 seconds.
NOMORE(duration, 5000);
BUZZ(duration, frequency);
#endif // HAS_BUZZER
#if ENABLED(PIDTEMP)
* M301: Set PID parameters P I D (and optionally C, L)
* P[float] Kp term
* I[float] Ki term (unscaled)
* D[float] Kd term (unscaled)
* With PID_EXTRUSION_SCALING:
* C[float] Kc term
* L[float] LPQ length
inline void gcode_M301() {
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behaviour (omitting E parameter) is to update for extruder 0 only
const uint8_t e = parser.byteval('E'); // extruder being updated
if (e < HOTENDS) { // catch bad input value
if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
if (parser.seen('L')) lpq_len = parser.value_float();
NOMORE(lpq_len, LPQ_MAX_LEN);
thermalManager.updatePID();
#if ENABLED(PID_PARAMS_PER_HOTEND)
SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
#endif // PID_PARAMS_PER_HOTEND
SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
inline void gcode_M304() {
if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
#endif // PIDTEMPBED
#if defined(CHDK) || HAS_PHOTOGRAPH
* M240: Trigger a camera by emulating a Canon RC-1
* See http://www.doc-diy.net/photo/rc-1_hacked/
inline void gcode_M240() {
OUT_WRITE(CHDK, HIGH);
chdkHigh = millis();
chdkActive = true;
#elif HAS_PHOTOGRAPH
const uint8_t NUM_PULSES = 16;
const float PULSE_LENGTH = 0.01524;
for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
delay(7.33);
#endif // !CHDK && HAS_PHOTOGRAPH
#endif // CHDK || PHOTOGRAPH_PIN
#if HAS_LCD_CONTRAST
* M250: Read and optionally set the LCD contrast
inline void gcode_M250() {
if (parser.seen('C')) set_lcd_contrast(parser.value_int());
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
#endif // HAS_LCD_CONTRAST
* M302: Allow cold extrudes, or set the minimum extrude temperature
* S<temperature> sets the minimum extrude temperature
* P<bool> enables (1) or disables (0) cold extrusion
* M302 ; report current cold extrusion state
* M302 P0 ; enable cold extrusion checking
* M302 P1 ; disables cold extrusion checking
* M302 S0 ; always allow extrusion (disables checking)
* M302 S170 ; only allow extrusion above 170
* M302 S170 P1 ; set min extrude temp to 170 but leave disabled
inline void gcode_M302() {
const bool seen_S = parser.seen('S');
if (seen_S) {
thermalManager.extrude_min_temp = parser.value_celsius();
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
if (parser.seen('P'))
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
else if (!seen_S) {
// Report current state
SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
SERIAL_ECHOLNPGM("C)");
#endif // PREVENT_COLD_EXTRUSION
* M303: PID relay autotune
* S<temperature> sets the target temperature. (default 150C)
* E<extruder> (-1 for the bed) (default 0)
* C<cycles>
* U<bool> with a non-zero value will apply the result to current settings
inline void gcode_M303() {
#if HAS_PID_HEATING
const int e = parser.intval('E'), c = parser.intval('C', 5);
const bool u = parser.boolval('U');
int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
if (WITHIN(e, 0, HOTENDS - 1))
KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
thermalManager.PID_autotune(temp, e, c, u);
SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
forward_kinematics_SCARA(delta_a, delta_b);
destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
destination[Z_AXIS] = current_position[Z_AXIS];
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
inline bool gcode_M360() {
SERIAL_ECHOLNPGM(" Cal: Theta 0");
return SCARA_move_to_cal(0, 120);
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
inline bool gcode_M361() {
SERIAL_ECHOLNPGM(" Cal: Theta 90");
return SCARA_move_to_cal(90, 130);
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
inline bool gcode_M362() {
SERIAL_ECHOLNPGM(" Cal: Psi 0");
return SCARA_move_to_cal(60, 180);
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
inline bool gcode_M363() {
SERIAL_ECHOLNPGM(" Cal: Psi 90");
return SCARA_move_to_cal(50, 90);
* M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
inline bool gcode_M364() {
SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
return SCARA_move_to_cal(45, 135);
#endif // SCARA
#if ENABLED(EXT_SOLENOID)
void enable_solenoid(const uint8_t num) {
switch (num) {
OUT_WRITE(SOL0_PIN, HIGH);
#if HAS_SOLENOID_1 && EXTRUDERS > 1
OUT_WRITE(SOL1_PIN, HIGH);
#if HAS_SOLENOID_2 && EXTRUDERS > 2
OUT_WRITE(SOL2_PIN, HIGH);
#if HAS_SOLENOID_3 && EXTRUDERS > 3
OUT_WRITE(SOL3_PIN, HIGH);
#if HAS_SOLENOID_4 && EXTRUDERS > 4
case 4:
OUT_WRITE(SOL4_PIN, HIGH);
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
void disable_all_solenoids() {
OUT_WRITE(SOL0_PIN, LOW);
OUT_WRITE(SOL1_PIN, LOW);
OUT_WRITE(SOL2_PIN, LOW);
OUT_WRITE(SOL3_PIN, LOW);
OUT_WRITE(SOL4_PIN, LOW);
* M380: Enable solenoid on the active extruder
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
* M381: Disable all solenoids
inline void gcode_M381() { disable_all_solenoids(); }
#endif // EXT_SOLENOID
* M400: Finish all moves
inline void gcode_M400() { stepper.synchronize(); }
* M401: Engage Z Servo endstop if available
inline void gcode_M401() { DEPLOY_PROBE(); }
* M402: Retract Z Servo endstop if enabled
inline void gcode_M402() { STOW_PROBE(); }
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
inline void gcode_M404() {
filament_width_nominal = parser.value_linear_units();
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
SERIAL_PROTOCOLLN(filament_width_nominal);
* M405: Turn on filament sensor for control
inline void gcode_M405() {
// This is technically a linear measurement, but since it's quantized to centimeters and is a different
// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
meas_delay_cm = parser.value_byte();
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
measurement_delay[i] = temp_ratio;
filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
filament_sensor = true;
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(flow_percentage[active_extruder]);
* M406: Turn off filament sensor for control
inline void gcode_M406() { filament_sensor = false; }
* M407: Get measured filament diameter on serial output
inline void gcode_M407() {
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
SERIAL_PROTOCOLLN(filament_width_meas);
#endif // FILAMENT_WIDTH_SENSOR
void quickstop_stepper() {
stepper.quick_stop();
* M420: Enable/Disable Bed Leveling and/or set the Z fade height.
* S[bool] Turns leveling on or off
* Z[height] Sets the Z fade height (0 or none to disable)
* V[bool] Verbose - Print the leveling grid
* With AUTO_BED_LEVELING_UBL only:
* L[index] Load UBL mesh from index (0 is default)
inline void gcode_M420() {
// L to load a mesh from the EEPROM
if (parser.seen('L')) {
const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
const int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
if (!WITHIN(storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
settings.load_mesh(storage_slot);
ubl.state.storage_slot = storage_slot;
if (parser.seen('L') || parser.seen('V')) {
ubl.display_map(0); // Currently only supports one map type
SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
// V to print the matrix or mesh
if (parser.seen('V')) {
planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
const bool to_enable = parser.boolval('S');
set_bed_leveling_enabled(to_enable);
if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
const bool new_status = leveling_is_active();
if (to_enable && !new_status) {
SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
SERIAL_ECHOPGM("Fade Height ");
if (planner.z_fade_height > 0.0)
SERIAL_ECHOLN(planner.z_fade_height);
SERIAL_ECHOLNPGM(MSG_OFF);
* M421: Set a single Mesh Bed Leveling Z coordinate
* M421 X<linear> Y<linear> Z<linear>
* M421 X<linear> Y<linear> Q<offset>
* M421 I<xindex> J<yindex> Z<linear>
* M421 I<xindex> J<yindex> Q<offset>
inline void gcode_M421() {
const bool hasX = parser.seen('X'), hasI = parser.seen('I');
const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
else if (ix < 0 || iy < 0) {
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
const bool hasI = ix >= 0,
hasJ = iy >= 0,
hasZ = parser.seen('Z'),
hasQ = !hasZ && parser.seen('Q');
if (!hasI || !hasJ || !(hasZ || hasQ)) {
else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
* M421 C Z<linear>
* M421 C Q<offset>
hasC = parser.seen('C'),
if (hasC) {
const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
ix = location.x_index;
iy = location.y_index;
if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
* M428: Set home_offset based on the distance between the
* current_position and the nearest "reference point."
* If an axis is past center its endstop position
* is the reference-point. Otherwise it uses 0. This allows
* the Z offset to be set near the bed when using a max endstop.
* M428 can't be used more than 2cm away from 0 or an endstop.
* Use M206 to set these values directly.
inline void gcode_M428() {
bool err = false;
if (axis_homed[i]) {
const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
diff = base - RAW_POSITION(current_position[i], i);
if (WITHIN(diff, -20, 20)) {
set_home_offset((AxisEnum)i, diff);
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
LCD_ALERTMESSAGEPGM("Err: Too far!");
BUZZ(200, 40);
err = true;
if (!err) {
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
* M500: Store settings in EEPROM
inline void gcode_M500() {
(void)settings.save();
* M501: Read settings from EEPROM
inline void gcode_M501() {
(void)settings.load();
* M502: Revert to default settings
inline void gcode_M502() {
(void)settings.reset();
#if DISABLED(DISABLE_M503)
* M503: print settings currently in memory
inline void gcode_M503() {
(void)settings.report(!parser.boolval('S', true));
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
inline void gcode_M540() {
if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
static float last_zoffset = NAN;
if (!isnan(last_zoffset)) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
const float diff = zprobe_zoffset - last_zoffset;
// Correct bilinear grid for new probe offset
if (diff) {
z_values[x][y] -= diff;
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
if (!no_babystep && leveling_is_active())
thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
UNUSED(no_babystep);
#if ENABLED(DELTA) // correct the delta_height
home_offset[Z_AXIS] -= diff;
last_zoffset = zprobe_zoffset;
inline void gcode_M851() {
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
if (parser.seen('Z')) {
const float value = parser.value_linear_units();
if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
zprobe_zoffset = value;
refresh_zprobe_zoffset();
SERIAL_ECHO(zprobe_zoffset);
SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
SERIAL_ECHOPAIR(": ", zprobe_zoffset);
* M600: Pause for filament change
* E[distance] - Retract the filament this far (negative value)
* Z[distance] - Move the Z axis by this distance
* X[position] - Move to this X position, with Y
* Y[position] - Move to this Y position, with X
* U[distance] - Retract distance for removal (negative value) (manual reload)
* L[distance] - Extrude distance for insertion (positive value) (manual reload)
* B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
* Default values are used for omitted arguments.
inline void gcode_M600() {
#if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
// Don't allow filament change without homing first
if (axis_unhomed_error()) home_all_axes();
const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
const float z_lift = parser.linearval('Z', 0
#if defined(PAUSE_PARK_Z_ADD) && PAUSE_PARK_Z_ADD > 0
const float x_pos = parser.linearval('X', 0
const float y_pos = parser.linearval('Y', 0
const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
#if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
- (FILAMENT_CHANGE_UNLOAD_LENGTH)
const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
#ifdef FILAMENT_CHANGE_LOAD_LENGTH
+ FILAMENT_CHANGE_LOAD_LENGTH
const int beep_count = parser.intval('B',
#ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
-1
if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
wait_for_filament_reload(beep_count);
resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
// Resume the print job timer if it was running
#if ENABLED(MK2_MULTIPLEXER)
inline void select_multiplexed_stepper(const uint8_t e) {
WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
* M702: Unload all extruders
inline void gcode_M702() {
for (uint8_t s = 0; s < E_STEPPERS; s++) {
select_multiplexed_stepper(e);
// TODO: standard unload filament function
// MK2 firmware behavior:
// - Make sure temperature is high enough
// - Raise Z to at least 15 to make room
// - Extrude 1cm of filament in 1 second
// - Under 230C quickly purge ~12mm, over 230C purge ~10mm
// - Change E max feedrate to 80, eject the filament from the tube. Sync.
// - Restore E max feedrate to 50
// Go back to the last active extruder
select_multiplexed_stepper(active_extruder);
#endif // MK2_MULTIPLEXER
* M605: Set dual x-carriage movement mode
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
* units x-offset and an optional differential hotend temperature of
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
* Note: the X axis should be homed after changing dual x-carriage mode.
inline void gcode_M605() {
if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE:
case DXC_DUPLICATION_MODE:
if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
SERIAL_ECHO(hotend_offset[X_AXIS][0]);
SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
#endif // DUAL_NOZZLE_DUPLICATION_MODE
#if ENABLED(LIN_ADVANCE)
* M900: Set and/or Get advance K factor and WH/D ratio
* K<factor> Set advance K factor
* R<ratio> Set ratio directly (overrides WH/D)
* W<width> H<height> D<diam> Set ratio from WH/D
inline void gcode_M900() {
const float newK = parser.floatval('K', -1);
if (newK >= 0) planner.extruder_advance_k = newK;
float newR = parser.floatval('R', -1);
if (newR < 0) {
const float newD = parser.floatval('D', -1),
newW = parser.floatval('W', -1),
newH = parser.floatval('H', -1);
if (newD >= 0 && newW >= 0 && newH >= 0)
newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
if (newR >= 0) planner.advance_ed_ratio = newR;
SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
SERIAL_ECHOPGM(" E/D=");
const float ratio = planner.advance_ed_ratio;
if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
#endif // LIN_ADVANCE
static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
SERIAL_CHAR(name);
SERIAL_ECHOPGM(" axis driver current: ");
SERIAL_ECHOLN(st.getCurrent());
static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
tmc2130_get_current(st, name);
static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
st.clear_otpw();
SERIAL_ECHOLNPGM(" prewarn flag cleared");
static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
SERIAL_ECHOPGM(" stealthChop max speed set to ");
SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
tmc2130_get_pwmthrs(st, name, spmm);
static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
SERIAL_ECHOPGM(" driver homing sensitivity set to ");
SERIAL_ECHOLN(st.sgt());
static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
st.sgt(sgt_val);
tmc2130_get_sgt(st, name);
* M906: Set motor current in milliamps using axis codes X, Y, Z, E
* Report driver currents when no axis specified
* S1: Enable automatic current control
* S0: Disable
inline void gcode_M906() {
uint16_t values[XYZE];
values[i] = parser.intval(axis_codes[i]);
if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
else tmc2130_get_current(stepperX, 'X');
if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
else tmc2130_get_current(stepperY, 'Y');
#if ENABLED(Z_IS_TMC2130)
if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
else tmc2130_get_current(stepperZ, 'Z');
#if ENABLED(E0_IS_TMC2130)
if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
else tmc2130_get_current(stepperE0, 'E');
#if ENABLED(AUTOMATIC_CURRENT_CONTROL)
if (parser.seen('S')) auto_current_control = parser.value_bool();
* M911: Report TMC2130 stepper driver overtemperature pre-warn flag
* The flag is held by the library and persist until manually cleared by M912
inline void gcode_M911() {
const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
* M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
inline void gcode_M912() {
const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
* M913: Set HYBRID_THRESHOLD speed.
#if ENABLED(HYBRID_THRESHOLD)
inline void gcode_M913() {
if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
#endif // HYBRID_THRESHOLD
* M914: Set SENSORLESS_HOMING sensitivity.
inline void gcode_M914() {
if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
else tmc2130_get_sgt(stepperX, 'X');
if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
else tmc2130_get_sgt(stepperY, 'Y');
#endif // SENSORLESS_HOMING
#endif // HAVE_TMC2130
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
inline void gcode_M907() {
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
#elif HAS_MOTOR_CURRENT_PWM
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
// this one uses actual amps in floating point
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
const float dac_percent = parser.value_float();
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
inline void gcode_M908() {
stepper.digitalPotWrite(
parser.intval('P'),
parser.intval('S')
#ifdef DAC_STEPPER_CURRENT
dac_current_raw(
parser.byteval('P', -1),
parser.ushortval('S', 0)
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
inline void gcode_M909() { dac_print_values(); }
inline void gcode_M910() { dac_commit_eeprom(); }
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
#if HAS_MICROSTEPS
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() {
if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
stepper.microstep_readings();
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
* S# determines MS1 or MS2, X# sets the pin high/low.
inline void gcode_M351() {
if (parser.seenval('S')) switch (parser.value_byte()) {
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
#endif // HAS_MICROSTEPS
#ifndef INVERT_CASE_LIGHT
#define INVERT_CASE_LIGHT false
int case_light_brightness; // LCD routine wants INT
bool case_light_on;
void update_case_light() {
pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
uint8_t case_light_bright = (uint8_t)case_light_brightness;
if (case_light_on) {
analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness );
else digitalWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH );
else digitalWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
#endif // HAS_CASE_LIGHT
* M355: Turn case light on/off and set brightness
* P<byte> Set case light brightness (PWM pin required - ignored otherwise)
* S<bool> Set case light on/off
* When S turns on the light on a PWM pin then the current brightness level is used/restored
* M355 P200 S0 turns off the light & sets the brightness level
* M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
inline void gcode_M355() {
uint8_t args = 0;
if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
if (args) update_case_light();
// always report case light status
if (!case_light_on) {
SERIAL_ECHOLN("Case light: off");
if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
else SERIAL_ECHOLNPAIR("Case light: ", case_light_brightness);
SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
* M163: Set a single mix factor for a mixing extruder
* This is called "weight" by some systems.
* S[index] The channel index to set
* P[float] The mix value
inline void gcode_M163() {
const int mix_index = parser.intval('S');
if (mix_index < MIXING_STEPPERS) {
float mix_value = parser.floatval('P');
NOLESS(mix_value, 0.0);
mixing_factor[mix_index] = RECIPROCAL(mix_value);
* M164: Store the current mix factors as a virtual tool.
* S[index] The virtual tool to store
inline void gcode_M164() {
const int tool_index = parser.intval('S');
if (tool_index < MIXING_VIRTUAL_TOOLS) {
mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
* M165: Set multiple mix factors for a mixing extruder.
* Factors that are left out will be set to 0.
* All factors together must add up to 1.0.
* A[factor] Mix factor for extruder stepper 1
* B[factor] Mix factor for extruder stepper 2
* C[factor] Mix factor for extruder stepper 3
* D[factor] Mix factor for extruder stepper 4
* H[factor] Mix factor for extruder stepper 5
* I[factor] Mix factor for extruder stepper 6
inline void gcode_M165() { gcode_get_mix(); }
#endif // MIXING_EXTRUDER
* M999: Restart after being stopped
* Default behaviour is to flush the serial buffer and request
* a resend to the host starting on the last N line received.
* Sending "M999 S1" will resume printing without flushing the
* existing command buffer.
inline void gcode_M999() {
Running = true;
lcd_reset_alert_level();
if (parser.boolval('S')) return;
// gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend();
#if ENABLED(SWITCHING_EXTRUDER)
#if EXTRUDERS > 3
#define REQ_ANGLES 4
#define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
#define REQ_ANGLES 2
#define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
inline void move_extruder_servo(const uint8_t e) {
constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
#if EXTRUDERS & 1
if (e < EXTRUDERS - 1)
MOVE_SERVO(_SERVO_NR, angles[e]);
#endif // SWITCHING_EXTRUDER
#if ENABLED(SWITCHING_NOZZLE)
inline void move_nozzle_servo(const uint8_t e) {
const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
inline void invalid_extruder_error(const uint8_t e) {
SERIAL_CHAR('T');
SERIAL_ECHO_F(e, DEC);
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
* Perform a tool-change, which may result in moving the
* previous tool out of the way and the new tool into place.
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
return invalid_extruder_error(tmp_extruder);
// T0-Tnnn: Switch virtual tool by changing the mix
for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
#else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
if (tmp_extruder >= EXTRUDERS)
const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
if (tmp_extruder != active_extruder) {
if (!no_move && axis_unhomed_error()) {
SERIAL_ECHOLNPGM("No move on toolchange");
no_move = true;
// Save current position to destination, for use later
SERIAL_ECHOPGM("Dual X Carriage Mode ");
case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
const float xhome = x_home_pos(active_extruder);
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
&& IsRunning()
&& (delayed_move_time || current_position[X_AXIS] != xhome)
float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
SERIAL_ECHOLNPAIR("Raise to ", raised_z);
SERIAL_ECHOLNPAIR("MoveX to ", xhome);
SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
// Park old head: 1) raise 2) move to park position 3) lower
for (uint8_t i = 0; i < 3; i++)
planner.buffer_line(
i == 0 ? current_position[X_AXIS] : xhome,
current_position[Y_AXIS],
i == 2 ? current_position[Z_AXIS] : raised_z,
current_position[E_AXIS],
planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
active_extruder
// Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
// Activate the new extruder
active_extruder = tmp_extruder;
// This function resets the max/min values - the current position may be overwritten below.
set_axis_is_at_home(X_AXIS);
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
// Only when auto-parking are carriages safe to move
if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
// New current position is the position of the activated extruder
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
// Save the inactive extruder's position (from the old current_position)
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
// record raised toolhead position for use by unpark
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
// If the new extruder is the left one, set it "parked"
// This triggers the second extruder to move into the duplication position
active_extruder_parked = (active_extruder == 0);
if (active_extruder_parked)
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
DEBUG_POS("New extruder (parked)", current_position);
// No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
#else // !DUAL_X_CARRIAGE
#define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
// <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
// Always raise by some amount (destination copied from current_position earlier)
current_position[Z_AXIS] += z_raise;
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
move_nozzle_servo(tmp_extruder);
* Set current_position to the position of the new nozzle.
* Offsets are based on linear distance, so we need to get
* the resulting position in coordinate space.
* - With grid or 3-point leveling, offset XYZ by a tilted vector
* - With mesh leveling, update Z for the new position
* - Otherwise, just use the raw linear distance
* Software endstops are altered here too. Consider a case where:
* E0 at X=0 ... E1 at X=10
* When we switch to E1 now X=10, but E1 can't move left.
* To express this we apply the change in XY to the software endstops.
* E1 can move farther right than E0, so the right limit is extended.
* Note that we don't adjust the Z software endstops. Why not?
* Consider a case where Z=0 (here) and switching to E1 makes Z=1
* because the bed is 1mm lower at the new position. As long as
* the first nozzle is out of the way, the carriage should be
* allowed to move 1mm lower. This technically "breaks" the
* Z software endstop. But this is technically correct (and
* there is no viable alternative).
// Offset extruder, make sure to apply the bed level rotation matrix
vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
hotend_offset[Y_AXIS][tmp_extruder],
0),
act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
hotend_offset[Y_AXIS][active_extruder],
offset_vec = tmp_offset_vec - act_offset_vec;
tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
act_offset_vec.debug(PSTR("act_offset_vec"));
offset_vec.debug(PSTR("offset_vec (BEFORE)"));
offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
// Adjustments to the current position
const float xydiff[2] = { offset_vec.x, offset_vec.y };
current_position[Z_AXIS] += offset_vec.z;
#else // !ABL_PLANAR
const float xydiff[2] = {
hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
z1 = current_position[Z_AXIS], z2 = z1;
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
planner.apply_leveling(x2, y2, z2);
current_position[Z_AXIS] += z2 - z1;
SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
#endif // !HAS_ABL
SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
SERIAL_ECHOLNPGM(" }");
// The newly-selected extruder XY is actually at...
current_position[X_AXIS] += xydiff[X_AXIS];
current_position[Y_AXIS] += xydiff[Y_AXIS];
for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
position_shift[i] += xydiff[i];
// Set the new active extruder
#endif // !DUAL_X_CARRIAGE
if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
// Tell the planner the new "current position"
// Move to the "old position" (move the extruder into place)
if (!no_move && IsRunning()) {
if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
// Move back down, if needed. (Including when the new tool is higher.)
if (z_raise != z_diff) {
destination[Z_AXIS] += z_diff;
feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
} // (tmp_extruder != active_extruder)
disable_all_solenoids();
enable_solenoid_on_active_extruder();
#else // HOTENDS <= 1
UNUSED(fr_mm_s);
UNUSED(no_move);
#if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
move_extruder_servo(tmp_extruder);
#elif ENABLED(MK2_MULTIPLEXER)
if (tmp_extruder >= E_STEPPERS)
select_multiplexed_stepper(tmp_extruder);
#endif // HOTENDS <= 1
SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
#endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
* T0-T3: Switch tool, usually switching extruders
* F[units/min] Set the movement feedrate
* S1 Don't move the tool in XY after change
inline void gcode_T(uint8_t tmp_extruder) {
SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
DEBUG_POS("BEFORE", current_position);
#if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
tool_change(tmp_extruder);
#elif HOTENDS > 1
tool_change(
tmp_extruder,
MMM_TO_MMS(parser.linearval('F')),
(tmp_extruder == active_extruder) || parser.boolval('S')
DEBUG_POS("AFTER", current_position);
SERIAL_ECHOLNPGM("<<< gcode_T");
* Process a single command and dispatch it to its handler
* This is called from the main loop()
void process_next_command() {
char * const current_command = command_queue[cmd_queue_index_r];
if (DEBUGGING(ECHO)) {
SERIAL_ECHOLN(current_command);
SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
// Parse the next command in the queue
parser.parse(current_command);
// Handle a known G, M, or T
switch (parser.command_letter) {
case 'G': switch (parser.codenum) {
// G0, G1
gcode_G0_G1(parser.codenum == 0);
gcode_G0_G1();
// G2, G3
#if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
case 2: // G2 - CW ARC
case 3: // G3 - CCW ARC
gcode_G2_G3(parser.codenum == 2);
// G4 Dwell
gcode_G4();
// G5
case 5: // G5 - Cubic B_spline
gcode_G5();
case 10: // G10: retract
case 11: // G11: retract_recover
gcode_G10_G11(parser.codenum == 10);
case 12:
gcode_G12(); // G12: Nozzle Clean
#endif // NOZZLE_CLEAN_FEATURE
case 17: // G17: Select Plane XY
gcode_G17();
case 18: // G18: Select Plane ZX
gcode_G18();
case 19: // G19: Select Plane YZ
gcode_G19();
case 20: //G20: Inch Mode
gcode_G20();
case 21: //G21: MM Mode
gcode_G21();
#endif // INCH_MODE_SUPPORT
case 26: // G26: Mesh Validation Pattern generation
gcode_G26();
case 27: // G27: Nozzle Park
gcode_G27();
case 28: // G28: Home all axes, one at a time
gcode_G28(false);
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
// or provides access to the UBL System if enabled.
gcode_G29();
case 30: // G30 Single Z probe
gcode_G30();
case 31: // G31: dock the sled
gcode_G31();
case 32: // G32: undock the sled
gcode_G32();
case 33: // G33: Delta Auto-Calibration
gcode_G33();
case 38: // G38.2 & G38.3
if (subcode == 2 || subcode == 3)
gcode_G38(subcode == 2);
case 90: // G90
relative_mode = false;
case 91: // G91
case 92: // G92
gcode_G92();
case 42:
gcode_G42();
#if ENABLED(DEBUG_GCODE_PARSER)
case 800:
parser.debug(); // GCode Parser Test for G
case 'M': switch (parser.codenum) {
case 0: // M0: Unconditional stop - Wait for user button press on LCD
case 1: // M1: Conditional stop - Wait for user button press on LCD
gcode_M0_M1();
gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
break; // synchronizes with movement commands
gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
case 5:
gcode_M5(); // M5 - turn spindle/laser off
case 17: // M17: Enable all stepper motors
gcode_M17();
case 20: // M20: list SD card
gcode_M20(); break;
case 21: // M21: init SD card
gcode_M21(); break;
case 22: // M22: release SD card
gcode_M22(); break;
case 23: // M23: Select file
gcode_M23(); break;
case 24: // M24: Start SD print
gcode_M24(); break;
case 25: // M25: Pause SD print
gcode_M25(); break;
case 26: // M26: Set SD index
gcode_M26(); break;
case 27: // M27: Get SD status
gcode_M27(); break;
case 28: // M28: Start SD write
gcode_M28(); break;
case 29: // M29: Stop SD write
gcode_M29(); break;
case 30: // M30 <filename> Delete File
gcode_M30(); break;
case 32: // M32: Select file and start SD print
gcode_M32(); break;
case 33: // M33: Get the long full path to a file or folder
gcode_M33(); break;
case 34: //M34 - Set SD card sorting options
gcode_M34(); break;
case 928: // M928: Start SD write
gcode_M928(); break;
case 31: // M31: Report time since the start of SD print or last M109
gcode_M31(); break;
case 42: // M42: Change pin state
gcode_M42(); break;
case 43: // M43: Read pin state
gcode_M43(); break;
case 48: // M48: Z probe repeatability test
gcode_M48();
case 49: // M49: Turn on or off G26 debug flag for verbose output
gcode_M49();
case 75: // M75: Start print timer
gcode_M75(); break;
case 76: // M76: Pause print timer
gcode_M76(); break;
case 77: // M77: Stop print timer
gcode_M77(); break;
case 78: // M78: Show print statistics
gcode_M78(); break;
case 100: // M100: Free Memory Report
gcode_M100();
case 104: // M104: Set hot end temperature
gcode_M104();
case 110: // M110: Set Current Line Number
gcode_M110();
case 111: // M111: Set debug level
gcode_M111();
case 108: // M108: Cancel Waiting
gcode_M108();
case 112: // M112: Emergency Stop
gcode_M112();
case 410: // M410 quickstop - Abort all the planned moves.
gcode_M410();
case 113: // M113: Set Host Keepalive interval
gcode_M113();
case 140: // M140: Set bed temperature
gcode_M140();
case 105: // M105: Report current temperature
gcode_M105();
return; // "ok" already printed
case 155: // M155: Set temperature auto-report interval
gcode_M155();
case 109: // M109: Wait for hotend temperature to reach target
gcode_M109();
case 190: // M190: Wait for bed temperature to reach target
gcode_M190();
case 106: // M106: Fan On
gcode_M106();
case 107: // M107: Fan Off
gcode_M107();
case 125: // M125: Store current position and move to filament change position
gcode_M125(); break;
// PWM for HEATER_1_PIN
case 126: // M126: valve open
gcode_M126();
case 127: // M127: valve closed
gcode_M127();
#endif // HAS_HEATER_1
// PWM for HEATER_2_PIN
case 128: // M128: valve open
gcode_M128();
case 129: // M129: valve closed
gcode_M129();
#endif // HAS_HEATER_2
case 80: // M80: Turn on Power Supply
gcode_M80();
case 81: // M81: Turn off Power, including Power Supply, if possible
gcode_M81();
case 82: // M82: Set E axis normal mode (same as other axes)
gcode_M82();
case 83: // M83: Set E axis relative mode
gcode_M83();
case 18: // M18 => M84
case 84: // M84: Disable all steppers or set timeout
gcode_M18_M84();
case 85: // M85: Set inactivity stepper shutdown timeout
gcode_M85();
case 92: // M92: Set the steps-per-unit for one or more axes
gcode_M92();
case 114: // M114: Report current position
gcode_M114();
case 115: // M115: Report capabilities
gcode_M115();
case 117: // M117: Set LCD message text, if possible
gcode_M117();
case 118: // M118: Display a message in the host console
gcode_M118();
case 119: // M119: Report endstop states
gcode_M119();
case 120: // M120: Enable endstops
gcode_M120();
case 121: // M121: Disable endstops
gcode_M121();
case 145: // M145: Set material heatup parameters
gcode_M145();
case 149: // M149: Set temperature units
gcode_M149();
case 150: // M150: Set Status LED Color
gcode_M150();
case 163: // M163: Set a component weight for mixing extruder
gcode_M163();
case 164: // M164: Save current mix as a virtual extruder
gcode_M164();
case 165: // M165: Set multiple mix weights
gcode_M165();
case 200: // M200: Set filament diameter, E to cubic units
gcode_M200();
case 201: // M201: Set max acceleration for print moves (units/s^2)
gcode_M201();
case 202: // M202
gcode_M202();
case 203: // M203: Set max feedrate (units/sec)
gcode_M203();
case 204: // M204: Set acceleration
gcode_M204();
case 205: //M205: Set advanced settings
gcode_M205();
case 206: // M206: Set home offsets
gcode_M206();
case 665: // M665: Set delta configurations
gcode_M665();
#if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
case 666: // M666: Set delta or dual endstop adjustment
gcode_M666();
case 207: // M207: Set Retract Length, Feedrate, and Z lift
gcode_M207();
case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
gcode_M208();
case 209: // M209: Turn Automatic Retract Detection on/off
gcode_M209();
case 211: // M211: Enable, Disable, and/or Report software endstops
gcode_M211();
case 218: // M218: Set a tool offset
gcode_M218();
case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
gcode_M220();
case 221: // M221: Set Flow Percentage
gcode_M221();
case 226: // M226: Wait until a pin reaches a state
gcode_M226();
case 280: // M280: Set servo position absolute
gcode_M280();
case 300: // M300: Play beep tone
gcode_M300();
case 301: // M301: Set hotend PID parameters
gcode_M301();
case 304: // M304: Set bed PID parameters
gcode_M304();
case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
gcode_M240();
case 250: // M250: Set LCD contrast
gcode_M250();
case 260: // M260: Send data to an i2c slave
gcode_M260();
case 261: // M261: Request data from an i2c slave
gcode_M261();
case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
gcode_M302();
case 303: // M303: PID autotune
gcode_M303();
case 360: // M360: SCARA Theta pos1
if (gcode_M360()) return;
case 361: // M361: SCARA Theta pos2
if (gcode_M361()) return;
case 362: // M362: SCARA Psi pos1
if (gcode_M362()) return;
case 363: // M363: SCARA Psi pos2
if (gcode_M363()) return;
case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
if (gcode_M364()) return;
case 400: // M400: Finish all moves
gcode_M400();
case 401: // M401: Deploy probe
gcode_M401();
case 402: // M402: Stow probe
gcode_M402();
case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
gcode_M404();
case 405: // M405: Turn on filament sensor for control
gcode_M405();
case 406: // M406: Turn off filament sensor for control
gcode_M406();
case 407: // M407: Display measured filament diameter
gcode_M407();
case 420: // M420: Enable/Disable Bed Leveling
gcode_M420();
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
case 421: // M421: Set a Mesh Bed Leveling Z coordinate
gcode_M421();
case 428: // M428: Apply current_position to home_offset
gcode_M428();
case 500: // M500: Store settings in EEPROM
gcode_M500();
case 501: // M501: Read settings from EEPROM
gcode_M501();
case 502: // M502: Revert to default settings
gcode_M502();
case 503: // M503: print settings currently in memory
gcode_M503();
case 540: // M540: Set abort on endstop hit for SD printing
gcode_M540();
case 851: // M851: Set Z Probe Z Offset
gcode_M851();
case 600: // M600: Pause for filament change
gcode_M600();
case 605: // M605: Set Dual X Carriage movement mode
gcode_M605();
case 702: // M702: Unload all extruders
gcode_M702();
case 900: // M900: Set advance K factor.
gcode_M900();
case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
gcode_M906();
case 907: // M907: Set digital trimpot motor current using axis codes.
gcode_M907();
case 908: // M908: Control digital trimpot directly.
gcode_M908();
case 909: // M909: Print digipot/DAC current value
gcode_M909();
case 910: // M910: Commit digipot/DAC value to external EEPROM
gcode_M910();
case 911: // M911: Report TMC2130 prewarn triggered flags
gcode_M911();
case 912: // M911: Clear TMC2130 prewarn triggered flags
gcode_M912();
case 913: // M913: Set HYBRID_THRESHOLD speed.
gcode_M913();
case 914: // M914: Set SENSORLESS_HOMING sensitivity.
gcode_M914();
case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350();
case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
gcode_M351();
case 355: // M355 set case light brightness
gcode_M355();
parser.debug(); // GCode Parser Test for M
case 860: // M860 Report encoder module position
gcode_M860();
case 861: // M861 Report encoder module status
gcode_M861();
case 862: // M862 Perform axis test
gcode_M862();
case 863: // M863 Calibrate steps/mm
gcode_M863();
case 864: // M864 Change module address
gcode_M864();
case 865: // M865 Check module firmware version
gcode_M865();
case 866: // M866 Report axis error count
gcode_M866();
case 867: // M867 Toggle error correction
gcode_M867();
case 868: // M868 Set error correction threshold
gcode_M868();
case 869: // M869 Report axis error
gcode_M869();
#endif // I2C_POSITION_ENCODERS
case 999: // M999: Restart after being Stopped
gcode_M999();
case 'T':
gcode_T(parser.codenum);
default: parser.unknown_command_error();
ok_to_send();
* Send a "Resend: nnn" message to the host to
* indicate that a command needs to be re-sent.
void FlushSerialRequestResend() {
//char command_queue[cmd_queue_index_r][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
* Send an "ok" message to the host, indicating
* that a command was successfully processed.
* If ADVANCED_OK is enabled also include:
* N<int> Line number of the command, if any
* P<int> Planner space remaining
* B<int> Block queue space remaining
void ok_to_send() {
if (!send_ok[cmd_queue_index_r]) return;
#if ENABLED(ADVANCED_OK)
char* p = command_queue[cmd_queue_index_r];
if (*p == 'N') {
SERIAL_PROTOCOL(' ');
SERIAL_ECHO(*p++);
while (NUMERIC_SIGNED(*p))
SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
* Constrain the given coordinates to the software endstops.
// NOTE: This makes no sense for delta beds other than Z-axis.
// For delta the X/Y would need to be clamped at
// DELTA_PRINTABLE_RADIUS from center of bed, but delta
// now enforces is_position_reachable for X/Y regardless
// of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
// redundant here. Probably should #ifdef out the X/Y
// axis clamps here for delta and just leave the Z clamp.
void clamp_to_software_endstops(float target[XYZ]) {
if (!soft_endstops_enabled) return;
#if ENABLED(MIN_SOFTWARE_ENDSTOPS)
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
#define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
#define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
#define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
#define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
#define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
#define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
#define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
#define ABL_BG_POINTS_X GRID_MAX_POINTS_X
#define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
#define ABL_BG_GRID(X,Y) z_values[X][Y]
// Get the Z adjustment for non-linear bed leveling
float bilinear_z_offset(const float logical[XYZ]) {
static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
last_x = -999.999, last_y = -999.999;
// Whole units for the grid line indices. Constrained within bounds.
static int8_t gridx, gridy, nextx, nexty,
last_gridx = -99, last_gridy = -99;
// XY relative to the probed area
const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
#if ENABLED(EXTRAPOLATE_BEYOND_GRID)
// Keep using the last grid box
#define FAR_EDGE_OR_BOX 2
// Just use the grid far edge
#define FAR_EDGE_OR_BOX 1
if (last_x != x) {
last_x = x;
ratio_x = x * ABL_BG_FACTOR(X_AXIS);
const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
ratio_x -= gx; // Subtract whole to get the ratio within the grid box
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
// Beyond the grid maintain height at grid edges
NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
gridx = gx;
nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
if (last_y != y || last_gridx != gridx) {
if (last_y != y) {
last_y = y;
ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
ratio_y -= gy;
NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
gridy = gy;
nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
if (last_gridx != gridx || last_gridy != gridy) {
last_gridx = gridx;
last_gridy = gridy;
// Z at the box corners
z1 = ABL_BG_GRID(gridx, gridy); // left-front
d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
z3 = ABL_BG_GRID(nextx, gridy); // right-front
d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
// Bilinear interpolate. Needed since y or gridx has changed.
L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
D = R - L;
const float offset = L + ratio_x * D; // the offset almost always changes
static float last_offset = 0;
if (FABS(last_offset - offset) > 0.2) {
SERIAL_ECHOPGM("Sudden Shift at ");
SERIAL_ECHOPAIR("x=", x);
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
SERIAL_ECHOPAIR(" z1=", z1);
SERIAL_ECHOPAIR(" z2=", z2);
SERIAL_ECHOPAIR(" z3=", z3);
SERIAL_ECHOLNPAIR(" z4=", z4);
SERIAL_ECHOPAIR(" L=", L);
SERIAL_ECHOPAIR(" R=", R);
SERIAL_ECHOLNPAIR(" offset=", offset);
last_offset = offset;
return offset;
* Recalculate factors used for delta kinematics whenever
* settings have been changed (e.g., by M665).
void recalc_delta_settings(float radius, float diagonal_rod) {
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
#if ENABLED(DELTA_FAST_SQRT)
* Fast inverse sqrt from Quake III Arena
* See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
float Q_rsqrt(float number) {
long i;
float x2, y;
const float threehalfs = 1.5f;
x2 = number * 0.5f;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5F3759DF - ( i >> 1 ); // what the f***?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
return y;
#define _SQRT(n) (1.0f / Q_rsqrt(n))
#define _SQRT(n) SQRT(n)
* Delta Inverse Kinematics
* Calculate the tower positions for a given logical
* position, storing the result in the delta[] array.
* This is an expensive calculation, requiring 3 square
* roots per segmented linear move, and strains the limits
* of a Mega2560 with a Graphical Display.
* Suggested optimizations include:
* - Disable the home_offset (M206) and/or position_shift (G92)
* features to remove up to 12 float additions.
* - Use a fast-inverse-sqrt function and add the reciprocal.
* (see above)
// Macro to obtain the Z position of an individual tower
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
delta_diagonal_rod_2_tower[T] - HYPOT2( \
delta_tower[T][X_AXIS] - raw[X_AXIS], \
delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
) \
)
#define DELTA_RAW_IK() do { \
delta[A_AXIS] = DELTA_Z(A_AXIS); \
delta[B_AXIS] = DELTA_Z(B_AXIS); \
delta[C_AXIS] = DELTA_Z(C_AXIS); \
}while(0)
#define DELTA_LOGICAL_IK() do { \
const float raw[XYZ] = { \
RAW_X_POSITION(logical[X_AXIS]), \
RAW_Y_POSITION(logical[Y_AXIS]), \
RAW_Z_POSITION(logical[Z_AXIS]) \
}; \
DELTA_RAW_IK(); \
#define DELTA_DEBUG() do { \
SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
void inverse_kinematics(const float logical[XYZ]) {
DELTA_LOGICAL_IK();
// DELTA_DEBUG();
* Calculate the highest Z position where the
* effector has the full range of XY motion.
float delta_safe_distance_from_top() {
float cartesian[XYZ] = {
LOGICAL_X_POSITION(0),
LOGICAL_Y_POSITION(0),
LOGICAL_Z_POSITION(0)
inverse_kinematics(cartesian);
float distance = delta[A_AXIS];
cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
return FABS(distance - delta[A_AXIS]);
* Delta Forward Kinematics
* See the Wikipedia article "Trilateration"
* https://en.wikipedia.org/wiki/Trilateration
* Establish a new coordinate system in the plane of the
* three carriage points. This system has its origin at
* tower1, with tower2 on the X axis. Tower3 is in the X-Y
* plane with a Z component of zero.
* We will define unit vectors in this coordinate system
* in our original coordinate system. Then when we calculate
* the Xnew, Ynew and Znew values, we can translate back into
* the original system by moving along those unit vectors
* by the corresponding values.
* Variable names matched to Marlin, c-version, and avoid the
* use of any vector library.
* by Andreas Hardtung 2016-06-07
* based on a Java function from "Delta Robot Kinematics V3"
* by Steve Graves
* The result is stored in the cartes[] array.
void forward_kinematics_DELTA(float z1, float z2, float z3) {
// Create a vector in old coordinates along x axis of new coordinate
float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
// Get the Magnitude of vector.
float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
// Create unit vector by dividing by magnitude.
float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
// Get the vector from the origin of the new system to the third point.
float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
// Use the dot product to find the component of this vector on the X axis.
float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
// Create a vector along the x axis that represents the x component of p13.
float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
// Subtract the X component from the original vector leaving only Y. We use the
// variable that will be the unit vector after we scale it.
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
// The magnitude of Y component
float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
// Convert to a unit vector
ey[0] /= j; ey[1] /= j; ey[2] /= j;
// The cross product of the unit x and y is the unit z
// float[] ez = vectorCrossProd(ex, ey);
float ez[3] = {
ex[1] * ey[2] - ex[2] * ey[1],
ex[2] * ey[0] - ex[0] * ey[2],
ex[0] * ey[1] - ex[1] * ey[0]
// We now have the d, i and j values defined in Wikipedia.
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
// Start from the origin of the old coordinates and add vectors in the
// old coords that represent the Xnew, Ynew and Znew to find the point
// in the old system.
cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
void forward_kinematics_DELTA(float point[ABC]) {
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
* Get the stepper positions in the cartes[] array.
* Forward kinematics are applied for DELTA and SCARA.
* The result is in the current coordinate space with
* leveling applied. The coordinates need to be run through
* unapply_leveling to obtain the "ideal" coordinates
* suitable for current_position, etc.
void get_cartesian_from_steppers() {
forward_kinematics_DELTA(
stepper.get_axis_position_mm(A_AXIS),
stepper.get_axis_position_mm(B_AXIS),
stepper.get_axis_position_mm(C_AXIS)
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
forward_kinematics_SCARA(
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
* Set the current_position for an axis based on
* the stepper positions, removing any leveling that
* may have been applied.
void set_current_from_steppers_for_axis(const AxisEnum axis) {
get_cartesian_from_steppers();
planner.unapply_leveling(cartes);
if (axis == ALL_AXES)
COPY(current_position, cartes);
current_position[axis] = cartes[axis];
* Prepare a mesh-leveled linear move in a Cartesian setup,
* splitting the move where it crosses mesh borders.
void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
NOMORE(cx1, GRID_MAX_POINTS_X - 2);
NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
NOMORE(cx2, GRID_MAX_POINTS_X - 2);
NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square
line_to_destination(fr_mm_s);
#define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
float normalized_dist, end[XYZE];
// Split at the left/front border of the right/top square
const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) {
COPY(end, destination);
destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
CBI(x_splits, gcx);
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = MBL_SEGMENT_END(X);
CBI(y_splits, gcy);
// Already split on a border
destination[Z_AXIS] = MBL_SEGMENT_END(Z);
destination[E_AXIS] = MBL_SEGMENT_END(E);
// Do the split and look for more borders
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
COPY(destination, end);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
#define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
* Prepare a bilinear-leveled linear move on Cartesian,
* splitting the move where it crosses grid borders.
void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
cx2 = CELL_INDEX(X, destination[X_AXIS]),
cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
#define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
destination[Y_AXIS] = LINE_SEGMENT_END(Y);
destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
destination[X_AXIS] = LINE_SEGMENT_END(X);
destination[Z_AXIS] = LINE_SEGMENT_END(Z);
destination[E_AXIS] = LINE_SEGMENT_END(E);
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
#if IS_KINEMATIC && !UBL_DELTA
* Prepare a linear move in a DELTA or SCARA setup.
* This calls planner.buffer_line several times, adding
* small incremental moves for DELTA or SCARA.
inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
// Get the top feedrate of the move in the XY plane
const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
// If the move is only in Z/E don't split up the move
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
// Fail if attempting move outside printable radius
if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
// Get the cartesian distances moved in XYZE
const float difference[XYZE] = {
ltarget[X_AXIS] - current_position[X_AXIS],
ltarget[Y_AXIS] - current_position[Y_AXIS],
ltarget[Z_AXIS] - current_position[Z_AXIS],
ltarget[E_AXIS] - current_position[E_AXIS]
// Get the linear distance in XYZ
float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
// If the move is very short, check the E move distance
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
// No E move either? Game over.
if (UNEAR_ZERO(cartesian_mm)) return true;
// Minimum number of seconds to move the given distance
const float seconds = cartesian_mm / _feedrate_mm_s;
// The number of segments-per-second times the duration
// gives the number of segments
uint16_t segments = delta_segments_per_second * seconds;
// For SCARA minimum segment size is 0.25mm
NOMORE(segments, cartesian_mm * 4);
// At least one segment is required
NOLESS(segments, 1);
// The approximate length of each segment
const float inv_segments = 1.0 / float(segments),
segment_distance[XYZE] = {
difference[X_AXIS] * inv_segments,
difference[Y_AXIS] * inv_segments,
difference[Z_AXIS] * inv_segments,
difference[E_AXIS] * inv_segments
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" segments=", segments);
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
feed_factor = inv_segment_length * _feedrate_mm_s;
float oldA = stepper.get_axis_position_degrees(A_AXIS),
oldB = stepper.get_axis_position_degrees(B_AXIS);
// Get the logical current position as starting point
float logical[XYZE];
COPY(logical, current_position);
// Drop one segment so the last move is to the exact target.
// If there's only 1 segment, loops will be skipped entirely.
--segments;
// Calculate and execute the segments
for (uint16_t s = segments + 1; --s;) {
LOOP_XYZE(i) logical[i] += segment_distance[i];
DELTA_LOGICAL_IK(); // Delta can inline its kinematics
inverse_kinematics(logical);
ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
// For SCARA scale the feed rate from mm/s to degrees/s
// Use ratio between the length of the move and the larger angle change
const float adiff = abs(delta[A_AXIS] - oldA),
bdiff = abs(delta[B_AXIS] - oldB);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
oldA = delta[A_AXIS];
oldB = delta[B_AXIS];
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
// Since segment_distance is only approximate,
// the final move must be to the exact destination.
// With segments > 1 length is 1 segment, otherwise total length
inverse_kinematics(ltarget);
ADJUST_DELTA(ltarget);
#else // !IS_KINEMATIC || UBL_DELTA
* Prepare a linear move in a Cartesian setup.
* If Mesh Bed Leveling is enabled, perform a mesh move.
* Returns true if the caller didn't update current_position.
inline bool prepare_move_to_destination_cartesian() {
const float fr_scaled = MMS_SCALED(feedrate_mm_s);
if (ubl.state.active) { // direct use of ubl.state.active for speed
ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
line_to_destination(fr_scaled);
// Do not use feedrate_percentage for E or Z only moves
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
line_to_destination();
if (mbl.active()) { // direct used of mbl.active() for speed
mesh_line_to_destination(fr_scaled);
if (planner.abl_enabled) { // direct use of abl_enabled for speed
bilinear_line_to_destination(fr_scaled);
#endif // !IS_KINEMATIC || UBL_DELTA
* Prepare a linear move in a dual X axis setup
inline bool prepare_move_to_destination_dualx() {
if (active_extruder_parked) {
if (current_position[E_AXIS] == destination[E_AXIS]) {
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
delayed_move_time = millis();
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
if (active_extruder == 0) {
SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
// move duplicate extruder into correct duplication position.
planner.set_position_mm(
LOGICAL_X_POSITION(inactive_extruder_x_pos),
current_position[Z_AXIS],
current_position[E_AXIS]
current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
planner.max_feedrate_mm_s[X_AXIS], 1
extruder_duplication_enabled = true;
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
* Prepare a single move and get ready for the next one
* This may result in several calls to planner.buffer_line to
* do smaller moves for DELTA, SCARA, mesh moves, etc.
void prepare_move_to_destination() {
if (!DEBUGGING(DRYRUN)) {
if (destination[E_AXIS] != current_position[E_AXIS]) {
if (thermalManager.tooColdToExtrude(active_extruder)) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
if (
#if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
prepare_kinematic_move_to(destination)
#elif ENABLED(DUAL_X_CARRIAGE)
prepare_move_to_destination_dualx()
prepare_move_to_destination_cartesian()
#if N_ARC_CORRECTION < 1
#undef N_ARC_CORRECTION
#define N_ARC_CORRECTION 1
* Plan an arc in 2 dimensions
* The arc is approximated by generating many small linear segments.
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
* Arcs should only be made relatively large (over 5mm), as larger arcs with
* larger segments will tend to be more efficient. Your slicer should have
* options for G2/G3 arc generation. In future these options may be GCode tunable.
void plan_arc(
float logical[XYZE], // Destination position
float *offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise?
AxisEnum p_axis, q_axis, l_axis;
switch (workspace_plane) {
case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
// Radius vector from center to current location
float r_P = -offset[0], r_Q = -offset[1];
const float radius = HYPOT(r_P, r_Q),
center_P = current_position[p_axis] - r_P,
center_Q = current_position[q_axis] - r_Q,
rt_X = logical[p_axis] - center_P,
rt_Y = logical[q_axis] - center_Q,
linear_travel = logical[l_axis] - current_position[l_axis],
extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
if (angular_travel < 0) angular_travel += RADIANS(360);
if (clockwise) angular_travel -= RADIANS(360);
// Make a circle if the angular rotation is 0 and the target is current position
if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
angular_travel = RADIANS(360);
const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
if (mm_of_travel < 0.001) return;
uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
if (segments == 0) segments = 1;
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
* r_T = [cos(phi) -sin(phi);
* sin(phi) cos(phi)] * r ;
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
* defined from the circle center to the initial position. Each line segment is formed by successive
* vector rotations. This requires only two cos() and sin() computations to form the rotation
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
* all double numbers are single precision on the Arduino. (True double precision will not have
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
* tool precision in some cases. Therefore, arc path correction is implemented.
* Small angle approximation may be used to reduce computation overhead further. This approximation
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
* issue for CNC machines with the single precision Arduino calculations.
* This approximation also allows plan_arc to immediately insert a line segment into the planner
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
* This is important when there are successive arc motions.
// Vector rotation matrix values
float arc_target[XYZE];
const float theta_per_segment = angular_travel / segments,
linear_per_segment = linear_travel / segments,
extruder_per_segment = extruder_travel / segments,
sin_T = theta_per_segment,
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
// Initialize the linear axis
arc_target[l_axis] = current_position[l_axis];
// Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS];
const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
millis_t next_idle_ms = millis() + 200UL;
#if N_ARC_CORRECTION > 1
int8_t count = N_ARC_CORRECTION;
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
thermalManager.manage_heater();
if (ELAPSED(millis(), next_idle_ms)) {
next_idle_ms = millis() + 200UL;
if (--count) {
// Apply vector rotation matrix to previous r_P / 1
const float r_new_Y = r_P * sin_T + r_Q * cos_T;
r_P = r_P * cos_T - r_Q * sin_T;
r_Q = r_new_Y;
count = N_ARC_CORRECTION;
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
// Update arc_target location
arc_target[p_axis] = center_P + r_P;
arc_target[q_axis] = center_Q + r_Q;
arc_target[l_axis] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment;
clamp_to_software_endstops(arc_target);
planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
// Ensure last segment arrives at target location.
planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
void plan_cubic_move(const float offset[4]) {
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
// As far as the parser is concerned, the position is now == destination. In reality the
#if ENABLED(USE_CONTROLLER_FAN)
void controllerFan() {
static millis_t lastMotorOn = 0, // Last time a motor was turned on
nextMotorCheck = 0; // Last time the state was checked
if (ELAPSED(ms, nextMotorCheck)) {
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
#if E_STEPPERS > 1
|| E1_ENABLE_READ == E_ENABLE_ON
#if HAS_X2_ENABLE
|| X2_ENABLE_READ == X_ENABLE_ON
#if E_STEPPERS > 2
|| E2_ENABLE_READ == E_ENABLE_ON
#if E_STEPPERS > 3
|| E3_ENABLE_READ == E_ENABLE_ON
#if E_STEPPERS > 4
|| E4_ENABLE_READ == E_ENABLE_ON
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
#endif // E_STEPPERS > 1
lastMotorOn = ms; //... set time to NOW so the fan will turn on
// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
// allows digital or PWM fan output to be used (see M42 handling)
WRITE(CONTROLLER_FAN_PIN, speed);
analogWrite(CONTROLLER_FAN_PIN, speed);
#endif // USE_CONTROLLER_FAN
* Morgan SCARA Forward Kinematics. Results in cartes[].
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
void forward_kinematics_SCARA(const float &a, const float &b) {
float a_sin = sin(RADIANS(a)) * L1,
a_cos = cos(RADIANS(a)) * L1,
b_sin = sin(RADIANS(b)) * L2,
b_cos = cos(RADIANS(b)) * L2;
cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
SERIAL_ECHOPAIR(" b=", b);
SERIAL_ECHOPAIR(" a_sin=", a_sin);
SERIAL_ECHOPAIR(" a_cos=", a_cos);
SERIAL_ECHOPAIR(" b_sin=", b_sin);
SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
* Morgan SCARA Inverse Kinematics. Results in delta[].
* See http://forums.reprap.org/read.php?185,283327
static float C2, S2, SK1, SK2, THETA, PSI;
float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
if (L1 == L2)
C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
S2 = SQRT(1 - sq(C2));
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
SK1 = L1 + L2 * C2;
// Rotated Arm2 gives the distance from Arm1 to Arm2
SK2 = L2 * S2;
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
// Angle of Arm2
PSI = ATAN2(S2, C2);
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
delta[C_AXIS] = logical[Z_AXIS];
DEBUG_POS("SCARA IK", logical);
DEBUG_POS("SCARA IK", delta);
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
SERIAL_ECHOPAIR(",", sy);
SERIAL_ECHOPAIR(" C2=", C2);
SERIAL_ECHOPAIR(" S2=", S2);
SERIAL_ECHOPAIR(" Theta=", THETA);
SERIAL_ECHOLNPAIR(" Phi=", PHI);
#endif // MORGAN_SCARA
#if ENABLED(TEMP_STAT_LEDS)
static bool red_led = false;
static millis_t next_status_led_update_ms = 0;
void handle_status_leds(void) {
if (ELAPSED(millis(), next_status_led_update_ms)) {
next_status_led_update_ms += 500; // Update every 0.5s
float max_temp = 0.0;
max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
if (new_led != red_led) {
red_led = new_led;
#if PIN_EXISTS(STAT_LED_RED)
WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
#if PIN_EXISTS(STAT_LED_BLUE)
WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
void handle_filament_runout() {
if (!filament_ran_out) {
filament_ran_out = true;
enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
#endif // FILAMENT_RUNOUT_SENSOR
#if ENABLED(FAST_PWM_FAN)
void setPwmFrequency(uint8_t pin, int val) {
val &= 0x07;
switch (digitalPinToTimer(pin)) {
#ifdef TCCR0A
#if !AVR_AT90USB1286_FAMILY
case TIMER0A:
case TIMER0B:
//_SET_CS(0, val);
#ifdef TCCR1A
case TIMER1A:
case TIMER1B:
//_SET_CS(1, val);
#ifdef TCCR2
case TIMER2:
_SET_CS(2, val);
#ifdef TCCR2A
case TIMER2A:
case TIMER2B:
#ifdef TCCR3A
case TIMER3A:
case TIMER3B:
case TIMER3C:
_SET_CS(3, val);
#ifdef TCCR4A
case TIMER4A:
case TIMER4B:
case TIMER4C:
_SET_CS(4, val);
#ifdef TCCR5A
case TIMER5A:
case TIMER5B:
case TIMER5C:
_SET_CS(5, val);
#endif // FAST_PWM_FAN
float calculate_volumetric_multiplier(float diameter) {
if (!volumetric_enabled || diameter == 0) return 1.0;
return 1.0 / (M_PI * sq(diameter * 0.5));
void calculate_volumetric_multipliers() {
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
void enable_all_steppers() {
enable_X();
enable_Y();
enable_Z();
enable_E0();
enable_E1();
enable_E2();
enable_E3();
enable_E4();
void disable_e_steppers() {
disable_E0();
disable_E1();
disable_E2();
disable_E3();
disable_E4();
void disable_all_steppers() {
disable_X();
disable_Y();
disable_Z();
void automatic_current_control(TMC2130Stepper &st, String axisID) {
// Check otpw even if we don't use automatic control. Allows for flag inspection.
const bool is_otpw = st.checkOT();
// Report if a warning was triggered
static bool previous_otpw = false;
if (is_otpw && !previous_otpw) {
char timestamp[10];
const bool has_days = (elapsed.value > 60*60*24L);
(void)elapsed.toDigital(timestamp, has_days);
SERIAL_ECHO(timestamp);
SERIAL_ECHOPGM(": ");
SERIAL_ECHO(axisID);
SERIAL_ECHOLNPGM(" driver overtemperature warning!");
previous_otpw = is_otpw;
#if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
// Return if user has not enabled current control start with M906 S1.
if (!auto_current_control) return;
* Decrease current if is_otpw is true.
* Bail out if driver is disabled.
* Increase current if OTPW has not been triggered yet.
uint16_t current = st.getCurrent();
if (is_otpw) {
st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
#if ENABLED(REPORT_CURRENT_CHANGE)
SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
else if (!st.isEnabled())
else if (!is_otpw && !st.getOTPW()) {
current += CURRENT_STEP;
if (current <= AUTO_ADJUST_MAX) {
st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
void checkOverTemp() {
static millis_t next_cOT = 0;
if (ELAPSED(millis(), next_cOT)) {
next_cOT = millis() + 5000;
automatic_current_control(stepperX, "X");
automatic_current_control(stepperY, "Y");
automatic_current_control(stepperZ, "Z");
#if ENABLED(X2_IS_TMC2130)
automatic_current_control(stepperX2, "X2");
#if ENABLED(Y2_IS_TMC2130)
automatic_current_control(stepperY2, "Y2");
#if ENABLED(Z2_IS_TMC2130)
automatic_current_control(stepperZ2, "Z2");
automatic_current_control(stepperE0, "E0");
#if ENABLED(E1_IS_TMC2130)
automatic_current_control(stepperE1, "E1");
#if ENABLED(E2_IS_TMC2130)
automatic_current_control(stepperE2, "E2");
#if ENABLED(E3_IS_TMC2130)
automatic_current_control(stepperE3, "E3");
#if ENABLED(E4_IS_TMC2130)
automatic_current_control(stepperE4, "E4");
automatic_current_control(stepperE4);
* Manage several activities:
* - Check for Filament Runout
* - Keep the command buffer full
* - Check for maximum inactive time between commands
* - Check for maximum inactive time between stepper commands
* - Check if pin CHDK needs to go LOW
* - Check for KILL button held down
* - Check for HOME button held down
* - Check if cooling fan needs to be switched on
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
handle_filament_runout();
if (commands_in_queue < BUFSIZE) get_available_commands();
if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
kill(PSTR(MSG_KILLED));
// Prevent steppers timing-out in the middle of M600
#if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
#define MOVE_AWAY_TEST !move_away_flag
#define MOVE_AWAY_TEST true
if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
&& !ignore_stepper_queue && !planner.blocks_queued()) {
#if ENABLED(DISABLE_INACTIVE_X)
#if ENABLED(DISABLE_INACTIVE_Y)
#if ENABLED(DISABLE_INACTIVE_Z)
#if ENABLED(DISABLE_INACTIVE_E)
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
chdkActive = false;
WRITE(CHDK, LOW);
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
static int killCount = 0; // make the inactivity button a bit less responsive
const int KILL_DELAY = 750;
if (!READ(KILL_PIN))
killCount++;
else if (killCount > 0)
killCount--;
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if (killCount >= KILL_DELAY) {
SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
#if HAS_HOME
// Check to see if we have to home, use poor man's debouncer
// ---------------------------------------------------------
static int homeDebounceCount = 0; // poor man's debouncing count
const int HOME_DEBOUNCE_DELAY = 2500;
if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
if (!homeDebounceCount) {
enqueue_and_echo_commands_P(PSTR("G28"));
LCD_MESSAGEPGM(MSG_AUTO_HOME);
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
homeDebounceCount++;
homeDebounceCount = 0;
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
&& thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
bool oldstatus;
oldstatus = E0_ENABLE_READ;
#else // !SWITCHING_EXTRUDER
switch (active_extruder) {
case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
#endif // !SWITCHING_EXTRUDER
previous_cmd_ms = ms; // refresh_cmd_timeout()
const float olde = current_position[E_AXIS];
current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
current_position[E_AXIS] = olde;
planner.set_e_position_mm(olde);
E0_ENABLE_WRITE(oldstatus);
case 0: E0_ENABLE_WRITE(oldstatus); break;
case 1: E1_ENABLE_WRITE(oldstatus); break;
case 2: E2_ENABLE_WRITE(oldstatus); break;
case 3: E3_ENABLE_WRITE(oldstatus); break;
case 4: E4_ENABLE_WRITE(oldstatus); break;
#endif // EXTRUDER_RUNOUT_PREVENT
// handle delayed move timeout
if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
handle_status_leds();
checkOverTemp();
planner.check_axes_activity();
* Standard idle routine keeps the machine alive
void idle(
bool no_stepper_sleep/*=false*/
lcd_update();
host_keepalive();
auto_report_temperatures();
manage_inactivity(
no_stepper_sleep
print_job_timer.tick();
buzzer.tick();
if (planner.blocks_queued() &&
( (blockBufferIndexRef != planner.block_buffer_head) ||
((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
blockBufferIndexRef = planner.block_buffer_head;
I2CPEM.update();
lastUpdateMillis = millis();
* Kill all activity and lock the machine.
* After this the machine will need to be reset.
void kill(const char* lcd_msg) {
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
disable_all_steppers();
kill_screen(lcd_msg);
UNUSED(lcd_msg);
_delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
cli(); // Stop interrupts
_delay_ms(250); //Wait to ensure all interrupts routines stopped
thermalManager.disable_all_heaters(); //turn off heaters again
SET_INPUT(PS_ON_PIN);
while (1) {
watchdog_reset();
} // Wait for reset
* Turn off heaters and stop the print in progress
* After a stop the machine may be resumed with M999
void stop() {
thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
if (fans_paused) fans_pause(false); // put things back the way they were
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
safe_delay(350); // allow enough time for messages to get out before stopping
Running = false;
* Marlin entry-point: Set up before the program loop
* - Set up the kill pin, filament runout, power hold
* - Start the serial port
* - Print startup messages and diagnostics
* - Get EEPROM or default settings
* - Initialize managers for:
* • temperature
* • planner
* • watchdog
* • stepper
* • photo pin
* • servos
* • LCD controller
* • Digipot I2C
* • Z probe sled
* • status LEDs
void setup() {
#ifdef DISABLE_JTAG
// Disable JTAG on AT90USB chips to free up pins for IO
MCUCR = 0x80;
setup_filrunoutpin();
setup_killpin();
setup_powerhold();
disableStepperDrivers();
MYSERIAL.begin(BAUDRATE);
SERIAL_PROTOCOLLNPGM("start");
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR;
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
MCUSR = 0;
SERIAL_ECHOPGM(MSG_MARLIN);
SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
#if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
SERIAL_ECHOLNPGM("Compiled: " __DATE__);
SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
// Send "ok" after commands by default
for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
// Load data from EEPROM if available (or use defaults)
// This also updates variables in the planner, elsewhere
// Initialize current position based on home_offset
COPY(current_position, home_offset);
// Vital to init stepper/planner equivalent for current_position
thermalManager.init(); // Initialize temperature loop
watchdog_init();
stepper.init(); // Initialize stepper, this enables interrupts!
servo_init();
#if HAS_PHOTOGRAPH
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
case_light_on = CASE_LIGHT_DEFAULT_ON;
case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
update_case_light();
OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
endstops.enable_z_probe(false);
SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
enableStepperDrivers();
digipot_i2c_init();
dac_init();
#if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
OUT_WRITE(SOL1_PIN, LOW); // turn it off
SET_INPUT_PULLUP(HOME_PIN);
OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
SET_OUTPUT(RGB_LED_R_PIN);
SET_OUTPUT(RGB_LED_G_PIN);
SET_OUTPUT(RGB_LED_B_PIN);
SET_OUTPUT(RGB_LED_W_PIN);
SET_OUTPUT(E_MUX0_PIN);
SET_OUTPUT(E_MUX1_PIN);
SET_OUTPUT(E_MUX2_PIN);
lcd_init();
#ifndef CUSTOM_BOOTSCREEN_TIMEOUT
#define CUSTOM_BOOTSCREEN_TIMEOUT 2500
#if ENABLED(SHOW_BOOTSCREEN)
#if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
#if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
lcd_bootscreen(); // Show Marlin boot screen
safe_delay(BOOTSCREEN_TIMEOUT); // Pause
#elif ENABLED(ULTRA_LCD)
lcd_bootscreen();
// Initialize mixing to 100% color 1
mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
mixing_virtual_tool_mix[t][i] = mixing_factor[i];
// Make sure any BLTouch error condition is cleared
bltouch_command(BLTOUCH_RESET);
I2CPEM.init();
i2c.onReceive(i2c_on_receive);
i2c.onRequest(i2c_on_request);
setup_endstop_interrupts();
move_extruder_servo(0); // Initialize extruder servo
move_nozzle_servo(0); // Initialize nozzle servo
* The main Marlin program loop
* - Save or log commands to SD
* - Process available commands (if not saving)
* - Call heater manager
* - Call inactivity manager
* - Call endstop manager
* - Call LCD update
void loop() {
card.checkautostart(false);
if (commands_in_queue) {
if (card.saving) {
char* command = command_queue[cmd_queue_index_r];
if (strstr_P(command, PSTR("M29"))) {
// M29 closes the file
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
// Write the string from the read buffer to SD
card.write_command(command);
if (card.logging)
process_next_command(); // The card is saving because it's logging
process_next_command();
// The queue may be reset by a command handler or by code invoked by idle() within a handler
--commands_in_queue;
if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
endstops.report_state();